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Abstract

Water scarcity constitutes a crucial constraint for agriculture productivity. High-throughput approaches in model
plant species identified hundreds of genes potentially involved in survival under drought, but few having beneficial
effects on quality and yield. Nonetheless, controlled water deficit may improve fruit quality through higher concentra-
tion of flavor compounds. The underlying genetic determinants are still poorly known. In this study, we phenotyped
141 highly diverse small fruit tomato accessions for 27 traits under two contrasting watering conditions. A subset of
55 accessions exhibited increased metabolite contents and maintained yield under water deficit. Using 6100 single
nucleotide polymorphisms (SNPs), association mapping revealed 31, 41, and 44 quantitative trait loci (QTLs) under
drought, control, and both conditions, respectively. Twenty-five additional QTLs were interactive between condi-
tions, emphasizing the interest in accounting for QTLs by watering regime interactions in fruit quality improvement.
Combining our results with the loci previously identified in a biparental progeny resulted in 11 common QTLs and con-
tributed to a first detailed characterization of the genetic determinants of response to water deficit in tomato. Major
QTLs for fruit quality traits were dissected and candidate genes were proposed using expression and polymorphism
data. The outcomes provide a basis for fruit quality improvement under deficit irrigation while limiting yield losses.

Key words: Acid and vitamin C content, candidate genes, drought, fleshy fruit quality, genotype by environment interaction,
GWA, QTL, Solanum lycopersicum, sugar.

Introduction

Global water scarcity will constitute a crucial challenge in irrigation strategies and development of drought-adapted
the coming years (Jury and Vaux, 2005). Agriculture, which  crops are among the solutions to solve this dilemma (Fereres
is consuming up to 80% of the worldwide water resources and Soriano, 2006; Costa et al., 2007).

through irrigation, has to move towards a more sustain- Beyond these concerns, deficit irrigation practices constitute
able use of water (Rost er al., 2008). Utilization of advanced a way to manage fruit flavor by exploiting the morphological,
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physiological, and molecular changes (referred to as ‘pheno-
typic plasticity’) occurring in water-stressed plants (Ripoll
et al., 2014). Under water deficit, plants close their stomata
to limit transpiration, impacting resource availability from
photosynthetic sources, which may result in a decrease in
number and/or size of the fruits. On the other hand, a mild
water deficit tends to shift photo-assimilate partitioning
towards synthesis of antioxidant compounds (in particular
vitamin C) involved in defense against stress-induced reac-
tive oxygen species and compatible solutes (including sugars
and acids) involved in osmotic adjustment (Lemoine et al.,
2013; Albacete et al., 2014; Osorio et al., 2014). Evidence for
the efficiency of deficit irrigation to concentrate the major
flavor and nutritional components in fleshy fruits (mainly
sugars, acids, and antioxidants), either by a concentration or
an accumulation effect, was obtained in many species such
as tomato (Kirda et al., 2004; Zheng et al., 2013), grapevine
(Chaves et al., 2007), apple (Leib et al, 2006), and mango
(Duran Zuazo et al., 2011). However, these studies focused on
a small number of genotypes, while responses to deficit irri-
gation seem to be highly genotype dependent (Ripoll ez al.,
2016a, b).

Gene expression studies have revealed hundreds of genes
involved in plant survival under severe water limitation, but
usually associated with detrimental effects on yield under
a realistic drought scenario (Tardieu, 2012; Bac-Molenaar
et al., 2016). These studies focused on model species, mainly
Arabidopsis thaliana (Seki et al., 2002; Des Marais et al.,
2012) and cereals (Langridge, 2006; Barnabas et al., 2007).
Up to now, the identification of the genetic determinants of
drought response from the natural diversity of fleshy fruit
crops remains limited. Quantitative trait locus (QTL) map-
ping might be particularly valuable to address this question
(Des Marais et al., 2013).

