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1. Introduction

The objective of the paper is to give more insight into the
stability properties of non-smooth dynamical systems with para-
metric excitation. The impact oscillator with parametric excitation
is studied which is described by Hill’s equation with a unilateral
constraint.

The theory of parametrically excited systems has applications
in a wide range of disciplines, e.g. the quadrupole ion trap [19],
the exact plane wave solutions in general relativity [3], para-
metric amplifiers [1], rotor dynamical instabilities [23,24,28],
parametric resonance in power transmission belts [20] and
celestial mechanics [25]. The importance of parametric excitation
has led to a wealth of literature on the theoretical and experi-
mental analysis of parametrically excited systems, see [8,28] and
references therein. The attention in the literature is mainly
focussed on the dynamics of the planar vertically driven pendu-
lum and on its linearization which is described by Hill’s equation.
The vertically driven pendulum, of which the suspension point is
driven periodically up and down (see Fig. 1a), is one of the
simplest mechanical systems with parametric excitation. The
system is also known as the parametrically excited pendulum,
the vertically forced pendulum or the Kapitza pendulum. The
dynamics of the vertically driven pendulum can (after some
scaling) be expressed by

€WðtÞþ
g

l
�

aðtÞ

l

� �
sin WðtÞ ¼ 0, ð1Þ
the downward vertical
f the suspension point.

1

Extensive studies of the non-linear dynamics of the vertically
driven pendulum can be found in [2,4,5,8,26]. The dynamics of
the pendulum system in the vicinity of its equilibrium positions
W¼ 0 and W¼ p is described by Hill’s equation [6,17,30]

€yðtÞþgðtÞyðtÞ ¼ 0, ð2Þ

where gðtÞ ¼ gðtþpÞ is a real piece-wise continuous function.
Harmonic excitation leads to the so-called Mathieu equation

€yðtÞþðaþ2b cos 2tÞyðtÞ ¼ 0, ð3Þ

being a special case of Hill’s equation with gðtÞ ¼ aþ2b cos 2t.
Systems with some degree of non-smoothness or switching

behavior are often referred to as non-smooth dynamical systems
[7,10,15]. Mechanical systems with impact and/or friction form
an important subclass of non-smooth dynamical systems. The
stability properties of non-smooth (mechanical) systems are
currently receiving much attention, see [16] and references
therein. However, the stability of equilibria of parametrically
excited non-smooth systems has hardly been addressed.

Following [22], various contributions study the dynamics of
the planar pendulum with impact but with a horizontally driven
suspension point and the system is therefore not parametrically
excited. Moreover, the existence of an equilibrium is lost under
horizontal excitation.

Ivanov [11] studies the dynamics of Hill’s equation with an
impulsive parametric excitation in which the function g(t) con-
tains Dirac functions. Although impulsive action is added to Hill’s
equation, the linearity of the system is maintained.

Quinn [21] gives an in-depth study of two parametrically excited
pendula under vertical harmonic excitation which can collide with
each other. A symmetric response of the pendula agrees with the
dynamics of a single vertically driven pendulum (1) with a unilateral



Fig. 1. Vertically driven pendulum. (a) Unconstrained and (b) with unilateral

constraints.
constraint at W¼ 0 and the impact law _W
þ
¼ �e _W

�
. The method of

averaging in amplitude and phase coordinates (Lagrange standard
form) is used to describe the dynamics in the vicinity of the
equilibrium and near a resonance frequency under the assumption
of a small amplitude of the excitation a(t). The analysis takes the
non-linearity of the pendulum into account using the approximation
sin W� W� 1

6W
3, that is to say, the ‘nonlinear Mathieu equation’

€yðtÞþðaþ2b cos 2tÞðyðtÞ� 1
6 yðtÞ3Þ ¼ 0 is considered. The averaged

equations of motion in amplitude and phase coordinates are used
to derive an approximate impact event map which maps the state of
the system at a collision time instant to the state at the following
collision time instant. The results in [21] can be used to derive an
approximate stability criterion for the equilibrium point of the
(linear or non-linear) Mathieu equation with unilateral constraint.
The drawback of the approach taken in [21] is that the approxima-
tion is only valid for small values of the excitation parameter b and
near a chosen resonance frequency

ffiffiffi
a
p
¼ 1;2,3 . . ..

In this paper, a detailed Lyapunov stability analysis is pre-
sented of the equilibrium of Hill’s equation in the presence of a
unilateral constraint with restitution, hereafter called the (uni-
laterally) constrained Hill’s equation. The aim of this paper is
twofold. Firstly, the exact stability criteria of the unilaterally
constrained Hill’s equation are rigorously derived using Lyapunov
techniques and are expressed in the properties of the fundamen-
tal solutions of the unconstrained Hill’s equation (2). Secondly, an
asymptotic approximation method for the critical restitution
coefficient is presented based on Hill’s infinite determinant and
this approximation can be made arbitrarily accurate.

Hill’s equation in the presence of a unilateral constraint with
restitution is described by

€xðtÞþgðtÞxðtÞ ¼ 0,

xðtiÞ ¼ 0: _xþ ðtiÞ ¼�e _x�ðtiÞ, ð4Þ

where e is the restitution coefficient. The unilateral constraint limits
the dynamics to xðtÞZ0 and imposes a Newtonian impact law
_xþ ¼�e _x�. More physically correct would be to formulate the
unilaterally constrained system (4) in the framework of non-
smooth dynamics [7,10,15,16] and to let a contact force l and an
impulsive contact force L (both per unit mass) appear in the
equation of motion and impact equation as Lagrange multipliers, i.e.

€xðtÞþgðtÞxðtÞ ¼ l for almost all t,

xðtiÞ ¼ 0: _xþ ðtiÞ�_x
�
ðtiÞ ¼L, ð5Þ

together with the set-valued contact law (Signorini’s law)

0rl ? xZ0 ð6Þ
2

and the generalized Newtonian impact law

xðtiÞ ¼ 0: 0rL ? _xþ ðtiÞþe _x�ðtiÞZ0, ð7Þ

where 0ra ? bZ0 denotes the inequality complementarity con-
dition aZ0, bZ0, ab¼0 [7,10,16]. Such a (mechanical) system with
impulsive effects due to unilateral constraints may be conveniently
cast in terms of a measure differential inclusion, e.g. see [7,16].
However, the contact force l is for this system always zero since the
external force gðtÞxðtÞ and inertial force €x vanish during persistent
contact for which xðtÞ ¼ _xðtÞ ¼ €xðtÞ ¼ 0. Furthermore, the constraint
is always actively participating in the impact process as there is
only one constraint in the system which implies that the equality
_xþ ðtiÞþe _x�ðtiÞ ¼ 0 holds at a collision time instant ti. Moreover, it
will be shown in this paper that accumulation points of impact
events (Zeno behaviour) cannot occur in this particular system.
Hence, the system (5) with set-valued force laws (6) and (7)
simplifies to the unilaterally constrained Hill’s equation in the form
of (4). The simpler form (4) has been chosen in this paper to
describe the dynamics of the unilaterally constrained Hill’s equation
instead of the more general framework of non-smooth dynamics
(involving measure differential inclusions) in order to improve the
readability for a heterogenous audience.

The unilaterally constrained Hill’s equation (4) describes the
dynamics in the vicinity of the equilibrium positions of a
vertically driven pendulum with a vertical wall limiting the angle
W to 0rWðtÞrp, see Fig. 1b. Similarly, (4) can be considered to be
the linearization of a unilaterally constrained Euler column under
dynamic axial loading which can only deflect in the uncon-
strained direction and of which only the first bending mode is
considered. The case with linear damping €x ðtÞþa _x ðtÞþ g ðtÞxðtÞ ¼ 0
can easily be transformed to the standard form (4) by using the
transformation xðtÞ ¼ eð1=2ÞatxðtÞ such that gðtÞ ¼ gðtÞ� 1

4 a2 [17].
The unilaterally constrained Hill’s equation (4) is therefore an
archetype of a parametrically excited non-smooth dynamical
system with state jumps.

The paper is organized in the following way. First, basic
properties of Hill’s equation (2) are reviewed in Section 2 and
some novel results on the number of zeros of fundamental
solutions are derived. Subsequently, the stability properties of the
unilaterally constrained Hill’s equation are studied in Section 3
using Lyapunov stability techniques and are expressed in the
properties of the fundamental solutions of the unconstrained
Hill’s equation. This theoretical result opens the way to use
standard approximation methods for the stability analysis of the
unilaterally constrained Hill’s equation. An approximation tech-
nique for the critical restitution coefficient based on Hill’s infinite
determinant is presented in Section 4. Finally, numerical results
are given for the unilaterally constrained Mathieu equation in
Section 5 and the numerically obtained Ince–Strutt diagram is
compared with the approximations using Hill’s infinite determi-
nant and the averaging method. The paper closes with conclu-
sions and discussion in Section 6.
2. Properties of Hill’s equation

In this section some properties of the unconstrained Hill’s
equation (2) are derived or reviewed, which will be useful when
analyzing the unilaterally constrained Hill’s equation in Section 3.
Hill’s equation (2)

€yðtÞþgðtÞyðtÞ ¼ 0, gðtÞ ¼ gðtþpÞ

has two continuously differentiable solutions y1ðtÞ and y2ðtÞ with
the initial conditions

y1ð0Þ ¼ 1, _y1ð0Þ ¼ 0, y2ð0Þ ¼ 0, _y2ð0Þ ¼ 1,



which are usually referred to as normalized solutions or funda-
mental solutions. The following proposition (see [17]) proves that
the fundamental solutions can conveniently be described in polar
coordinates.

