
HAL Id: hal-01403399
https://hal.science/hal-01403399

Submitted on 27 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Data service platform for sentinel-2 surface reflectance
and value-added products: System use and examples
Francesco Vuolo, Claudia Pipitone, Luca Zappa, Hannah Wenng, Markus

Immitzer, Marie Weiss, Frédéric Baret, Clément Atzberger

To cite this version:
Francesco Vuolo, Claudia Pipitone, Luca Zappa, Hannah Wenng, Markus Immitzer, et al.. Data
service platform for sentinel-2 surface reflectance and value-added products: System use and examples.
Remote Sensing, 2016, 8 (11), pp.938. �10.3390/rs8110938�. �hal-01403399�

https://hal.science/hal-01403399
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


remote sensing  

Technical Note

Data Service Platform for Sentinel-2 Surface
Reflectance and Value-Added Products:
System Use and Examples
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Abstract: This technical note presents the first Sentinel-2 data service platform for obtaining
atmospherically-corrected images and generating the corresponding value-added products for
any land surface on Earth (http://s2.boku.eodc.eu/). Using the European Space Agency’s
(ESA) Sen2Cor algorithm, the platform processes ESA’s Level-1C top-of-atmosphere reflectance
to atmospherically-corrected bottom-of-atmosphere (BoA) reflectance (Level-2A). The processing
runs on-demand, with a global coverage, on the Earth Observation Data Centre (EODC), which is
a public-private collaborative IT infrastructure in Vienna (Austria) for archiving, processing, and
distributing Earth observation (EO) data (http://www.eodc.eu). Using the data service platform,
users can submit processing requests and access the results via a user-friendly web page or using
a dedicated application programming interface (API). Building on the processed Level-2A data,
the platform also creates value-added products with a particular focus on agricultural vegetation
monitoring, such as leaf area index (LAI) and broadband hemispherical-directional reflectance
factor (HDRF). An analysis of the performance of the data service platform, along with processing
capacity, is presented. Some preliminary consistency checks of the algorithm implementation are
included to demonstrate the expected product quality. In particular, Sentinel-2 data were compared
to atmospherically-corrected Landsat-8 data for six test sites achieving a R2 = 0.90 and Root Mean
Square Error (RMSE) = 0.031. LAI was validated for one test site using ground estimations. Results
show a very good agreement (R2 = 0.83) and a RMSE of 0.32 m2/m2 (12% of mean value).

Keywords: Sentinel-2; atmospheric correction; Sen2Cor; LAI; broadband HDRF

1. Introduction

Sentinel-2 is the newest generation Earth observation (EO) satellite of the European Space Agency
(ESA) for land and coastal applications [1]. The satellite was launched in June 2015 and is part of
Europe’s Copernicus program aiming at independent and continued global observation capacities [2].
Compared to Landsat satellites, Sentinel-2 offers an increased spectral and spatial resolution
with 13 spectral bands of 10 to 60 m spatial resolution. Together with its twin satellite (to be launched
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beginning 2017), Sentinel-2 will cover the entire Earth every five days. The excellent performance
characteristics of Sentinel-2 were shown already for different applications, such as crop and forest
classification [2], sub-pixel landscape feature detection [3], mapping of built-up areas [4,5], as well as
monitoring of glacier and water bodies [6,7].

Currently, users can find data at the ESA’s Scientific Data Hub (SDH), or using alternative
platforms such as Amazon Web Service (AWS) or Google’s Earth Engine. Until now, however, none of
the three mentioned platforms provides products for arbitrary places on Earth beyond the standard
Level-1C level (top-of-atmosphere reflectance). To fill this gap, we developed a data service platform
within the Earth Observation Data Centre (EODC) that allows access to atmospherically-corrected
surface reflectance Sentinel-2 data (Level-2A) on-demand and globally. Level-2A data are required for
numerous applications dealing with multi-temporal analysis (e.g., land surface phenology, land cover
change) [8–10] as well as for accurate retrieval of land surface variables, such as leaf area index (LAI),
fraction of absorbed photosynthetically active radiation (FAPAR), or albedo [11–13].