Two complementary approaches are commonly applied to
dissect genotype by environment interactions into their under-
lying QTLs (QTL by environment interactions). The first one
consists of computing the effects of a given QTL across the
environmental conditions using multivariate QTL mapping
models (van Eeuwijk et al., 2010; El-Soda et al., 2014b). The
second one uses the construction of composite variables
measuring phenotypic plasticity and univariate mapping
models (El-Soda et al., 2014a). With both approaches, QTLs
can be classified according to the prevalence of their effect
under the different conditions. A QTL is considered ‘consti-
tutive’ when its effect is conserved whatever the environment.
QTLs whose effect is not significant in every environment are
called ‘specific’, while the effect of ‘interactive’ QTLs changes
direction (‘antagonist’) or intensity (‘differential’) according
to the environment. With the availability of a high-through-
put genotyping assay, this classification can be considered
in crop species via conventional linkage mapping (Malosetti
et al.,2007; Verbyla et al., 2014) as well as genome-wide asso-
ciation studies (GWASs) (Korte et al., 2012; Saidou et al.,
2014). A GWAS has the advantage over linkage mapping that
it allows exploration of the genetic diversity and the numer-
ous recombination events present in germplasm collections
and may lead to higher resolution mapping if the LD (linkage

disequilibrium) is low enough in the population (Brachi et al.,
2010; Korte and Farlow, 2013; El-Soda et al., 2015; Pascual
et al., 2016).

In tomato (Solanum Iycopersicum L.), QTLs were mapped
for fruit quality traits measured under optimal watering con-
ditions using linkage (Causse et al., 2001; Saliba-Colombani
et al., 2001; Tieman et al., 2006; Zanor et al., 2009b; Capel
et al., 2015) and association mapping (Xu et al, 2013;
Ruggieri et al., 2014; Sauvage et al., 2014; Sacco et al., 2015).
The studies of QTLs by water regime interactions focused on
introgression lines between the cultivated tomato and its wild
relatives (mainly S. habrochaites and S. pennellii), leading to
low mapping resolution (Semel et al., 2007; Gur et al., 2011;
Arms et al., 2015). Recently, we analyzed QTLs by watering
regime interaction in a segregating population derived from
a cross between a small- and a large-fruited S. lycopersicum
accession (Albert et al., 2016). A total of 56 QTLs were iden-
tified for 19 traits, among which 20% were interactive between
the control and deficit watering regimes. Nevertheless, these
QTLs were limited to the allelic diversity present in the two
parental accessions, and the confidence intervals were broad.

The aims of the present study were (i) to explore the pat-
tern of genotype by watering regime interaction in a GWAS
panel with a broad genetic basis (including S. pimpinellifo-
lium, S. lycopersicum var. cerasiforme, and admixture geno-
types) grown under two different watering regimes in two
locations and phenotyped for 27 traits; (ii) to identify with a
high resolution QTLs and QTL by watering regime interac-
tions in this collection; (iii) to combine the results with those
obtained in the bi-parental progeny to draw an accurate pic-
ture of the genetic variability and the genetic determinants of
tomato response to water deficit; and (iv) to identify candi-
date genes related to the variation of major fruit quality traits
under water deficit by dissecting some of the QTLs.

Materials and methods

Plant material

The population consisted of 141 accessions (2-46 g FW) encom-
passing the genetic diversity of the cultivated small fruit tomato.
Among these, 105 accessions were previously investigated in Blanca
et al. (2015). Preliminary genetic analysis of our collection con-
firmed the genetic structure described by these authors, with clus-
ters reflecting the species and the geographic origin of the accessions
(see Supplementary Fig. SIA-D at JXB online). Ten accessions
were S. pimpinellifolium (SP; closest wild ancestor of the tomato)
originating from Peru and Ecuador. A total of 110 accessions were
S. lycopersicum var. cerasiforme (SLC) originating mainly from
South America. Finally, 21 accessions belonged to a mixed genetic
group mainly including commercial cherry tomatoes and admixed
genotypes between SP, SLC, and S. lycopersicum var. lycopersi-
cum. A description of the accessions and their origin is available in
Supplementary Table S1. The genetic groups (SLC, SP, and mixture)
are used below in the statistical analysis.