Proposition 1 (Magnus & Winkler [17]). The fundamental solu-

tions of (2) can be expressed in polar coordinates by

y1ðtÞ ¼ RðtÞ cos cðtÞ, y2ðtÞ ¼ RðtÞ sin cðtÞ, ð8Þ

with RðtÞ40 for all t and the differential equations

€RðtÞ� 1

RðtÞ3
þgðtÞRðtÞ ¼ 0, cðtÞ ¼

Z t

0

dt

RðtÞ2
, ð9Þ

with initial conditions Rð0Þ ¼ 1, _Rð0Þ ¼ 0, cð0Þ ¼ 0 and _cð0Þ ¼ 1.

Proof. Substitution of the fundamental solutions y1ðtÞ and y2ðtÞ

expressed in polar coordinates (8) in Hill’s equation (2) gives two
differential equations

ð €R�R _c
2
þgðtÞRÞ cos c�ð2 _R _cþR €cÞ sin c¼ 0,

ð €R�R _c
2
þgðtÞRÞ sin cþð2 _R _cþR €cÞ cos c¼ 0:

It can therefore be deduced that both the terms €R�R _c
2
þgðtÞR¼ 0

and 2 _R _cþR €c ¼ 0 vanish. If the latter expression is multiplied
with RðtÞ40, then the equality dðR2 _cÞ=dt¼ 0 is obtained. The
product R2 _c is therefore constant. Using the initial condition
Rð0Þ ¼ 1, cð0Þ ¼ 0 and _cð0Þ ¼ 1 gives cðtÞ ¼

R t
0 RðtÞ

�2 dt and sub-
stitution of _c ¼ R�2 in the former equation yields €R�R�3þ

gðtÞR¼ 0. &

Hill’s equation can be put in first-order form as

_yðtÞ ¼AðtÞyðtÞ, AðtÞ ¼
0 1

�gðtÞ 0

!
, ð10Þ

with the state vector yðtÞ ¼ ðyðtÞ _yðtÞÞT and the time-dependent
system matrix AðtÞ. The fundamental solutions constitute the
fundamental solution matrix

Uðt,0Þ ¼
y1ðtÞ y2ðtÞ

_y1ðtÞ _y2ðtÞ

!
,

which is therefore the solution of the matrix differential equation
_Uðt,0Þ ¼AðtÞUðt,0Þ with initial condition Uð0;0Þ ¼ I. The system

(10) has a unit Wronskian [12]

detðUðt,0ÞÞ ¼ e
R t

0
traceðAðtÞÞ dt

¼ 1,

because traceðAðtÞÞ ¼ 0. The fundamental solution matrix Uðt,0Þ
maps the initial condition yð0Þ to the state yðtÞ

yðtÞ ¼Uðt,0Þyð0Þ: ð11Þ

More generally, the fundamental solution matrix Uðt1,t0Þ is
defined as the mapping

yðt1Þ ¼Uðt1,t0Þyðt0Þ,

which fulfills the matrix differential equation _Uðt,t0Þ ¼ AðtÞUðt,t0Þ

with Uðt0,t0Þ ¼ I. Furthermore, the transition property

Uðt2,t0Þ ¼Uðt2,t1ÞUðt1,t0Þ ð12Þ

holds from which one can deduce the inverse of the fundamental
solution matrix to be Uðt1,t0Þ ¼Uðt0,t1Þ

�1. The fundamental
solution matrix UT ¼Uðp,0Þ is referred to as the monodromy
matrix. The trace of the monodromy matrix

D¼ traceðUT Þ ¼ y1ðpÞþ _y2ðpÞ ð13Þ

is known as the discriminant of Hill’s equation [17]. The mono-
dromy matrix UT has the characteristic equation

l2
�Dlþ1¼ 0, ð14Þ
3

because detðUT Þ ¼ 1, and the eigenvalues

l1;2 ¼
1

2
D7

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
�4

p
, ð15Þ

which are called characteristic multipliers (or Floquet multi-
pliers). The characteristic multipliers are reciprocal in the sense
that l1 ¼ 1=l2. The discriminant D¼ l1þl2 plays an essential role
in the analysis of Hill’s equation and it is useful to distinguish
between three cases:
�
 If it holds that 9D9o2, then the characteristic multipliers
l1 ¼ l2 are complex conjugated and located on the unit circle
because 9l1;29¼ 1.

�
 If it holds that 9D942, then the characteristic multipliers l1

and l2 are real and distinct and we define the order by
9l19Z9l29. There exist two linearly independent real eigen-
vectors v1 and v2. If y2ðpÞa0, then the eigenvectors are given
by

v1 ¼
signðy2ðpÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2ðpÞ2þðl1�y1ðpÞÞ2
q y2ðpÞ

l1�y1ðpÞ

!
,

v2 ¼
signðy2ðpÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2ðpÞ2þðl2�y1ðpÞÞ2
q y2ðpÞ

l2�y1ðpÞ

!
: ð16Þ

The normalization of the eigenvectors v1 and v2 is chosen such
that v1;2 lie in the first or fourth quadrant and Jv1;2J¼ 1. If
y2ðpÞ ¼ 0 then either l1�y1ðpÞ ¼ 0 or l2�y1ðpÞ ¼ 0 and the
expression (16) for v1 or v2 degenerates. In this case there
still exist two linearly independent real eigenvectors of which
either v1 or v2 is equal to ð0 1ÞT.

�
 If it holds that 9D9¼ 2, then the characteristic multipliers are

equal l1 ¼ l2 ¼D=2¼ 71.

Hill’s equation has two (complex) eigensolutions

f 1ðtÞ ¼ estp1ðtÞ, f 2ðtÞ ¼ e�stp2ðtÞ, ð17Þ

where piðtÞ ¼ piðtþpÞ, i¼1,2, are complex periodic functions and s
is the characteristic exponent defined by e7ps ¼ l1;2, i.e.
D¼ l1þl2 ¼ 2 coshðps).

In Section 3 on the stability analysis of the unilaterally
constrained Hill’s equation, it will be of interest to know the
number of zeros of the fundamental solution y2ðtÞ on the half-
open interval ð0,p�. The floor function b�c and fractional part f�g
will be used to count the zeros. The definition and properties of
the floor function and fractional part are given in Appendix A.

Proposition 2. Let n denote the number of zeros of y2ðtÞ on the

interval ð0,p�. It holds that

n¼
1

p

Z p

0

dt

y1ðtÞ
2
þy2ðtÞ

2

$ %
: ð18Þ

Proof. According to Proposition 1, one may write y2ðtÞ ¼

RðtÞ sin cðtÞ with RðtÞ40 for all t. The zeros of y2ðtÞ are therefore
given by the condition sin cðtÞ ¼ 0, i.e. cðtÞ ¼ p,2p,3p, . . . and using
(90) it therefore holds that

n¼
cðpÞ
p

� �
ð19Þ

with cðpÞ ¼
R p

0 RðtÞ�2 dt. &

Consider a solution y(t) of (2) with initial condition
yð0Þ ¼ r0 cos y0Z0 and _yð0Þ ¼ r0 sin y040, where r040
and y0Að�p=2,p=2�. With mðtÞAN0 we will denote the right-
continuous monotonically increasing step function which counts
the number of reflections in the interval ð0,t� such that



Fig. 2. Solution x(t) of the unilaterally constrained Hill’s equation and y(t) of Hill’s

equation.
ð�1ÞmðtÞyðtÞ ¼ 9yðtÞ9. It can easily be verified that mð0Þ ¼ 0 and m(t)
equals the number of zeros of y(t) on the interval ð0,t�. In the
following, we will be interested in the number mðpÞ and use the
short-hand notation m¼mðpÞ. By definition, it holds that m¼n for
y0 ¼ p=2, because n is defined as the number of zeros of y2ðtÞ on
the interval ð0,p� and yðtÞ ¼ r0y2ðtÞ for y0 ¼ p=2. The calculation of
m is given by the following proposition.