In this technical note we focus on products ready for delivery, including surface reflectance,
three-band image composites, LAI, and broadband hemispherical-directional reflectance factors
(HDRF), frequently deployed in our and other agricultural monitoring applications [14]. The paper
presents the system implementation and provides examples of products and instructions for access.
We also provide some first product examples and results of consistency checks. The technical note does
not provide a comprehensive validation nor an attempt to improve the integrated software packages
(e.g., related to the atmospheric correction).

In the following sections, we first introduce the algorithms used (Section 2.1) and describe options
to access data (Section 2.2). In Section 3 we report preliminary results and data consistency checks.
The technical note concludes in Section 4 with an overview of the data service platform performance,
and an outlook to future improvements, product availability and plans for exploitation.

2. Product Description and Access

The data service platform was implemented by the University of Natural Resources and Life
Science, BOKU [15] and provides access to individual Sentinel-2 granules (ortho-rectified image tiles
of 100 × 100 km2 in UTM/WGS84 projection) processed at bottom-of-atmosphere (BoA) reflectance
(Level-2A). The service runs on the Earth Observation Data Centre (EODC), which is a collaborative IT
infrastructure for archiving, processing, and distributing Earth observation (EO) data [16].

Our data service platform processes the Sentinel-2 Level-1C images into Level-2A data using
the ESA’s Sen2Cor algorithm [17]. Sen2Cor is supported by the ESA as a third-party plugin for the
Sentinel-2 toolbox and it runs in the ESA Sentinel Application Platform (SNAP) or from the command
line. Additional layers produced by this algorithm are also available such as Aerosol optical thickness
(AOT), water vapor (WV), scene classification (SCL), and various quality indicators (QI).

To minimize atmospheric interference, all value-added products are calculated based on
atmospherically-corrected Level-2A data. For users interested in simple three-band composites,
the platform can create user-defined true and false color composites. All products are delivered in
JPEG 2000 or TIFF format, at three different spatial resolutions (60, 20, and 10 m).

Within the day of the satellite acquisition, Sentinel-2 Level-1C scenes are pulled from the national
mirror site and archived at EODC. As soon as the images are available, processing of Level-2A and
value-added products is performed based on standing orders of on-demand requests. Submission
of data queries and processing requests is made possible via a user-friendly web page or using an
application programming interface (API). The API also allows query on the image metadata and bulk
data access. An overview of the various products currently available on the Sentinel-2 data service
platform is presented in Figure 1 and summarized in Table 1.
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Figure 1. Examples of a Sentinel-2 100 × 100 km2 images (tile 33UXP, covering the region between 
Vienna and Bratislava, acquired on 6 May 2016) and value-added products available at the data 
service platform. Note that clouds extracted from the Level-1C cloud mask are displayed (as hashed 
symbol) in all other products. (a) RGB false color composite; (b) Scene classification; (c) Individual 
band; (d) Broadband hemispherical-directional reflectance factor (HDRF); (e) Leaf Area Index. 

2.1. Sentinel-2 Level2-A Data and Value-Added Products 

Atmospherically-corrected bottom-of-atmosphere (BoA) Sentinel-2 data are produced using the 
Sen2Cor processor (currently version 2.2.1), developed by ESA to perform atmospheric, terrain, and 

Figure 1. Examples of a Sentinel-2 100 × 100 km2 images (tile 33UXP, covering the region between
Vienna and Bratislava, acquired on 6 May 2016) and value-added products available at the data service
platform. Note that clouds extracted from the Level-1C cloud mask are displayed (as hashed symbol)
in all other products. (a) RGB false color composite; (b) Scene classification; (c) Individual band;
(d) Broadband hemispherical-directional reflectance factor (HDRF); (e) Leaf Area Index.

Table 1. Products available on the Sentinel-2 data service platform (http://s2.boku.eodc.eu).
Bold crosses (x) indicate the original spatial resolution. Note that band B10 is not produced at Level-2A.