Experimental design

The plants were cultivated with the same experimental design as in
Albert et al. (2016). Plants were grown in a heated glasshouse in
INRA Avignon (Avi, France) from March to July 2014 and in an
unheated plastic greenhouse on the experimental site of the seed
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company GAUTIER Semences in Agadir (Aga, Morocco) from
December 2013 to March 2014. Two watering regimes were applied
to the plants: control (C) and drought (D). The control treatment
was set according to ET (evapotranspiration) and the cultural coef-
ficient for tomato under greenhouse conditions (FAO Water, 2015).
A maximal drainage of 25% and a relative humidity of the substrate
of 65% were established in the control pots. Drought treatment was
applied progressively after flowering of the second truss of the earli-
est accession. Watering was first reduced by 25% compared with the
control for 1 week and then reduced by 60% until the end of the
experiments. Relative humidity of the peat substrate was controlled
with GRODAN® moisture probes and monitored between 25% and
30% in drought pots. In both experiments, two plants per watering
regime per accession were randomized in the greenhouse.

Plant and fruit phenotyping

A total of 27 traits were assessed in the GWA population as described
in Albert et al. (2016). Flowering date (Flw, days after sowing), stem
diameter (Diam, mm), leaf length (Leaf, cm), and truss implantation
height (Ht, cm) were measured on each plant both in Avignon (sixth
truss) and in Agadir (fifth truss). Plant fruit number (Nbfruits, all
fruits from the third to sixth truss) was measured only in Avignon.
Fruit quality measurements were carried out on a minimum of 20
mature fruits per accession per watering regime harvested daily on
the third to the sixth truss. All the fruits were weighed (FW, g) and
their firmness was measured with a Durofel device (FIR). Only in
Avignon, fruits were pooled in three groups in each watering regime.
Half of the fruits of each pool were used to assess dry matter weight
(DMW, %), pH, and soluble solid content (SSC, °Brix). From the
second half of the fruit replicates, pericarps were crushed in liquid
nitrogen and assayed for total vitamin C content (VitCFM) accord-
ing to the microplate method described in Stevens et al. (2006), for
sugar content (glucose and fructose) according to the enzymatic
method described in Gomez et al. (2007), and for organic acid con-
tent (malic and citric) according to the HPLC method reported
in Wu et al. (2002). The different metabolite concentrations were
expressed relative to fresh matter (g 100 g! of FM) and relative to
dry matter (g 100 g' of DM). Yield (g per plant) was computed by
multiplying average fruit FW by average fruit number per plant.

Plant genotyping and SNP filtering

The GWA population was genotyped using the Tomato Infinium
Array developed within the SolCAP project (http://solcap.msu.
edu/) (Hamilton et al., 2012; Sim et al., 2012). The maximum rates
of missing data were fixed at 25% per accessions and 10% per SNP.
A minor allele frequency threshold of 0.04 was applied to discard
markers with very rare alleles according to Aulchenko et al. (2007).
After filtering, the set of markers was constituted of 6100 SNPs.
Prior to any genetic analysis, the remaining missing genotypes
were replaced by the allele frequency of the major allele. The SNPs
were renamed according to their positions on the tomato genome
(SL2.50), as SO1_58000085 at base pair 58 000 085 on chromosome
1 (Supplementary Table S2).

Statistical analysis of the phenotypic data

All statistical analyses were performed using R (R Development
Core Team, 2012). Because fewer and different traits were measured
in Agadir experiments, data from both locations were analysed sepa-
rately (Pearson correlations for the common trait means available in
Supplementary Table S4—all significant). Prior to the ANOVAs and
when distributions were skewed, phenotypic data were normalized
using Box and Cox transformations. The ANOVAs were performed
according to the following model:

Y =+ Gr, + G (G)) + Wy + Gr, x W, +Gr; (G, ) X Wi + ey

Y, was the phenotypic value of accession j from genetic group i in
watering regime k, p the overall mean, Gr; the fixed effect of genetic
group i, Gr(G)) the fixed effect of accession j nested in genetic group
i, Wy the fixed effect of watering regime k, and e;;, the residual error
effect. No significant microenvironment pattern was identified and
we chose not to include any spatial effect in the model. When the
interaction GrX W was significant, we computed a Tukey’s post-hoc
test to compare the means.