Proposition 3. Consider a solution y(t) of (2) with initial condition

yð0Þ ¼ r0 cos y0Z0 and _yð0Þ ¼ r0 sin y0, where r040 and �p=2o
y0rp=2. Let m denote the number of zeros of y(t) on the interval

ð0,p�. It holds that

m¼
n if y04yc ,

nþ1 if y0ryc ,

(
ð20Þ

with

yc ¼�arctan
y1ðpÞ
y2ðpÞ

� �
: ð21Þ

Proof. From (11) follows that the solution y(t) is given by the
linear combination yðtÞ ¼ y1ðtÞyð0Þþy2ðtÞ _yð0Þ which we write in
polar coordinates using Proposition 1 as

yðtÞ ¼ RðtÞr0 cos y0 cos cðtÞþsin y0 sin cðtÞð Þ ¼ RðtÞr0 cosðcðtÞ�y0Þ

with RðtÞ40. The zeros of y(t) are therefore determined by the
condition cosðcðtÞ�y0Þ ¼ 0 or equivalently sinðcðtÞ�y0þp=2Þ ¼ 0.
Using (91), the number of zeros of y(t) therefore amounts to

m¼
cðpÞ�y0þ

p
2

p

66664
77775� �y0þ

p
2

p

66664
77775, �

p
2
oy0r

p
2
: ð22Þ

Property (88) gives together with (19) the inequality nrm

rnþ1, i.e. m¼n or m¼ nþ1. From property (92) follows that
m¼n if and only if

cotðcðpÞÞþcot �y0þ
p
2

� �
40 ð23Þ

which we write as cotðcðpÞÞ4�tanðy0Þ, i.e.

y04yc ¼�arctanðcot ðcðpÞÞÞ

where cotðcðpÞÞ ¼ y1ðpÞ=y2ðpÞ. If the inequality does not hold,
then man and m must therefore be equal to nþ1. &

Remark. Some care needs to be taken for the case when
y2ðpÞ ¼ 0, i.e. cðpÞ ¼ np, nAN0. In this case it holds that
cotðcðpÞÞ ¼ þ1 and the inequality (23) is therefore fulfilled
which implies that m¼n. Moreover, if cðpÞ ¼ np, then it can
immediately be verified from (22) that m¼n.

3. The unilaterally constrained Hill’s equation

In this section the unilaterally constrained Hill’s equation is
analyzed which consists of Hill’s differential equation

€xðtÞþgðtÞxðtÞ ¼ 0, ð24Þ

which holds for almost all t and xðtÞZ0, and the Newtonian
impact law

_xþ ðtiÞ ¼ �e _x�ðtiÞ ð25Þ

at time-instants for which xðtiÞ ¼ 0. With the notation

_x�ðtiÞ ¼ lim
tmti

_xðtÞ, _xþ ðtiÞ ¼ lim
tkti

_xðtÞ,

we denote the pre- and post-impact velocity and with eA ½0;1� the
restitution coefficient. The velocity _xðtÞ of the unilaterally con-
strained Hill’s equation is considered to be right-continuous by
convention, i.e. _xðtÞ ¼ _xþ ðtÞ, and the initial condition ðxð0Þ, _xð0ÞÞ is
4

likewise considered to be a post-impact state. Hence, if the initial
condition is written in polar coordinates

xð0Þ ¼ r0 cos y0, _xð0Þ ¼ r0 sin y0,

then it necessarily holds that r0Z0 and y0Að�p=2,p=2�. The
solution x(t) of the unilaterally constrained Hill’s equation is
therefore confined to the domain

D¼ x¼ ðx _xÞTAR2 x¼ r cos y, _x ¼ r sin y, rZ0, �
p
2
oyr

p
2

			n o
:

ð26Þ

The impact law (25) becomes active when xðtiÞ ¼ 0 and induces
a jump _xþ ðtiÞ ¼�e _x�ðtiÞ in the velocity whereas the position x(t)
remains continuous at the collision time-instant, i.e. xþ ðtiÞ ¼

x�ðtiÞ ¼ xðtiÞ ¼ 0. The impact law can therefore formally be written
for position and velocity as a homogeneous map

xþ ðtiÞ ¼ �ex�ðtiÞ, _xþ ðtiÞ ¼�e _x�ðtiÞ, ð27Þ

because xþ ðtiÞ ¼ x�ðtiÞ ¼ 0. The homogeneity of the impact condi-
tions (27) is due to the fact that the unilateral constraint is located
at x¼0. A non-zero location of the unilateral constraint would
give a completely different type of dynamics and is not studied in
this paper but some remarks are given at the end of Section 6.

The homogeneity of the linear differential equation (24) and
the homogeneity of the impact conditions (27) have important
consequences for the solution x(t) of the unilaterally constrained
Hill’s equation. Consider a solution curve x(t) of the unilaterally
constrained Hill’s equation as well as the solution curve y(t) of the
unconstrained Hill’s equation, see Fig. 2, both with the same initial
condition xð0Þ ¼ yð0Þ and _xð0Þ ¼ _yð0Þ such that ðxð0Þ _xð0ÞÞTAD. It
holds that xðtÞ ¼ yðtÞ during the interval tA ½0,t1�, where t1 is the
time-instant for which xðt1Þ ¼ yðt1Þ ¼ 0. At t¼ t1 an impact occurs
in the unilaterally constrained Hill’s equation. The solution x(t) after
t¼ t1 is reflected and scaled with e, i.e.

xðtÞ ¼�eyðtÞ ð28Þ

for tA ½t1,t2� due to the linearity and homogeneity of (24). The
second impact occurs when x(t) becomes again zero, which is the
next zero of y(t). The number of zeros of y(t) in the interval ð0,t� is
given by m(t), see Proposition 3. The solution x(t) is therefore
directly related to y(t) and m(t) through

xðtÞ ¼ ð�eÞmðtÞyðtÞ ð29Þ

and, using m¼mðpÞ, we obtain the relationship

xðpÞ ¼ ð�eÞmyðpÞ: ð30Þ

In non-smooth dynamical systems, the so-called ‘Zeno-beha-
viour’ can be present which is characterized by the occurrence of
infinitely many non-smooth events in a finite time interval.
For instance, in the bouncing ball system, the equilibrium may
be reached through an infinite number of impacts in a finite
time [14]. In non-smooth dynamics, this is referred to as an
accumulation point of impact events. The occurrence of an
accumulation point implies that uniqueness of the solution in
backward time is lost [16].



Fig. 3. Domain D being in the cones D1 and D2 by S.
Theorem 1. Accumulation points of impact events do not occur in

dynamics of the unilaterally constrained Hill’s equation (4).

Proof. The presence of an accumulation point would imply that
there exists an initial condition ðxð0Þ, _xð0ÞÞ such that m is infinite.
However, the angle cðpÞ ¼

R p
0 RðtÞ�2 dt is finite because RðtÞ is

continuous and strictly positive for all t, see Proposition 1. The
number n¼ bcðpÞ=pc is therefore finite and the proof follows
from nrmrnþ1. &

The absence of accumulation points of impact events implies
that the solution of (4) is unique in forward and backward time.
Moreover, if the equilibrium is attractive, then the attraction is
asymptotic in the sense that attraction cannot occur in finite
time [16].

The direct relationship between the solutions of the unilater-
ally constrained and unconstrained Hill’s equation can be
expressed in first-order form and be related to the fundamental
solution matrix. Using xðtÞ ¼ ðxðtÞ _xðtÞÞT, the system is written in
first-order form as

_xðtÞ ¼AðtÞxðtÞ

nTx�ðtiÞ ¼ 0: xþ ðtiÞ ¼Gx�ðtiÞ ð31Þ

with the system matrix AðtÞ and impact map G given by

AðtÞ ¼
0 1

�gðtÞ 0

!
, G¼�eI, n¼

1

0

� �
: ð32Þ

The homogeneity of the impact conditions (27) allows us to write
the impact map G as �eI and the matrix G therefore commutes
with any arbitrary matrix. The solution of the unilaterally con-
strained Hill’s equation can be obtained by concatenation of non-
impulsive motion given by Hill’s differential equation and the
impact equations. The non-impulsive motion between two con-
secutive collision time-instants ti and tiþ1 is described by the
linear homogeneous differential equation _xðtÞ ¼AðtÞxðtÞ. The fun-
damental solution matrix Uðtiþ1,tiÞ therefore maps the post-
impact state xþ ðtiÞ to the pre-impact state x�ðtiþ1Þ,

x�ðtiþ1Þ ¼Uðtiþ1,tiÞx
þ ðtiÞ, ð33Þ

and it necessarily holds that nTx7 ðtiÞ ¼ nTx7 ðtiþ1Þ ¼ 0. The
impulsive motion at each collision time-instant ti is described
by the impact map G. Concatenation of non-impulsive and
impulsive motion gives

xðpÞ ¼Uðp,tmÞGUðtm,tm�1ÞG . . .Uðt2,t1ÞGUðt1,0Þxð0Þ: ð34Þ

The impact map G¼�eI commutes with all the fundamental
solution matrices Uð�,�Þ in (34) and Eq. (34) therefore simplifies to

xðpÞ ¼GmUðp,tmÞUðtm,tm�1Þ . . .Uðt2,t1ÞUðt1,0Þxð0Þ

¼ GmUðp,0Þxð0Þ

¼ ð�eÞmUT xð0Þ ð35Þ

in which the transition property (12) of the fundamental solution
matrix and the notation UT ¼Uðp,0Þ for the monodromy matrix
has been used. Let yðtÞ denote the solution of Hill’s equation with
yð0Þ ¼ xð0Þ. From (35) it becomes apparent that one can relate the
solution xðpÞ of the unilaterally constrained Hill’s equation to yðpÞ
and m

xðpÞ ¼ ð�eÞmUT yð0Þ ¼ ð�eÞmyðpÞ, ð36Þ

which is the same result as (30) but now in first-order form. The
number m depends on the angle y0 of the initial condition xð0Þ and
m¼n if y04yc and m¼ nþ1 else, see Proposition 3. The domain D,
defined in (26), is therefore split into two cones D1 and D2

D1 ¼ fxAD9y4ycg,

D2 ¼ fxAD9yrycg, ð37Þ
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by a half-hyperplane S¼ fxAD9y¼ ycg, where yc is defined by (21),
such that D¼D1 [D2 and D1 \D2 ¼ f0g, see Fig. 3. If y2ðpÞ ¼ 0 then
it holds that yc ¼�p=2 and D1 ¼D. The switching of the number m

on the half-hyperplane S leads together with (36) to a piece-wise
linear, or, more precisely, a cone-wise linear Poincaré map.