Product Name Center Wavelength (nm)
Spatial Resolution (m)

10 20 60

BoA reflectance

B01 443 x
B02 490 x x x
B03 560 x x x
B04 665 x x x
B05 705 x x
B06 740 x x
B07 783 x x
B08 842 x x x
B8a 865 x x
B09 940 x
B10 1375 x
B11 1610 x x
B12 2190 x x

SCL n.a. x x
AOT n.a. x x x
WVP n.a. x x x
VIS n.a. x
LAI n.a. x

Broadband HDRF n.a. x

2.1. Sentinel-2 Level2-A Data and Value-Added Products

Atmospherically-corrected bottom-of-atmosphere (BoA) Sentinel-2 data are produced using
the Sen2Cor processor (currently version 2.2.1), developed by ESA to perform atmospheric, terrain,
and cirrus correction of top-of-atmosphere Level-1C input data [17]. The processor is considered a
prototype and not validated for water and coastal regions. The correction is based on the application of
look-up-tables (LUTs), which were pre-calculated using the libRadtran radiative transfer routines.
The LUTs include two different types of aerosols (rural and maritime), two different types

http://s2.boku.eodc.eu
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of atmospheres (mid-latitude summer and winter), six different types of ozone concentrations,
and four different amounts of water vapor column [18]. As an example, Figure 1c shows the
atmospherically-corrected B8a BoA reflectance (at 865 nm). Sen2Cor includes a scene classification
module (example in Figure 1b) to map no data or defective pixels (pixel value = 0–1), four different
cloud clover class probabilities (7–10), and six different classes including shadows (2), cloud shadows
(3), vegetation (4), soils and deserts (5), water (6), and snow (11).

Other Sen2Cor outputs comprise (i) an estimation of the aerosol optical thickness (AOT) using
the dense dark vegetation (DDV) algorithm [19] and the (ii) retrieval of water vapor (WV) using the
pre-corrected differential absorption algorithm (APDA, [20]) analyzing Sentinel-2 bands B8a and B9.
Example outputs for AOT and WV are shown in Figure 2.
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Figure 2. Examples of 60 m spatial resolution bands B1 (443 nm), B9 (940 nm), and B10 (1375 nm)
dedicated to atmospheric correction and cirrus cloud detection (Sentinel-2 image subset acquired
on 22 June 2016) and retrieved water vapor (WV) and aerosol optical thickness (AOT). On the bottom
row, examples of true and false color RGB composites produced for the same acquisition are shown.
The legend for the scene classification is given in Figure 1.

The image file output and directory structures of all layers are similar to the Level-1C product
structure with lossless compressed images based on the JPEG 2000 format and produced at three
different resolutions, 60, 20, and 10 m.

True and false color composites are produced on-demand by combining three different Sentinel-2
spectral bands based on user requests. Contrast stretching is offered to optimize the RGB display
(Figure 2 bottom).
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For mapping leaf area index (LAI), we employ a neural network (NNT) algorithm developed
by INRA [21]. The NNT algorithm was tailored for Sentinel-2 and trained using radiative transfer
simulations from PROSPECT and SAIL radiative transfer models [22,23]. The inputs (BoA surface
reflectance) and outputs (LAI) data are normalized and de-normalized, respectively, using given
coefficients. An example image is shown in Figure 1e.

The broadband (490–2160 nm) hemispherical-directional reflectance factor (HDRF) (Figure 1d),
obtained at the time of the satellite overpass was calculated as a weighted sum of the Level-2A
Sentinel-2 surface reflectance, with broadband weights representing the corresponding fraction of the
solar irradiance in each sensor band [24]. The broadband weights were adapted to take into account
the spectral configuration of Sentinel-2.

2.2. Data Discovery and Download via Web Interface

The web interface allows users to search for products (defined as the collection of elementary
granules within a single orbit), granules (the 100 × 100 km2 image tiles) and images (image files of
an individual granule, such as spectral bands or value-added products). The search can be filtered
considering a range of acquisition dates, maximum cloud cover, and a set of coordinates (center point
or using a GeoJSON string to define a point, bounding box or polygon). The metadata catalogue is
regularly updated as new products are pulled from the national mirror sites and archived at EODC.
From the user perspective, major performance improvements in data search are related to the use
of (i) the actual geometry of valid data in the Sentinel-2 granules and (ii) an area-based cloud cover
statistic (using the Level 1C cloud mask) instead of the “bulk” cloud cover percentage provided with
the image metadata.