Then, in both watering regimes, restricted maximum likelihood
estimates of the genetic and residual variances (0°g and o%) were
computed with a second linear model: Yy-n+Gr+Gr{G)+ey (Gr;
fixed, G; and ¢;; random). Broad-sense heritabilities (H*) were calcu-
lated under both watering regimes as the ratio between the genetic
variance and the total phenotypic variance: H*=0’g/6>n;, With
0% ol =02+ 1/nx 0% (with n the number of replicates per accession).
Spearman coefficients estimated the correlations between H* and
0% under drought and control conditions for the same trait.

Average values per accession in each watering regime and location
were used for subsequent analyses. Plasticity was computed on the
accession means as: Aki=(D;—C,;)/C,;, with Aki the plasticity value
for trait k and accession i, Dy, the mean of trait & under drought
condition for accession 7, and C; the mean of trait k under control
condition for accession i.

Construction of kinship and structure matrices

We performed a principal co-ordinate analysis (PCoA) on the geno-
type matrix. The co-ordinates of the accessions on the first three
components are available in Supplementary Table S3 and displayed
graphically in Supplementary Fig. S1. A kinship matrix (K) based
on identity by state among the 6100 SNPs was estimated.

GWA mapping

Average values for each trait following the transformation giving the
least skewed distribution were used in the mapping models. GWASs
were performed using correction for population structure (PCoA)
and modeling genetic variance with the kinship matrix (K). Two
mixed models were implemented.

First, the bivariate multitrait mixed model (MTMM) developed
by Korte et al. (2012) to take into account the correlation structure
of multienvironment data sets and increase the detection power was
implemented. The MTMM approach includes two different tests:
(i) the ‘global test’ compared a model including only the genotype
effect with a null model to identify markers with common effect
between watering regimes (‘constitutive QTLs’); and (ii) the ‘GXW
test’ compared a full model with a model including only the geno-
type effect to identify markers with an interactive effect between the
watering conditions (‘interactive QTLs’). SNPs with a P-value <10
were considered as significant. From each test, the percentage of
variation explained by the marker (individual PVE for each signifi-
cant marker) was computed.

Secondly, the univariate multilocus mixed model (MLMM) devel-
oped by Segura et al. (2012) to increase the detection power for
polygenic characters was used to identify associations for each trait
under each watering regime (‘specific QTLs’) and for the A values
(‘interactive QTLs’). We implemented a new model selection crite-
rion in the MLMM framework to allow for a more permissive detec-
tion threshold to compromise between type I (false-positive) and
type II (false-negative) errors, while limiting the number of cofactors
selected to avoid overestimation of the P-values due to the relatively
small size of the population. Models with a maximum of five cofac-
tors all having a raw P-value <10~ were retained. From the optimal
model selected, the percentage variation explained by the selected
markers (global PVE for all the significant markers) was computed
for each trait.

For all the QTLs identified, we computed phenotypic effects
under both watering conditions as: (Minor allele mean—Major allele
mean)/2. Among the interactive QTLs, we distinguished between
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‘antagonist QTLs’ (effect changing direction according to the water-
ing regime) and ‘differential QTLs’ (effect changing intensity accord-
ing to the watering regime).

Linkage disequilibrium estimation and confidence interval

definition

To define intervals around QTLs, we used a strategy based on LD
between pairs of markers inspired from Cormier et al. (2014). We
used the ? estimator implemented in the package ‘genetics’ (Warnes
and Leisch, 2012) to assess LD between marker pairs. First, we per-
formed LD calculation between 100 000 randomly chosen pairs of
unlinked loci (on different chromosomes). The 95th percentile of the
unlinked-? distribution equal to 0.28 was considered as the critical
LD threshold. Then, for each significant marker, we computed LD
with all the markers upstream and downstream on the same chro-
mosome. We defined the lower (upper) boundary of the interval as
the last marker downstream (upstream) on the chromosome that
presented an LD with the significant marker above the ‘critical LD’
threshold. For the QTLs detected with the MTMM procedure, when
two markers presented a LD higher than the LD threshold, we con-
sidered them as a unique QTL. The number of genes within each
interval was identified from the tomato genome (ITAG2.4).