Proposition 4 (Poincaré map). Let xj denote the solution xðpjÞ,
jAN0, of the unilaterally constrained Hill’s equation with

x0 ¼ xð0ÞAD. The discrete time-evolution of xj is given by the

cone-wise linear Poincaré map

xjþ1 ¼
A1xj if xjAD1,

A2xj if xjAD2,

(
ð38Þ

where A1 ¼ ð�eÞnUT and A2 ¼�eA1 ¼ ð�eÞnþ1UT .

Proof. From (35) it is clear that xjþ1 ¼ ð�eÞmUðp,0Þxj where m

depends on xj. Write xj in polar coordinates as xj ¼

ðrj cos yj rj sin yjÞ
T. If xjAD1, then it holds that yj4yc which

implies that m¼n. Similarly, if xjAD2, then it holds that
m¼ nþ1. &

The cone-wise linearity of the Poincaré map introduced in
Proposition 4 suggests to analyze the map by using polar
coordinates xj ¼ ðrj cos yj rj sin yjÞ

T, i.e.

tan yj ¼
_xðpjÞ

xðpjÞ
, rj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðpjÞ2þ _xðpjÞ2

q
:

Evaluation of the Poincaré map for e40 yields

tan yjþ1 ¼
_xðpðjþ1ÞÞ

xðpðjþ1ÞÞ
¼
ð�eÞmð _y1ðpÞxðpjÞþ _y2ðpÞ _xðpjÞÞ

ð�eÞmðy1ðpÞxðpjÞþy2ðpÞ _xðpjÞÞ

¼
_y1ðpÞþ _y2ðpÞtan yj

y1ðpÞþy2ðpÞtan yj
, ð39Þ

where as yjþ1 is not defined if rjþ1 ¼ 0 for e¼ 0. The map yj/yjþ1

is therefore autonomous as it does not depend on rj which
expresses the cone-wise linearity of the Poincaré map. The map
yj/yjþ1 can be simplified even further by using a non-linear
transformation.

Proposition 5. Let qj ¼ y1ðpÞþy2ðpÞtan yj and y2ðpÞa0. It holds that

qjþ1 ¼ Q ðqjÞ ¼D�
1

qj

, ð40Þ

where D¼ traceðUT Þ ¼ y1ðpÞþ _y2ðpÞ.



Proof. Substitution of (39) in qj ¼ y1ðpÞþy2ðpÞ tan yj gives

qjþ1 ¼ y1ðpÞþ
y2ðpÞ _y1ðpÞþ _y2ðpÞðqj�y1ðpÞÞ

qj

¼ traceðUT Þ�
detðUT Þ

qj

,

where

traceðUT Þ ¼ y1ðpÞþ _y2ðpÞ and

detðUT Þ ¼ y1ðpÞ _y2ðpÞ�y2ðpÞ _y1ðpÞ ¼ 1: &

The fixed points of the map qjþ1 ¼Q ðqjÞ are those values of q

which are mapped to themselves, i.e. qn ¼Q ðqnÞ, and the fixed
points therefore satisfy

qn2
�Dqnþ1¼ 0

in which we recognize the characteristic equation (14) of the
monodromy matrix UT . Hence, the fixed points qn agree with the
real characteristic multipliers l1;2 of the monodromy matrix, see (15).
The map qjþ1 ¼Q ðqjÞ is known as the Riccati difference equation
(or first-order rational difference equation) and has been studied
in detail in [9]. The dynamics can be considered for thee different
cases [9]:
�
 9D942: The map qjþ1 ¼ Q ðqjÞ has two distinct fixed points

qn

1;2 ¼ l1;2 ¼
1

2
D7

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
�4

p
and we define 9qn

1949qn

29 and equivalently 9l1949l29. Further-
more, because l1l2 ¼ 1, it holds that 9qn

194149qn

29. The
stability of the fixed points qn

1;2 is determined by the derivative
of the map Q 0ðqÞ ¼ 1=q2 from which we see that qn

1 is asympto-
tically stable (9Q 0ðqn

1Þ9o1) whereas qn

2 is unstable (Q 0ðqn

2Þ41).
The map qjþ1 ¼Q ðqjÞ with initial condition q0 has a closed form
solution given by

qj ¼
ðljþ1

1 �l
jþ1
2 Þq0�ðl

j
1�l

j
2Þ

ðlj
1�l

j
2Þq0�ðl

j�1
1 �l

j�1
2 Þ

as we can simply verify or derive with the z-transformation [9].
If q0aqn

2 ¼ l�1
1 ¼ l2, then the solution qj is attracted to qn

1 which
follows from

lim
j-1

qj ¼ lim
j-1

ljþ1
1 q0�l

j
1

lj
1q0�l

j�1
1

¼ l1 ¼ qn

1:
�
 9D9¼ 2: The map has a single fixed point qn ¼ 1
2D¼ 71. The

map with initial condition q0 has the closed form solution

qj ¼
q0Dð1þ jÞ�2j

2q0jþDð1�jÞ

and limit

lim
j-1

qj ¼
q0D�2

2q0�D
¼ qn:

The fixed point qn is therefore unstable but globally attractive.
Furthermore, if qjq

no0 then it holds that qjþ1qn40.

�
 9D9o2: The map has no fixed points and the solution is quasi-

periodic, wandering between R�0 and Rþ (see [9]). The number of
iterations that the solution qj remains in R�0 or Rþ is bounded.

The above results on the map qjþ1 ¼Q ðqjÞ for 9D942 can be
understood by noting that the values of qn

1;2 define for y2ðpÞa0
the angles yn

1 and yn

2 of the eigenvectors v1 and v2 (see (16)) of the
monodromy matrix UT :

tan yn

1 ¼
qn

1�y1ðpÞ
y2ðpÞ

¼ tan ycþ
l1

y2ðpÞ
,

tan yn

2 ¼
qn

2�y1ðpÞ
y2ðpÞ

¼ tan ycþ
l2

y2ðpÞ
: ð41Þ
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If xj is chosen in the direction of an eigenvector, say xj ¼ rjv1, then
the next iteration point xjþ1 will be again in the direction of that
eigenvector, i.e. xjþ1 ¼ rjþ1v1. In other words, if yj ¼ yn

1 then also
yjþ1 ¼ yn

1 which implies that yn

1 is a fixed point of the map yj/yjþ1,
or, equivalently, that qn

1 is a fixed point of the map qjþ1 ¼Q ðqjÞ.
The fixed points qn

1;2 ¼ l1;2 are either both positive if D42 or
both negative if Do2 and the sign of y2ðpÞ is given by ð�1Þn.
Hence, if 9D942 and y2ðpÞa0, then it holds that v1;2AD1 for
ð�1ÞnD42 and v1;2AD2 for ð�1ÞnDo2. If 9D942 and y2ðpÞ ¼ 0
then it holds that y1ðpÞ _y2ðpÞ ¼ 1 and 9y1ðpÞþ _y2ðpÞ942 from
which we deduce that _y2ðpÞa0 and signð _y2ðpÞÞ ¼ signðDÞ. If
y2ðpÞ ¼ 0 then it holds that n40 and n is even for _y2ðpÞ40 and
n is odd for _y2ðpÞo0. Consequently, the condition 9D942 and
y2ðpÞ ¼ 0 implies that ð�1ÞnD42. Moreover, it holds that D1 ¼D
for y2ðpÞ ¼ 0. We conclude that, if 9D942, then the location of the
eigenvectors is determined by the condition

v1;2A
D1 ð�1ÞnD42,

D2 ð�1ÞnDo�2:

(
ð42Þ

for all values of y2ðpÞ.
The attractivity of the fixed point qn

1 implies that the solution xj

will be drawn towards the eigenvector v1 when j-1, because v1

belongs to the characteristic multiplier which is largest in magnitude.
The long-term behaviour of the dynamics is therefore determined by
the matrix A1 ¼ ð�eÞnUT if v1AD1 or by the matrix A2 ¼ ð�eÞnþ1UT

if v1AD2. This insight leads directly to a stability condition. In the
following, a more rigorous stability proof is given by using a discrete
quadratic Lyapunov function. First a number of propositions are
presented which discuss the various cases of the discriminant D.
Proposition 6 discusses the real case v1;2AD1 and Proposition 7 the
real case v1;2AD2 using a slightly different Lyapunov function.
Proposition 8 deals with the complex conjugated case 9D9o2
whereas the cases D¼ 72 are discussed in Propositions 9–11.