As an example, Figure 3 shows the data service web page with the results of a query identifying
all atmospherically-corrected data available on the platform. Users can submit orders for any region of
interest for one-time processing or continuous tasking. In the latter case, the creation of the Level-2A
products is performed as soon as the Level-1C data are available on the server, generally within one
day from the satellite acquisition.
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2.3. Data Exploration and Download via the Application Programming Interface (API)

The API offers a set of predefined connection points where HTTP requests can be submitted to
access metadata, granules, and individual image files or to activate processing services on the server
side. The user must provide the information needed for each request, specifying (i) the product level,
(ii) start and end of acquisition period; and (iii) coordinates of the region of interest. The request can
thereafter be submitted using an internet browser or using common programming languages such as
Python (Python Software Foundation), R (R Development Core Team, Vienna, Austria), or MATLAB
(The MathWorks, Inc., Natick, MA, USA). The set of parameters and HTTP requests are described in
the API documentation available on the web page. Some examples to query the catalogue of metadata,
to download images and to generate RGB false color composites are provided using R programming
environment in the Appendix A.

3. Example Products and Preliminary Validation

3.1. Data Processing and Performance

The data service platform runs on a computer cluster at EODC [16] that consists of 100 cores,
2.25 TB of RAM and 122 TB of disk storage, and it is directly connected to the Sentinel-2 data archive
(with 2 PB distributed hard disks and 1 PB tape storage). We currently deploy 4 cores with 12 GB
of RAM to serve the APIs and the web page, and 12 cores and 52 GB of RAM are assigned to
compute Level-2A data and value-added products. This hardware configuration is able to process
in near-real-time up to about 2,000,000 km2 (equivalent to 200 Sentinel-2 granules) per day. In the
near future, it is planned to add additional resources (304 cores, 3.8 TB RAM and 1.1 PB disk storage).
The processing capacity should scale almost linearly with the amount of assigned system resources
(cores and RAM).

In the development phase, the data service platform has performed the atmospheric correction of
about 4000 Sentinel-2 granules and 2700 value-added products (i.e., LAI) for a group of core end-users.
On average, the data service platform required 37 min (to a max of 1 h) for the atmospheric correction
of one granule of 100 × 100 km2 and 15 min (to a max of 24 min) for the production of value-added
products, such as LAI.

In the last month of operations (June 2016), we experienced a delivery time of final results from
three days (low priority) to one day (high priority) including the time span between image acquisition
and Level-1C product availability on the EODC archive.

3.2. Surface Reflectance

The bottom-of-atmosphere (surface) reflectance is a basic input to many EO applications ranging
from land surface phenology to land cover classification and change detection. To provide a preliminary
evaluation of the Sentinel-2 algorithm implementation, we conducted a pixel-based comparison
between Sentinel-2 and Landsat-8 surface reflectance data. The data were acquired on the same day
for different sites in Europe and the comparison was limited to the spectral bands in common to the
two satellites (bands 2, 3, 4, 5, 6, and 7 for Landsat-8, and bands 2, 3, 4, 8a, 11, and 12 for Sentinel-2).
With respect to Landsat-8, we used the atmospherically-corrected Landsat Surface Reflectance Climate
Data Record (CDR). Although considered provisional, the dataset reported a very good agreement
with other satellite data (e.g., MODIS) and AERONET measurements [25]. The Landsat CDR data also
compared favorably against manually fine-tuned atmospheric corrections [26].

Six test sites in Europe were chosen for the comparison between Sentinel-2 and Landsat-8 surface
reflectance (located in Greece, Turkey, Austria, Germany, Czech Republic, and France). Within each test
site, a number of randomly-selected points were chosen. Observations affected by clouds and cloud
shadows were identified using the Sentinel-2 scene classification (SCL) and the Landsat-8 fmask [27].
Observations affected by cloud and cloud-shadow were excluded from the analysis. To take into
account the differences in pixel size between Sentinel-2 and Landsat-8, we calculated the average
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reflectance value in a buffer of 30 m for Sentinel-2 data. This buffered reflectance was compared to a
single pixel reflectance for Landsat-8 over a set of 4400 Landsat-8 pixels.