Comparison between linkage and association QTLs and
identification of candidate genes

For the comparison with the QTLs detected in the recombinant
inbred lines (RILs) grown under the same conditions and pheno-
typed for the same traits (Albert et al., 2016), we projected the QTLs
detected in both populations onto the tomato genome (SL2.50). In
the comparison, we considered related traits as a single trait: pH,
malic acid, and citric acid contents were grouped as ‘acids’, and
SSC, glucose, and fructose contents as ‘sugars’. Besides, whatever
the QTL type (‘interactive’, ‘constitutive’, or ‘specific’) and the loca-
tion of the trial, we considered that a single QTL was present when
the intervals overlapped between RIL and GWA QTLs.

We then focused on the QTLs for vitamin C, sugar, and acid con-
tent including <100 genes to identify putative candidate genes with a
reasonable confidence. Under those QTLs, we refined the set of can-
didates by selecting the genes expressed in tomato fruits according to
gene expression data published by the Tomato Genome Consortium
(2012). Then, we examined their functional annotations and focused
on genes with annotations corresponding to related functions.
Finally, we screened the polymorphism data obtained through the
whole-genome resequencing of four accessions of our GWA popu-
lation chosen to represent a large range of the molecular variabil-
ity present in small fruit tomato (Causse et al., 2013): Cervil (13.3X
sequence depth), Criollo (8.1%), LA1420 (12.5%X), and Plovdiv
(12.2x). First, we considered the nucleotide variants with moder-
ate (non-synonymous polymorphisms in coding regions) to high
(modification of splice sites or start/stop codons) effect on the pro-
tein sequence (detected using SnpEff; Cingolani et al., 2012). Then,
the predicted impacts of the variants on the protein function were
assessed using the web interfaces of PROVEAN (http://provean.jcvi.
org/seq_submit.php) (Choi and Chan, 2015).

Results

Dissection of the phenotypic variations in the GWA
population

In the variance analysis, the part of the total variation attrib-
uted to the genotype effect was predominant (35-80%, all
P-values <0.001) compared with the one attributed to the
genetic group (0-15%, all P-values <0.05) and the watering
regime (0-28%, significant for 17 traits), except for leaf length

in Agadir and stem diameter in Avignon and Agadir (Fig. 1;
Supplementary Table S5). For those vigour traits, the water-
ing regime represented 48—61% of the total variation.

The genetic group by watering regime interactions repre-
sented <2% of the total sum of squares for all traits and was
non-significant for 12 traits. The eight significant traits were
Diam.Aga, Leaf Avi, Leaf. Aga, Ht.Avi, FW.Avi, FW.Aga,
FIR.Aga, and VitCFM.Avi. Tukey’s post-hoc test indi-
cated that these interactions were mainly driven by a sin-
gular behavior of the SP group in response to water deficit
(Supplementary Fig. S2). In contrast, the genotype by water-
ing regime interaction represented 1-19% of the total varia-
tion and was significant for all traits, except Flw.Avi, DMW.
Avi, pH.Avi, and MalicFM.Avi. Interaction partitioning
according to method 1 from Muir et al. (1992) indicated that
the genotype by watering regime interactions were mainly
due to accessions re-ranking across watering regimes (80—
100%) and in a minor way to scale changes (0-20%, data not
shown). The broad-sense heritabilities ranged from 30% for
FructoseFM.Avi.D to 92% for FW.Avi.C. These values were
correlated across watering regimes (r;°=0.80), as well as the
genetic variances (r,2G=0.99), confirming genotype re-rank-
ing across watering regimes (Fig. 1; Supplementary Table S5).