In the following propositions, the spectral decomposition

UT ¼VKV�1
ð43Þ

of the monodromy matrix UT is used, where V ¼ ðv1 v2Þ is the matrix
of eigenvectors and K¼ diagðliÞ is the diagonal matrix of eigenvalues
of UT . Such a spectral decomposition can be made if the characteristic
multipliers l1;2 are distinct, implying 9D9a2. Let cj ¼ ðc1j c2jÞ

T be the
coordinates on the basis of v1 and v2 such that xj ¼ c1jv1þc2jv2, i.e.

cj ¼V�1xj: ð44Þ

Proposition 6 (Stability for the real case v1;2AD1). If v1;2AD1 then

the equilibrium xn ¼ 0 of the unilaterally constrained Hill’s equation

is globally uniformly asymptotically stable if en9l19o1 and unstable

if en9l1941.

Proof. If v1;2AD1 then the characteristic multipliers are real and
distinct and the decomposition (43) exists. Consider the discrete
Lyapunov candidate function

VðxjÞ ¼ Vj ¼ xT
j Pxj ð45Þ

with P ¼V�TV�1 being dependent on the matrix of eigenvectors
V . The positive definiteness of P ¼ PT40 implies that V is a
positive definite function. It holds that xjþ1 ¼ ð�eÞmUT xj and,
using (44), the increment of V therefore gives

Vjþ1�Vj ¼ xT
j ðe

2mUT
T PUT�PÞxj

¼ xT
j V�T

ðe2mK2
�IÞV�1xj

¼ cT
j ðe

2mK2
�IÞcj

¼ c2
1jðe

2ml2
1�1Þþc2

2jðe
2ml2

2�1Þ: ð46Þ

If en9l19o1, then it holds that e2ml2
1;2o1 for m¼n and m¼ nþ1

which implies that Vjþ1oVj for xja0. Hence, V is a quadratic



time-independent Lyapunov function. The origin is therefore
globally uniformly asymptotically stable if en9l19o1.

We now prove the last part of the proposition which states that

if v1;2AD1 and en9l1941, then the origin is unstable. A solution xj

which starts in the direction of the eigenvector v1AD1, i.e.

x0 ¼ c10v1, will remain along v1 and therefore in D1 for all jZ0.

It therefore holds that m¼n during all iterations of the Poincaré

map. The solution xj ¼ c1jv1 is therefore given by

c1j ¼ ð�eÞnl1c1,j�1 ¼ ðð�eÞnl1Þ
jc10

which grows unbounded for en9l1941. The value of c10 can be

chosen arbitrarily small and the origin is therefore unstable. &

Proposition 7 (Stability for the real case v1;2AD2). If v1;2AD2 then

the equilibrium xn ¼ 0 of the unilaterally constrained Hill’s equation

is globally uniformly asymptotically stable if enþ19l19o1 and

unstable if enþ19l1941.

Proof. If v1;2AD2 then the eigenvalues are real and distinct such
that l2

141 and l2
2 ¼ l�2

1 o1. Moreover, if v1;2AD2 then it holds
that y2ðpÞa0 and therefore cos yn

1;240. Consider the discrete
Lyapunov candidate function

VðxjÞ ¼ Vj ¼ xT
j Pxj ð47Þ

with P ¼V�TBV�1 and

B¼
cos2 yn

1 0

0 l4
1 cos2 yn

2

!
, ð48Þ

where yn

1 and yn

2 are the angles of v1 and v2 defined by (41). The
positive definiteness of V is assured through P ¼ PT40. It holds
that xjþ1 ¼ ð�eÞmUT xj and the increment of V yields

Vjþ1�Vj ¼ xT
j ðe

2mUT
T PUT�PÞxj

¼ xT
j V�T

ðe2mKBK�BÞV�1xj

¼ cT
j ðe

2mK2
�IÞBcj

¼ c2
1j cos2 yn

1ðe
2ml2

1�1Þþc2
2j cos2 yn

2l
4
1ðe

2ml2
2�1Þ: ð49Þ

The decrease in the Lyapunov function V depends on the location
of xj:
�
 If xjAD2\f0g then m¼ nþ1 and e2ml2
1;2o1 which implies

Vjþ1�Vjo0.

�
 If xjAD1\f0g then m¼ nZ0 and it holds that yc oyjrp=2.

Hence, it holds that yn

1oyn

2oyj, i.e. xj lies inside the cone

spanned by �v1 and v2, which implies that c1jo0 and c2j40.

Furthermore, from the positiveness of

x1j ¼ c1j cos yn

1þc2j cos yn

240

together with c1j we conclude that 9c1j=c2j9r 9cos yn

2=cos yn

19.

We now define d1 ¼ c2
1j cos2 yn

1þc2
2j cos2 yn

2 and d2 ¼�c2
1j cos2

yn

1þc2
2j cos2 yn

2. It holds that d140 and d2Z0 for xjAD1\f0g.

Using l1 ¼ l�1
2 41 we obtain:

Vjþ1�Vj ¼
1

2
ðd1�d2Þðe2ml2

1�1Þþ
1

2
ðd1þd2Þðe2ml2

1�l
4
1Þ

¼
1

2
d1ð2e2ml2

1�1�l4
1Þþ

1

2
d2ð1�l

4
1Þ

¼
1

2
d1ð2ðe2m�1Þl2

1�ðl
2
1�1Þ2Þþ

1

2
d2ð1�l

4
1Þ: ð50Þ

The expressions between the brackets are strictly negative for
all mZ0 which implies that Vjþ1�Vjo0.

Hence, the quadratic positive definite function V is strictly
decreasing for xja0. The origin is therefore globally uniformly
asymptotically stable if enþ19l19o1. Instability for enþ19l1941
7

can be proven by considering an initial condition in the direction
of v1 (see the proof of Proposition 6). &

Proposition 8 (Stability for the complex conjugated case). If

9D9o2 and eo1 then the equilibrium xn ¼ 0 of the unilaterally

constrained Hill’s equation is globally uniformly asymptotically

stable.

Proof. If 9D9o2 then the eigenvalues l1;2 are complex conju-
gated (and distinct) with magnitude 9l1;29¼ 1 and v1 ¼ v2 . The
coordinates c1j and c2j are in this case complex conjugated, i.e.
c1j ¼ c2j and 9c1j9¼ 9c2j9, because xj is real. Consider the discrete
Lyapunov candidate function

VðxjÞ ¼ Vj ¼ xT
j Pxj ð51Þ

with P ¼V
�T

V�1
¼ ðV�1

Þ
nV�1 being a hermitian matrix. Clearly, it

holds that P ¼ Pn40 and V is positive definite. Using
xjþ1 ¼ ð�eÞmUT xj the increment of V yields

Vjþ1�Vj ¼ xT
j ðe

2mUT
T PUT�PÞxj

¼ cn

j ðe
2mKnK�IÞcj

¼ 9c1j9
2
ðe2m9l19

2
�1Þþ9c2j9

2
ðe2m9l29

2
�1Þ

¼ ðe2m�1ÞJcjJ
2: ð52Þ

The increment is non-positive, Vjþ1�Vjr0, because mZ0 which
proves that the equilibrium is uniformly stable. It holds that m¼n

for xjAD1 and m¼ nþ1 for xjAD2. If n¼0 then it follows that
Vjþ1 ¼ Vj for xjAD1\f0g and Vjþ1oVj for xjAD2\f0g. However, the
dynamics of the map qjþ1 ¼Q ðqjÞ proves that the cones D1 and D2

do not have a positively invariant subset (or sub-cone) other than
the origin if 9D9o2, i.e. no limit set exists which lies exclusively
in D1\f0g or exclusively in D2\f0g. This implies that the solution xj

will wander between D1 and D2 and the Lyapunov function
strictly decreases whenever xjAD2\f0g. We can therefore invoke
LaSalle’s invariance principle for discrete-time systems [13]. The
vanishing of the increment Vjþ1�Vj ¼ 0 holds in D1 and the
largest positively invariant set in D1 is the origin. Hence, it holds
that limj-1Vj ¼ 0, which proves that the equilibrium is globally
uniformly attractive. &

Proposition 9. If D¼�2, n¼0 and eo1 then the equilibrium

xn ¼ 0 of the unilaterally constrained Hill’s equation is globally

uniformly asymptotically stable.

Proof. The condition n¼0 implies that y2ðpÞ40. If D¼�2 then
the eigenvalues of UT are l1;2 ¼�1. The matrix A1 ¼ ð�eÞnUT is
not a stable matrix for D¼�2 and n¼0. The matrix A2 ¼�eA1 is a
stable matrix for eo1. If D¼�2 then the map qjþ1 ¼ Q ðqjÞ has a
unique fixed point qn ¼�1 which is globally attractive. Further-
more, if q040 then qjo�1 for all j40. The cone D2 has therefore
a globally attractive sub-cone. The long-term dynamics is there-
fore governed by the stable matrix A2. &

Proposition 10. If D¼ 2 and n¼0 then the equilibrium xn ¼ 0 of the

unilaterally constrained Hill’s equation is not attractive and unstable

for all eZ0.