Results show an overall R2 = 0.90 and RMSE = 0.031 when using all the six homologue bands,
with RMSE ranging from 0.023 for the green band to 0.043 for the near-infrared band. A detailed
overview of the comparison is provided for two contrasting (summer/winter) acquisition dates in
Figure 4. A spatial subset of the two acquisitions for the red and near-infrared bands is shown in the
scatterplots in Figure 4. Details regarding the image data are provided in Table 2.
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Figure 4. Scatterplots between BoA Landsat-8 and Sentinel-2 reflectance in red and near-infrared for
two test sites (top row: Greece, 8 August 2015 tile 34SEH; bottom row: Austria, 31 December 2015,
tile 33UUP). The reflectance from Sentinel-2 at 10 m spatial resolution was averaged within a buffer
of 30 m to match the pixel size of Landsat-8. BoA reflectance values are scaled by 10,000.

For Greece, considering the six homologue bands, results show a R2 of 0.96 and RMSE
of 0.03 reflectance units. For Austria, results show a R2 of 0.91 and RMSE of 0.027.

Figure 5 shows some exemplary spectral profiles from atmospherically-corrected Landsat-8 and
Sentinel-2 pixels acquired on the same date. The spectral profiles represent different land cover
types including vegetation, soil, and water. They show a very good match over the six homologue
spectral bands.
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Table 2. Contemporaneous Landsat-8 and Sentinel-2 acquisitions used for comparison.

Landsat-8 Sentinel-2

Greece

Tile 185/033 34SEH
Acquisition date 8 August 2015
Acquisition time 9.16 AM 9.25 AM
Sun Zenith Angle 30◦ 27◦

Austria

Tile 192/026 33UUP
Acquisition date 31 December 2015
Acquisition time 9.57 AM 10.22 AM
Sun Zenith Angle 74◦ 72◦
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Figure 5. Examples of comparison between BoA Landsat-8 and Sentinel-2 reflectance for
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same day. The reflectance from Sentinel-2 at 10 m spatial resolution was averaged within a buffer
of 30 m to match the pixel size of Landsat-8. BoA reflectance values are scaled by 10,000.

Amongst the various randomly selected pixels, occasionally, we observed larger differences
between the atmospherically-corrected reflectances of the two satellites (Figure 6 left). Checking
those observations revealed that our comparison included pixels affected by undetected clouds (scene
classification or fmask). Some larger divergences were also observed over heterogonous pixel locations
and over complex surface terrains (Figure 7 left). The differences are probably a direct result of the
different spatial resolutions of the two satellite sensors.
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Figure 7. Spectral mismatch between Landsat-8 and Sentinel-2 observed over heterogeneous and
complex surface terrain. The maps on the right show a zoom in on point “210”. BoA reflectance values
are scaled by 10,000.

A field campaign was organized on 24 June 2016 in an agricultural area in Austria [28]
to measure surface reflectance with a field spectro-radiometer in coincidence (±2 days) of
two Sentinel-2 overpasses (tile 33UXP on 22 and 25 June, respectively). A second campaign was
organized on 31 August in the same area and a Sentinel-2 image was acquired on the same day.
The spectral reflectance was measured at ground over homogeneous targets using a Spectral Evolution
PSR-2500 radiometer operating in the range 350–2500 nm with a spectral resolution of 3.5 nm (in visible,
VIS, and near-infrared, NIR) and 22 nm (in the short-wave infrared, SWIR) [29]. The manufacturer
reports a calibration accuracy of 5% (400 nm), 4% (700 nm), and 7% for (2200 nm). Spectral data were
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collected between 10:30 and 12:30 (satellite overpass at 11:30) by averaging 10 scans for each target
over an area of approximately 10 × 10 m. The points were geo-located using GPS measurements.
A calibrated white reference panel (Spectralon) was used to measure solar irradiance at regular intervals
during the measurement period. The instrument was deployed with a 14◦ lens at a distance of 1 m
from the top of the surface (resulting in a field of view of 25 cm). In post-processing, the spectra were
smoothed using the Whittaker smoother [30] with a Lambda of 500.