Impact of the water deficit on fruit quality and yield
components

The RIL and GWA populations were grown in Avignon and
Agadir in separate greenhouse trials over the years 2013 and
2014, while ensuring similar watering conditions (control and
drought) (see Albert et al., 2016 for details concerning the
RILs). On average, in both locations, water deficit impacted
plant and fruit traits in the same direction in the GWA and
RIL populations, with a decline in plant vigor, a decrease in
yield, and a higher concentration of the metabolites in fruits
(as a percentage of FM) (Table 1). However, when apply-
ing the drought treatment, FW.Avi was decreased 2-fold and
Nbfruits.Avi 9-fold in the RILs (FW.Avi, —37.7%; Nbfruits,
—21.7%) compared with the GWA accessions (FW.Avi,
—19.0%; Nbfruits, —2.5%). It resulted in a yield decrease reach-
ing the level of —50% in the RILs against —20% in the GWA
accessions. On the other hand, SSC, DMW, and VitCFM were
more strongly enhanced in the RILs (SSC, +26.3%; DMW,
+30.7%; and VitCFM, +26.3%) than in the GWA accessions
(SSC, +12.6%; DMW, +11.4%; and VitCFM, +12.7%).

The correlation between fruit FW in control conditions
(indicator of fruit size) and AFW was strongly negative in
the GWA accessions (Avi, r= —0.55, P=2.70 x 107'%; Aga, r=
—0.52, P=2.65 x 107'%), as was previously noted in the RILs.
This indicated greater FW loss in larger fruited accessions
under drought and increased metabolite contents resulting
mainly from the reduced amount of water in the fruits. Thus,
the differences observed between the populations may mostly
reflect differences in fruit size, with larger fruits among the
RILs (8-61 g, mean=20 g, SD=9 g) compared with the GWA
accessions (2-46 g, mean=13 g, SD=10 g). Nevertheless,
a larger range of variation was observed among the GWA
accessions for AYield.Avi and ANbfruits.Avi compared with
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Fig. 1. Dissection of the total phenotypic variation. For each phenotypic trait, the top figure displays the proportion of each effect in the total sum of
squares: green for watering regime (W); dark blue for genetic group (Gr); light blue for genotype nested in genetic group [Gr(G)]; black for the interaction
genetic group by watering regime (GrxW); gray for the interaction genotype by watering regime [Gr(G)xW], and yellow for the residual. The table shows
the significance of the P-value for the different effects: ***P<0.001, **P=0.001-0.01, *P=0.01-0.05, and ns >0.05. ‘H2 C’ and ‘H2 D’ indicate the broad-

sense heritabilities in control and drought conditions, respectively.

the RILs (Fig. 2; Supplementary Figs S3, S4). In particular,
55 accessions exhibited an increased yield under drought in
the GWA population against only two among the RILs. No
noticeable geographic origin or genetic group was obvious
among these 55 accessions of the GWA population (10 mix-
ture, 43 SLC, and 2 SP).

When plotting ANDbfruits against ASSC in regard to
fruit size and AFW.Avi, the RIL and GWA plants pre-
sented different patterns (Fig. 2). Among the RILs, only
18 accessions were present in the top right quarter of the
plot corresponding to accessions with increased SSC and
Nbfruits under water deficit. Besides, all the top right
quarter RILs had a negative AFW.Avi (blue and purple
color) meaning a decreased FW under drought compared
with the control condition for these accessions. On the
other hand, 40% of the GWA accessions were present in
the top right quarter of the plot and six of them had a
positive AFW.Avi (magenta and red color) and small to
medium fruit size (FW in control from 2 g to 28 g). Similar
figures were obtained when considering fruit ascorbate

(Supplementary Fig. S5), malic acid, and citric acid con-
tents (Supplementary Fig. S6).

QTL and QTL by watering regime interactions identified
by association mapping

The MTMM mapping approach detected 53 unique associa-
tions for 15 out of 27 phenotyped traits in the GWA pop-
ulation with P-values <10 and percentages of variation
explained varying from 5.45% to 18.22% (individual PVE
per marker) (Supplementary Table S6). A total of 49 associa-
tions were ‘constitutive’ irrespective of the watering regime.
Among these associations, the most significant were observed
for malic acid content, with P-values comprised between
2.40 x 10% and 1.33 x 107" in the global test (chromosomes
6 and 7) (Supplementary Fig. S7). Four associations were
declared ‘interactive’ between the watering regimes, two for
Flw.Avi (chromosomes 9 and 11) and two for GlucoseDM.
Avi (chromosomes 4 and 5), with P-values ranging from
1.48 X 107 to 7.04 x 107 (Fig. 3).
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Table 1. Average relative difference between control and drought
conditions for the fruit and plant traits measured in the GWA and
RIL populations (%)