Proof. The condition n¼0 implies that y2ðpÞ40. If D¼ 2 then the
eigenvalues of UT are l1;2 ¼ 1 and the map qjþ1 ¼Q ðqjÞ has a
unique fixed point qn ¼ 1 which is globally attractive. Further-
more, if q0o0 then qj41 for all j40. The cone D1 has therefore a
globally attractive sub-cone. The long-term dynamics is therefore
governed by the matrix A1 ¼UT which is not a stable matrix. The
initial condition x0 ¼ ðr0 cos y0 r0 sin y0Þ

T with tan y0 ¼ ð1�y1ðpÞÞ=
y2ðpÞ will lead to a solution xj ¼ x0 for all r0Z0. Hence the
equilibrium is not attractive. Moreover, A1 is non-diagonalizable
and Aj

1 will diverge for j-1 which implies unboundedness of
solutions. &



Proposition 11. If 9D9r2, n40 and eo1 then the equilibrium

xn ¼ 0 of the unilaterally constrained Hill’s equation is globally

uniformly asymptotically stable.

Proof. The spectral radius of UT equals unity for 9D9r2. Hence, if
in addition nZ1, then the spectral radii of A1 and A2 are strictly
smaller than unity, i.e. the matrices A1 and A2 are stable matrices.
The stability of A1 implies that there exist symmetric positive
definite matrices P and Q 1 such that

AT
1PA1�P ¼�Q 1:

Using P we define the matrix Q 2 such that

AT
2PA2�P ¼�Q 2

and express Q 2 using A2 ¼�eA1 and Q 1 as

Q 2 ¼�AT
2PA2þP ¼�e2AT

1PA1þP ¼ ð1�e2ÞPþQ 1:

With P40, Q 140 and eo1 we infer that Q 240. Hence, there
exists a common quadratic Lyapunov function VðxjÞ ¼ xT

j Pxj which
proves that the origin is globally uniformly asymptotically stable. &

The previous propositions are summarized in the following
theorem, being the main result of the paper.

Theorem 2. Let D be the discriminant and l1 be the characteristic

multiplier with largest magnitude of the unconstrained Hill’s equa-

tion (2) and let n denote the number of zeros of the fundamental

solution y2ðtÞ on the interval ð0,p�. The equilibrium xn ¼ 0 of the

unilaterally constrained Hill’s equation (4) is globally uniformly

asymptotically stable if 0reoec , where the critical restitution

coefficient is given by

ec ¼

0 if n¼ 0 and DZ2

9l19
�1=n

if n40 and ð�1ÞnD42,

9l19
�1=ðnþ1Þ

if nZ0 and ð�1ÞnDo�2,

1 if n40 and �2rDr2 or if n¼ 0 and �2rDo2:

8>>>>><
>>>>>:

ð53Þ

If 9D942 and e4ec , then the equilibrium xn ¼ 0 is unstable.

Proof. Propositions 6 and 10 prove that, if n¼0 and DZ2, then
the equilibrium is not attractive for all eZ0. The equilibrium is
therefore in this case not globally uniformly asymptotically stable
which is expressed by ec ¼ 0. The proof of ec ¼ 9l19

�1=n
for n40

and ð�1ÞnD42 follows from (42) and Proposition 6. The proof of
ec ¼ 9l19

�1=ðnþ1Þ
for nZ0 and ð�1ÞnDo�2 follows from (42) and

Proposition 7. The proof of ec ¼ 1 for n40 and �2rDr2 follows
from Proposition 11 and for n¼0 and �2rDo2 from
Propositions 8 and 9. &

For 9D942 the results of Theorem 2 can be put in a more
tangible form by introducing the number m1 as

m1 ¼
n if ð�1ÞnD42,

nþ1 if ð�1ÞnDo�2:

(
ð54Þ

The number m1 is the value of m, i.e. the number of zeros of y(t)
on the interval ð0,p�, of a solution curve yðtÞ which starts in the
direction of the first eigenvector, i.e. yð0Þ ¼ v1.

Corollary 1. If 9D942, then it holds that ec ¼ 9l19
�1=m1 .

4. Approximation of the critical restitution coefficient using
Hill’s determinant

The results of the previous section, which are summarized in
Theorem 2, show that the stability properties of the unilaterally
8

constrained Hill’s equation are completely determined by the
properties of the fundamental solutions of the unconstrained
Hill’s equation. More precisely, the critical restitution coefficient
only depends on the value of the discriminant D and the number
n. This insight suggests that standard approximation techniques
for the unconstrained Hill’s equation can be used to approximate
the critical restitution coefficient of the unilaterally constrained
Hill’s equation. In this section the method of Hill’s infinite
determinant will be explored.

The function g(t) in Hill’s equation can be represented by a
complex Fourier series as

gðtÞ ¼
X1

k ¼ �1

gke2ikt , ð55Þ

where g�k ¼ gk . In this section we will assume that
ffiffiffiffiffi
g0
p

a0;2,
4;8, . . ., i.e. the even parametric resonances are avoided. Similarly,
the first eigensolution f 1ðtÞ ¼ estp1ðtÞ, see (17), can be written as a
complex Fourier series

f 1ðtÞ ¼ est
X1

k ¼ �1

cke2ikt , ð56Þ

where the characteristic exponent s is related to the discriminant
through D¼ 2 coshðpsÞ. Substitution of the Fourier representa-
tions (55) and (56) in Hill’s equation (2) yields the condition

est
X1

k ¼ �1

ðsþ2ikÞ2þ
X1

s ¼ �1

gse
2ist

!
cke2ikt

" #
¼ 0:

Reordering terms gives the equality

X1
k ¼ �1

ðsþ2ikÞ2ckþ
X1

s ¼ �1

gsck�s

 !
e2ikt ¼ 0: ð57Þ

The requirement that (57) has to be fulfilled for all t leads to an
infinite set of homogeneous equations

ðsþ2ikÞ2ckþ
X1

s ¼ �1

gsck�s ¼ 0 ð58Þ

for the Fourier coefficients ck. The linear homogeneous system of
equations has only a non-trivial solution if the infinite determi-
nant

DðsÞ ¼ 9Hkl9k,l ¼ �1���þ1 ð59Þ

vanishes, where

Hkk ¼
g0þðsþ2ikÞ2

g0�4k2
, Hkl ¼

gl�k

g0�4k2
ðlakÞ: ð60Þ

Each row in (58) has been divided by g0�4k2 to ensure conver-
gence [18,29]. In [17,29] it is shown that the infinite determinant
DðsÞ can be expressed as

DðsÞ ¼D 0ð Þ�
sin2 1

2 ips

 �

sin2 1
2p

ffiffiffiffiffi
g0
p
 � :

Using the identity

sin2 1

2
ips

� �
¼

1

2
1�cosðpsiÞð Þ ¼

1

2
ð1�coshðpsÞÞ ¼ 1

4
ð2�DÞ,

the determinant condition is written as

DðsÞ ¼Dð0Þ�
2�D

4 sin2 1

2
p ffiffiffiffiffi

g0
p

� � ¼ 0,



which agrees with [17], Theorem 2.9. The discriminant D can
therefore be expressed as

D¼ 2þ4Dð0Þ sin2 1

2
p
ffiffiffiffiffi
g0

p
� �

: ð61Þ

Furthermore, it holds that 9l19¼ 1
2 9D9þ

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
�4

p
, see (15).

If 9D942, then the critical restitution coefficient is given by
ec ¼ 9l19

�1=m1 , see Corollary 1. The critical restitution coefficient
can therefore be calculated from

ec ¼

				1þ2Dð0Þsin2 1

2
p
ffiffiffiffiffi
g0

p
� �				þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2D 0ð Þsin2 1

2
p
ffiffiffiffiffi
g0

p
� �� �2

�1

s0
@

1
A
�1=m1

ð62Þ

under the assumption that
ffiffiffiffiffi
g0
p

a0;2,4;8, . . .. The value of Dð0Þ
can be approximated by the determinant of a central k� k block
as will be shown in Section 5.3.
Fig. 4. Ince–Strutt diagram and discriminant D of the unconstrained Mathieu

equation (3). In the grey stability domains holds 9D9o2. The instability domains

are white.
5. The unilaterally constrained Mathieu equation

In order to illustrate the previous results, the stability proper-
ties of the unilaterally constrained Mathieu equation are studied
in this section. First, the symmetry of the Mathieu equation is
exploited in Section 5.1. A stability diagram for the unilaterally
constrained Mathieu equation is obtained by using direct numer-
ical integration to calculate the discriminant D and n. Subse-
quently, the method of averaging is employed in Section 5.2 to
derive approximate expressions for the critical restitution coeffi-
cient in the vicinity of the first parametric resonance. Finally, the
method of Hill’s determinant is used in Section 5.2 to obtain an
improved approximation for the critical restitution coefficient in
this parameter region.