Figures 8 and 9 shows some examples of the comparison for different targets for the two
campaigns. For most targets a very good agreement between Sentinel-2 signatures and the reflectance
measured with the PSR-2500 can be found. Figure 8 also highlight the changes of the surface reflectance
within the two acquisition dates (22 and 25 June, respectively).
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Figure 9. Comparison between field spectral measurements on 31 August and Sentinel-2 data acquired
on the same day (Sentinel-2 tile 33UXP) from upper left to lower right: asphalt, bare soil, crop residue,
two soya fields at different phenological stages, and meadow. Reflectance values are scaled by 10,000.

3.3. Leaf Area Index

For vegetation characterization and applications such as precision farming and irrigation
management, the crop’s leaf area index (LAI) is an important structural variable with direct links to
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crop growth, water and energy balance. We assessed the quality of the Sentinel-2 derived LAI through
preliminary comparison with non-destructive (optical) field reference measurements.

LAI reference measurements were acquired with the Licor LAI-2200 Plant Canopy Analyzer [31]
from April to June 2016 over five different crops (Sugarbeet, Maize, Onion, Potatoes and Winter wheat)
for a total of 95 measurements. The field measurements were used to validate LAI retrievals from six
different Sentinel-2 acquisitions (tile 33UXP) over the study region of Marchfeld [14]. The maximum
time span between satellite acquisitions and ground measurements was 6 days (7 April). Results in
Figure 10 show a very good agreement (R2 = 0.83) and a RMSE of 0.32 m2/m2 (12% of mean value).
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3.4. The Broadband Hemispherical-Directional Reflectance Factor (HDRF)

The broadband HDRF was compared to ground measurements of albedo obtained with a
Campbell CNR-1 net radiometer installed at 2 m height from top of canopy. Table 3 shows the
comparison for four different satellite acquisitions over two crop types. In general, we observe a good
agreement over a broad range of LAI values.

Table 3. Measured albedo (net radiometer) versus broadband HDRF from Sentinel-2 (weighted sum).

Crop Type Acquisition Date Leaf Area Index
(Sentinel-2)

Broadband HDRF
(Sentinel-2)

Measured Albedo
(CNR-1) at Noon

Soya 7 August 2015 3.2 0.24 0.22
Soya 30 August 2015 >6.0 0.28 0.26

Maize 25 June 2016 1.9 0.16 0.16
Maize 2 July 2016 2.9 0.17 0.17

The Sentinel-2 broadband HDRF (obtained on 7 and 30 August 2015) was also compared with
two existing maps of the HDRF obtained from DEIMOS-1 [32] (acquired on 6 and 26 August 2015)
using the ATCOR-2 value-added product module [33]. Results show (Figure 11) a good agreement
between the two datasets, with a lower agreement for 30 August, probably due to the longer time span
(5 days) between the two acquisitions.

As final check, we looked at time profiles of broadband HDRF, LAI and the scene classification
classes (Figure 12). The selected pixel is from cropland located in the Barrax region, Spain, from
November 2015 to end of June 2016. We observe a temporal evolution of LAI that is consistent with
the crop growing pattern for winter crops. Peaks in broadband HDRF values are consistent with the
scene classification.
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Figure 12. Time series of LAI and broadband HDRF for an exemplary cropland pixel in Barrax, Spain
(588,916; 4,322,882, UTM/WGS84). The numbers on top of the chart indicate the scene classification
code (Bare soil = 5; Cloud cover with low to high probability: 7–9). All other points are classified as
vegetation (4, in green).
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4. Conclusions and Outlook

This technical note presented the first data service platform for the provision of atmospherically
corrected Level-2A Sentinel-2 data and value-added products with a focus on vegetation monitoring.
A user-friendly web interface is available to submit processing requests and access individual
products. A dedicated application programming interface (API) supports bulk data processing and
it is accessible using common programming languages, such as R or Python. End-users can find the
full documentation and service features on the service web page and a dedicated R package at the
software repository https://github.com/IVFL-BOKU/sentinel2.