The average relative differences were computed as: (Mean pough—
Mean Contro\)/Mean Control*

Plant traits GWA RIL?
Fiw.Avi 0.0 -0.2
Flw.Aga = +0.6
Diam.Avi —
Diam.Aga

Leaf. Avi — —
Ht.Avi -5.1 -5.6
Ht.Aga 4.2 +2.4
Nbfruits.Avi -2.5 -21.7
Fruit traits

Ay |
FW.Aga

FIR.Avi -1.0 +3.4
FIR.Aga +3.5

VitCDM.Avi +0.6

SSC.Avi +12.6

GlucoseFM.Avi +13.8 NA
FructoseFM.Avi +17.7 NA
GlucoseDM.Avi +0.5 NA
FructoseDM.Avi +4.3 NA
pH.Avi —1.3 -3.2
CitricFM.Avi +10.7 NA
MalicFM.Avi -3.6 NA
CitricDM.Avi -1.2 NA
MalicDM.Avi -14.8

Vit e e

aData for the RIL population were reported in Albert et al. (2016).

DM, metabolite concentrations expressed relative to dry matter; FM,
metabolite concentrations expressed relative to fresh matter; NAtraits
not measured in the RIL population.

Color scale:

<25 -25to-5-5t05 5to25 >25

The MLMM approach identified a total of 124 asso-
ciations (P <1 x 107 for the 27 studied phenotypic traits.
Among them, 94 associations were ‘specific’ (39 and 55 to
drought and control conditions, respectively), 23 ‘interac-
tive’ (detected on A values) and seven ‘constitutive’ (detected
under both conditions; Supplementary Tables S7, S8). The
explained percentages of phenotypic variation ranged from
8.16% (one SNP for Leaf.Aga.C) to 63.85% (six SNPs for
SSC.Avi.D) (global PVE for all the significant markers for a
trait). Constitutive and/or specific associations were observed
for all the traits. The most significant P-values were associated
ith MalicFM.Avi.D (S06_44955568: 1.88 x 107'?), MalicDM.
Avi.D (S06_44955568: 1.27 x 107'7), pH.Avi (S04_66307772:
9.95x 107", Fig. 3), and SSC.Avi.C (S10_64149793: 5.96 x 10
19). The 23 interactive SNPs were associated with 11 out of
27 traits. Their P-values ranged from 7.59 x 107 (AFIw.Avi:

S06_36868039) to 2.75 x 107" (AFW.Aga: S11_50391249,
Supplementary Fig. S8).

When gathering the associations obtained with MLMM and
MTMM, 20 associations were detected in common (same trait
and same QTL type), resulting in a total of 157 associations for
the 27 traits (Supplementary Tables S6-S8). Sixteen associations
were detected between twice and three times with related traits
(‘acid’ and ‘sugar’ traits) and/or for the same trait in the two
locations. Thus, a total of 141 different associations were identi-
fied, spread unevenly over the genome (Table 2). Chromosomes
carried out six (chromosomes 7 and 8) to 23 associations (chro-
mosome 2; Supplementary Fig. S7). Thirty percent of the asso-
ciations were ‘constitutive’ (44/141), 30% were ‘control specific’
(41/141), 22% were ‘drought specific’ (31/141), and 17% were
‘interactive’ (25/141). Among the interactive associations, 16
showed ‘differential’ effects (effect intensity changing according
to watering regime) whereas nine presented ‘antagonist’ effects
(effect direction changing according to watering regime). Up to
14, 24, and 28 different associations were mapped for vitamin
C, ‘acid’, and ‘sugar’ content in fruit, respectively.