5.1. Stability boundaries

The Mathieu equation (3)

€yðtÞþðaþ2b cos 2tÞyðtÞ ¼ 0

is a Hill’s equation with symmetry of the function gðtÞ ¼

aþ2b cos 2t, i.e.

gðtÞ ¼ gð�tÞ, gðtÞ ¼ gðtþpÞ:

This implies that, if y1ðtÞ and y2ðtÞ are solutions of (3), then y1ð�tÞ

and y2ð�tÞ are also solutions of (3). The function y1ðtÞ is therefore
even and y2ðtÞ is odd. For the same reason it holds that _y1ðtÞ is odd
and _y2ðtÞ is even. Using the transition property (12) we deduce
that Uð�p,0Þ ¼Uð0,pÞ ¼Uðp,0Þ�1. Evaluation of

Uð�p,0Þ ¼
y1ðpÞ �y2ðpÞ
� _y1ðpÞ _y2ðpÞ

!

gives together with Uð�p,0Þ ¼Uðp,0Þ�1 the identity y1ðpÞ ¼ _y2ðpÞ
(see [17]). Hence, it holds that D¼ traceðUT Þ ¼ 2y1ðpÞ.

The stability of the unconstrained Mathieu equation (3)
depends on the value of D, being a function of the parameters a
and b. The stability boundaries in the parameter plane ða,bÞ are
given by Dða,bÞ ¼ 72, i.e. 9y1ðpÞ9¼ 1. The unity of the determi-
nant, detðUT Þ ¼ y1ðpÞ2�y2ðpÞ _y1ðpÞ ¼ 1, implies that either y2ðpÞ ¼
0 and/or _y2ðpÞ ¼ 0 at a stability boundary. In other words, one can
distinguish between stability boundaries for which y2ðpÞ ¼ 0 and
stability boundaries for which _y2ðpÞ ¼ 0. The value of the dis-
criminant Dða,bÞ and the number nða,bÞ, i.e. the number of zeros
of the function y2ðtÞ on the interval ð0,p�, have been computed
using direct numerical integration on a grid of 1000�1000 points
for the intervals a¼�8 . . .32 and b¼ 0 . . .12. The stability
boundaries Dða,bÞ ¼ 72 of the unconstrained Mathieu equation
are depicted in Fig. 4, which is often called the Ince–Strutt
9

diagram. The number n changes its value in the parameter plane
ða,bÞ if y2ðpÞ changes sign. The boundary of the domains where n

is constant therefore agrees with those stability boundaries of the
unconstrained Mathieu equation for which y2ðpÞ ¼ 0, see Fig. 5.
Fig. 4 indicates the number m1 in the instability domains of the
unconstrained Mathieu equation. Apparently, m1 ¼ k in the k-th
instability domain.

The stability of the equilibrium of the unilaterally constrained
Mathieu equation is dependent on the number nða,bÞ and the
discriminant Dða,bÞ, which both depend on the system para-
meters a and b, and the restitution coefficient e. The numerical
results for the critical restitution coefficient are depicted in Fig. 6,
being the Ince–Strutt diagram for the unilaterally constrained
Mathieu equation. The level curves for ec ¼ 0, 0.2, 0.4, 0.6, 0.8 and
1 are shown in Fig. 6. The grey areas, being the stability domains
of the unconstrained Hill’s equation, have a critical restitution
coefficient ec ¼ 1. It can be seen that a decrease in the restitution
coefficient enlarges the stability domain in those regions of the
parameter space for which n40, especially when n is large. The
value of n is zero in the so-called zeroth instability domain [30]
(the lower left part of Fig. 6 labeled with ec ¼ 0) and D42. As
follows from Theorem 2, the value of the restitution coefficient
has no influence in the zeroth instability domain as the long-term
behaviour is governed by non-impacting motion. The zeroth
instability domain of the unconstrained Mathieu equation is
therefore also unstable for the constrained Mathieu equation.

As the stability of the constrained Mathieu equation depends
on the number n and D, which characterize the unconstrained
Mathieu equation, one can use common approximation methods
to investigate the stability properties of the unilaterally con-
strained Mathieu equation with e¼ 0.

5.2. Averaging

A standard averaging technique [28] can be used to give an
approximation for Dða,bÞ if b=a is small. The averaging technique
can be applied to the dynamics expressed in amplitude and phase
coordinates (polar coordinates), see for instance [21], but this
type of averaging results in an averaged system consisting of non-
linear differential equations. Here, the averaging is done on the



Fig. 6. Ince–Strutt diagram of the unilaterally constrained Mathieu equation with

critical value ec of the restitution coefficient.

Fig. 5. Diagram with the value of n of the Mathieu equation.
dynamics in comoving coordinates [27] which yields a linear set
of differential equations allowing for a closed form solution of the
averaged equations.

Let o¼ 1;2,3, . . . be a resonant frequency of the Mathieu
equation (3) and let b¼ Eo2 where E is a small parameter
measuring the relative intensity of the parametric excitation.
Due to symmetry we know that Dða,�bÞ ¼Dða,bÞ and it therefore
suffices to consider EZ0. Furthermore, we consider the value of a
to be close to resonance and set

a¼o2ð1�EdÞ, ð63Þ

where d is a detuning parameter. Following [27], comoving
coordinates z1ðtÞ and z2ðtÞ are introduced such that

yðtÞ ¼ z1ðtÞ cos otþz2ðtÞ sin ot,

_yðtÞ ¼�z1ðtÞo sin otþz2ðtÞo cos ot: ð64Þ

Differentiation of y(t) gives the relationship

_z1 cos otþ _z2 sin ot¼ 0: ð65Þ
10
Substitution of (64) and (65) in (3) yields the Mathieu equation in
comoving coordinates:

_z1 ¼�Eoðd�2 cos 2tÞðz1 cos otþz2 sin otÞ sin ot,

_z2 ¼ Eoðd�2 cos 2tÞðz1 cos otþz2 sin otÞ cos ot: ð66Þ

The system (66) can be averaged over one period of oscillation,
keeping z1 and z2 constant, i.e.

_z1 ¼�
Eo
p

Z p

0
ðd�2 cos 2tÞ cos ot sin ot dt z1

�
Eo
p

Z p

0
ðd�2 cos 2tÞ sin2ot dt z2,

_z2 ¼
Eo
p

Z p

0
ðd�2 cos 2tÞ cos2ot dt z1

þ
Eo
p

Z p

0
ðd�2 cos 2tÞ cos ot sin ot dt z2: ð67Þ

Consider the first resonance at o¼ 1. Evaluation of the averaged
equation (67) gives

_z1 ¼�
E
2
ð1þdÞz2,

_z2 ¼�
E
2
ð1�dÞz1: ð68Þ

The linear planar system (68) has the general solution

z1ðtÞ ¼ c1 cosh mtþc2 sinh mt,

z2ðtÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
1�d2

p
1þd

ðc1 sinh mtþc2 cosh mtÞ: ð69Þ

with

m¼ E
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1�d2

q
: ð70Þ

In order to find an approximation for y1ðtÞ we set z1ð0Þ ¼ 1
and z2ð0Þ ¼ 0 giving c1 ¼ 1, c2 ¼ 0. Hence, we obtain the approx-
imation

y1ðtÞ ¼ cosh mt cos t�

ffiffiffiffiffiffiffiffiffiffiffiffi
1�d2

p
1þd

sinh mt sin t ð71Þ

for the first fundamental solution and the approximation

D¼ 2y1ðpÞ ¼�2 cosh
Ep
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1�d2

q� �
ð72Þ

for the discriminant. Using E¼ b and Ed¼ 1�a for o¼ 1, we can
express the determinant as a function of a and b

Dða,bÞ ¼�2 cosh
p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
�ð1�aÞ2

q� �
: ð73Þ

Near the first resonance, it therefore holds that Do�2 if 9d9o1,
or, correspondingly, if 91�a9o9b9. From (72) we calculate the
largest characteristic multiplier

l1 ¼
1

2
D�

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
�4

p
¼�cosh

Ep
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1�d2

q� �
�sinh

Ep
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1�d2

q� �

¼�eðEp=2Þ
ffiffiffiffiffiffiffiffiffi
1�d2
p

: ð74Þ

Similarly, we obtain an approximation for y2ðtÞ by setting z1ð0Þ ¼
0 and z2ð0Þ ¼ 1, i.e. c1 ¼ 0 and c2 ¼�ð1þdÞ=ð

ffiffiffiffiffiffiffiffiffiffiffiffi
1�d2

p
Þ, which yields

y2ðtÞ ¼�
1þdffiffiffiffiffiffiffiffiffiffiffiffi
1�d2

p sinh mt cos tþcosh mt sin t: ð75Þ

Clearly, if E¼ 0, then it holds that y2ðtÞ ¼ sin t and the value of n is
on the verge of turning from zero to one. Evaluation of y2ðpÞ gives

y2ðpÞ ¼
1þdffiffiffiffiffiffiffiffiffiffiffiffi
1�d2

p sinh
Ep
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1�d2

q� �
, ð76Þ



Fig. 7. Approximate Ince–Strutt diagram around the first resonance by using

averaging (dashed lines) and Hill’s determinant (dash-dot lines).
which is slightly larger than zero for 9d9o1. We therefore infer that
n¼0 holds around the resonance frequency o¼ 1 for small values
of E.