During the algorithm implementation phase, a number of consistency checks were performed
using existing satellite data, observations from Landsat-8 and dedicated ground measurements of LAI,
spectral reflectance, and broadband HDRF. The results obtained from this preliminary performance
analysis are very encouraging. They confirmed the spectral consistency with Landsat-8 and with
ground reflectance measurements and showed, for the first time, the high potential and quality of
Sentinel-2 data for the retrieval of LAI.

The data service platform operates on-demand and is ready to accept processing requests
from end-users. They can choose any region of interests, temporal window, and product(s) of
interest. After a fast registration process, end-users receive test account to generate and retrieve
atmospherically-corrected Sentinel-2 scenes and value-added products (one voucher for each
100 × 100 km2 granule). For larger data volumes, end-users will need to pay a contribution to
cover costs for data archiving, processing, and maintenance of the algorithms.

In the future, we plan to extend the portfolio of value-added products, to offer the possibility to
plug-in different algorithms, and to integrate Sentinel-2 and Landsat-8 data processing, especially for
the production of smoothed and gap-filled time series ([34] under review). As a minimum service,
we plan to regularly process and store all Sentinel-2 scenes for Europe so that users can directly access
the new images as they become available.
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Appendix A

Some examples to query the catalogue of metadata, to download images, and to generate RGB
false color composites are provided using R programming environment. For example, the query for
the Granules in the UTM zone 33U acquired for the year 2016 and having a cloud cover lower than
40% is:

library(jsonlite)
Url = ‘https://s2.boku.eodc.eu/granule?dateMin=2016-01-01&utm=33U&cloudCovMax=40’
granules = fromJSON(Url)

The query can be restricted to search and download atmospherically corrected images acquired
on 25 June for the granule in the UTM zone “33UXP”. The response also includes a list of
value-added products.

https://github.com/IVFL-BOKU/sentinel2
https://s2.boku.eodc.eu/granule?dateMin=2016-01-01&utm=33U&cloudCovMax=40


Remote Sens. 2016, 8, 938 14 of 16

library(jsonlite)
login = URLencode(‘putYourLoginHere’, TRUE)
pswd = URLencode(‘putYourPasswordHere’, TRUE)
Url = sprint
(‘https://%s:%s@s2.boku.eodc.eu/image?dateMin=2016-06-25&dateMax=2016-06-25&utm=33UXP&atmCorr=1’,
login, pswd)
images = fromJSON(Url)
for(i in seq_along(images$imageId)){
localFilename = paste0(images$utm[i], ‘_’, images$band[i], ‘_’, images$resolution[i], ‘.’, images$format[i])
download.file(images$url[i], localFileName, mode = ‘wb’, quiet = TRUE)}

HTTP requests can also be used to activate pre-defined processing services on the server side.
For instance, RGB true or false color composites can be created on-demand as follows:

library(curl)
library(jsonlite)
options(timeout = 600)
login = URLencode(‘putYourLoginHere’, TRUE)
pswd = URLencode(‘putYourPasswordHere’, TRUE)
Url =
sprintf(‘https://%s:%s@s2.boku.eodc.eu/image?dateMin=2016-06-22&dateMax=2016-06-22&utm=
33UXP&atmCorr=1&band=’, login, pswd)
rId = fromJSON(paste0(Url, ‘B04’))$imageId[1]
gId = fromJSON(paste0(Url, ‘B03’))$imageId[1]
bId = fromJSON(paste0(Url, ‘B02’))$imageId[1]
rgbUrl = sprintf(‘http://%s:%s@s2.boku.eodc.eu/RGB?r=%d&g=%d&b=%d’, rId, gId, bId)
curl_download (rgbUrl, ‘33UXP_2016-06-22_true_rgb.tiff’)
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