The stability criterion for n¼0 and Do�2 reads as (see
Theorem 2)

eoec ¼ 9l19
�1
: ð77Þ

Using the approximation (74) for l1, the critical coefficient of
restitution is approximated near the first resonance by

ec ¼ e�ðEp=2Þ
ffiffiffiffiffiffiffiffiffi
1�d2
p

¼ e�ðp=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
�ð1�aÞ2

p

: ð78Þ

Inversely, for a given value of a and e one can calculate the critical
value of b as

bc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�aÞ2þ 2

p
ln e

� �2
s

ð79Þ

from which we see that a small value of the restitution
coefficient e is beneficial for the stability of the unilaterally
constrained Mathieu equation in the vicinity of the first
resonance.

A comparison of the approximation (79) obtained with the
averaging method and the (almost exact) numerical results is
shown in Fig. 7. For a given value of ec , which has been chosen to
be 0.4, 0.6 and 0.8, the value of b has been computed using (79)
and is shown as dashed lines in Fig. 7. The approximation
agrees fairly well with the numerical results for ec ¼ 0:8. Signi-
ficant differences can be seen for ec ¼ 0:4 and ec ¼ 0:6 because
E¼ b can no longer considered to be small in the upper half of
Fig. 7.
5.3. Approximation using Hill’s determinant

A much better approximation of the discriminant Dða,bÞ and
the critical restitution coefficient can be obtained by using Hill’s
infinite determinant as discussed in Section 4.

The function gðtÞ ¼ aþ2b cos 2t of the Mathieu equation can
be represented by gðtÞ ¼ aþbðe2itþe�2itÞ and the Fourier coeffi-
cients are therefore g0 ¼ a and g1 ¼ g�1 ¼ b whereas all other
Fourier coefficients are zero. The determinant Dð0Þ, see (59),
therefore reads as

Dð0Þ ¼

� � � � � � � � � � � � � � � � � � � � �

� � � 1 b
a�42 0 0 0 � � �

� � �
b

a�22 1 b
a�22 0 0 � � �

� � � 0 b
a 1 b

a 0 � � �

� � � 0 0 b
a�22 1 b

a�22 � � �

� � � 0 0 0 b
a�42 1 � � �

� � � � � � � � � � � � � � � � � � � � �

																			

																			

: ð80Þ

The value of Dð0Þ can be approximated by the determinant of the
central 5�5 block

Dð0Þ � 1�
4a�32

aða�4Þða�16Þ
b2
þ

3a�32

aða�4Þ2ða�16Þ2
b4: ð81Þ

This approximation can be improved by calculating larger central
k� k blocks in (80). However, the coefficients of b2 and b4 in (81)
slightly change if larger central blocks are considered. Using (61)
the discriminant D can be approximated by

Dða,bÞ ¼ 2�4 sin2 1

2
p
ffiffiffi
a
p

� �

� 1�
4a�32

aða�4Þða�16Þ
b2
þ

3a�32

aða�4Þ2ða�16Þ2
b4

!
: ð82Þ
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Hence, the critical restitution coefficient is determined by the
equation

em1
c þ

1

em1
c

¼�2þ4 sin2 1

2
p
ffiffiffi
a
p

� �

� 1�
4a�32

aða�4Þða�16Þ
b2
þ

3a�32

aða�4Þ2ða�16Þ2
b4

!
, ð83Þ

or equivalently by (62). Inversely, for a given value of a and e one
can calculate an approximation of the critical value of b, based on
the terms in (82) up to order b2, as

b2
c ¼

aða�4Þða�16Þ

4a�32
1�

em1þ2þ
1

em1

4 sin2 1

2
p
ffiffiffi
a
p

� �
0
BB@

1
CCA: ð84Þ

This approximation is valid (for small b) in each of the instability
domains but the value of m1 should be a priori known. For the
Mathieu equation, however, it holds that m1 ¼ k in the k-th
instability domain.

A comparison of the approximation (84) in the first instability
region (m1 ¼ 1) obtained with Hill’s determinant (dash-dot lines)
and the approximation (79) obtained with the averaging method
and the (almost exact) numerical results is shown in Fig. 7.
Clearly, the approximation (84) is much better than the approx-
imation (79). However, using the averaging method one is able to
estimate the value of n (and therefore m1) as a function of a and b,
which cannot (easily) be done by using the method of Hill’s
determinant.
6. Conclusions and discussion

In this paper the stability conditions of the unilaterally con-
strained Hill’s equation have been addressed in detail using
Floquet theory and Lyapunov techniques. It has been shown that
the stability of the equilibrium of the unilaterally constrained
Hill’s equation depends on the discriminant D and the number n

(i.e. the number of zeros of the second fundamental solution
within one period) of the unconstrained Hill’s equation and on the
restitution coefficient e. The remarkable simplicity of the uni-
laterally constrained Hill’s equation stems from the fact that,
although the system can be considered to be strongly non-linear
due to the presence of the unilateral constraint, its Poincaré map
is cone-wise linear. The cone-wise linearity originates from the



homogeneity of the linear differential equation and the homo-
geneity of the impact map.

The practical merit of the paper is that a precise estimation of
the critical restitution coefficient can be obtained by calculating
the fundamental solutions of the unconstrained Hill’s equation
using direction numerical integration methods (ODE-solvers). In
addition, two approximation methods are proposed which give
closed form expressions for the critical restitution coefficient: the
averaging method (Section 5.2) and the method of Hill’s infinite
determinant (Sections 4 and 5.3). A comparison of the approx-
imation techniques applied to the unilaterally constrained
Mathieu equation has been given in Section 5.

The averaging method in comoving coordinates, which is
employed in Section 5.2, gives the same approximation of the
critical restitution coefficient as obtained by the averaging
method in [21], Section 2.2.2. In [21], a two-dimensional impact
event map is constructed for the first instability domain using the
averaging method in amplitude and phase coordinates and
assuming that the time difference between consecutive impacts
equals tiþ1�ti ¼ pþOðEÞ. In Section 5.2, the averaging method in
comoving coordinates is used to obtain an approximation of the
two-dimensional Poincaré map. This approximate Poincaré map
is cone-wise linear as opposed to the approximate impact event
map of [21] which is fully non-linear. The use of higher-order
averaging methods to improve the approximation for larger
values of E becomes cumbersome as it takes a much larger effort
and, in addition, an improved approximation for tiþ1�ti needs to
be obtained for averaging in amplitude and phase coordinates.

The approximation of the critical restitution coefficient using
Hill’s infinite determinant, see Sections 4 and 5.3, is very accurate
and can easily be improved by considering larger central blocks for
the determinant Dð0Þ. However, the method using Hill’s infinite
determinant gives no direct way to determine the number n.

The analysis has shown that the impact time instants are
defined by the zero-crossings of the solution of the unconstrained
Hill’s equation, which are always separated in time. Accumulation
points of impacts can therefore not exist in the unilaterally
constrained Hill’s equation (4) as has been proven in Theorem 1.
If, however, the location of the constraint is moved to a non-
zero position, which does not agree with the equilibrium of the
unconstrained system, i.e. xðtÞZxc 40, then accumulation points
are possible. The unilaterally constrained Hill’s equation with
xc 40 does not have an equilibrium and the contact force l in Eq.
(5) does not vanish. The framework of non-smooth dynamics is
therefore needed to describe and understand the dynamics of the
unilaterally constrained Hill’s equation with non-zero constraint
position. Moreover, the non-linear dynamics becomes far more
complicated because the homogeneity of the impact conditions
(27), and also the cone-wise linearity of the Poincaré map, is lost.

The present paper gives more insight in the stability properties of
Hill’s equation with unilateral constraint, being an archetype of a
parametrically excited non-smooth dynamical system with impulsive
motion. Further research will focus on the application and extension
of the obtained results to the stability analysis of multi-degree-of-
freedom autoparametric systems with unilateral constraints.
Appendix A. Floor function and fractional part
Definition 1 (Floor function and fractional part). With bxc we
denote the floor function defined by

bxc ¼ fmax kAZ9krxg ð85Þ
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and with fxg the fractional part defined by

fxg ¼ x�bxc: ð86Þ

The fractional part can be expressed in trigonometric functions as

fxg ¼
1

2
�

1

p
arctanðcotðpxÞÞ, ð87Þ

where cotðpkÞ ¼ þ1 for kAZ. The floor function has the follow-
ing property:

bxcþbycrbxþycrbxcþbycþ1, ð88Þ

and the equality bxcþbyc ¼ bxþyc holds only if fxgþfygo1, or
using (87), if cotðpxÞþcotðpyÞ40. More precisely, the relations
(88) can be formulated as

bxþyc ¼
bxcþbyc if cotðpxÞþcotðpyÞ40,

bxcþbycþ1 if cotðpxÞþcotðpyÞr0:

(
ð89Þ

The floor function can be used to count the number of zeros of
sinusoidal functions. The function f 1ðxÞ ¼ sinðxÞ has the zeros kp
with kAZ and the number of zeros on the interval ð0,a� therefore
amounts to

m1 ¼
a

p

j k
: ð90Þ

The function f 2ðxÞ ¼ sinðxþbÞ has the number of zeros

m2 ¼
aþb

p

� �
�

b

p

� �
, ð91Þ

which, using (89), can be expressed as

m2 ¼
m1 if cotðaÞþcotðbÞ40,

m1þ1 if cotðaÞþcotðbÞr0:

(
ð92Þ
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