Confidence intervals and candidate gene selection
under QTLs for fruit quality traits

We observed large differences in size and number of under-
lying genes when drawing confidence intervals around the
association peaks. Eighteen QTLs mapped around the
weakly recombinant centromeres covered >10 Mbp and
included between 410 and 2573 genes, whereas 84 QTLs cov-
ered <5.5 Mbp and encompassed between one and 97 genes
(Supplementary Fig. S9). In the RILs grown in the same con-
ditions (Albert et al., 2016), only four QTLs covered <100
genes on a total of 56 QTLs. The comparison of the QTL
positions between the RIL and GWA populations resulted in
a total of 11 QTLs common to both populations (Table 2),
whereas 45 were specific to the RILs and 130 to the GWA
population (Supplementary Fig. S10).

To propose putative candidate genes, we focused on QTLs
for vitamin C, sugar, and acid contents in fruit including <100
genes (42 among 66 QTLs) and selected in their intervals
genes showing expression in the fruits according to the data
from the Tomato Genome Consortium (2012). This reduced
the gene list to screen for between one and 87 genes depend-
ing on the QTL intervals. Annotations were analyzed to iden-
tify genes with functions related to vitamin C, sugar, or acid
metabolism under ‘constitutive’ QTLs and functions related
to primary metabolism and/or defense against abiotic stress
under ‘specific’ and ‘interactive’ QTLs. A total of 41 puta-
tive candidates were proposed for three ‘constitutive’ QTLs
(Table 3) and 15 ‘interactive’ or ‘specific’ QTLs (Table 4). Of
those genes, 22 were reported to have DNA polymorphisms
in the four accessions of our GWA population which were
re-sequenced by Causse et al. (2013). The polymorphisms in
four of those genes were predicted to change the amino acids,
affecting biological function of a protein.

From the 18 dissected QTLs, ‘SSC.Avi_9.1’ (control specific)
probably corresponded to the cloned QTL ‘Brix9.2.5’ control-
ling SSC in fruit and associated with a polymorphism in a cell
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GWA population

nb accessions
20 30 40 50 60
! 1 ! | ]
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|

-15 -10 -05 00 0.5 1.0 1.5

AYield.Avi

0.8

AFW.Avi

05 -0.25 00 025 05

04 06
1

ASSC.Avi
0.2

-0.2 00

-0.5 0.0 0.5 1.0 1.5

ANbfruits.Avi

RIL population

nb accessions
20 30 40 50 60
! 1 ! | ]

10
|

-15 -10 -05 00 0.5 1.0 1.5

AYield.Avi

AFW.Avi

05 025 0.0 025 0.5

ASSC.Avi
04 02 00 02 04 06 08

0.5 1.0 1.5

ANDbfruits.Avi

Fig. 2. Impact of water deficit on yield, fruit number, fruit FW, and soluble solid content (SSC) in fruit. (A) and (B) Histograms of yield plasticity (AYield) in
the GWA and RIL populations, respectively. (C) and (D) Relationship between plasticity of fruit number (ANbfruits) and plasticity of SSC (ASSC), in view
of FW plasticity (AFW), in the GWA and RIL populations, respectively. In the bottom figures, the color scale indicates the variation in FW plasticity: blue
for values below —0.5, purple for values between -0.25 and O, magenta for values between 0 and 0.25, and red for values >0.5. The size of the points is

proportional to the FW in control watering conditions.

wall invertase gene (Solyc09g010080: Lin5) (Fridman et al.,
2000) (Table 4). A second QTL (‘Malic.Avi_6.3’) co-localized
with a previously mapped QTL for acid content in fruit in
different tomato populations and for which two ‘aluminum-
activated malate transporter-like’ genes (Solyc06g072910
and Solyc06g072920) were pointed out as putative candidate
genes by Sauvage et al. (2014) (Table 3). Although these two
genes presented promising polymorphisms between our four
re-sequenced accessions, they displayed a very low expression
in fruit (Tomato Genome Consortium, 2012; personal data)
and will need further validation to be clearly associated with
the phenotypes.

Ten QTLs co-localized with loci identified in the RILs (Albert
et al., 2016, control and drought conditions) and/or in the three
tomato population analyzed by Pascual et al (2016) (RIL,
GWA, and MAGIC, control conditions) but for which no can-
didate gene was proposed until now, while six were present in
genomic regions where, to the best of our knowledge, no QTLs
for related traits were mapped thus far. In the intervals of four of
them, controlling vitamin C and fructose content in a drought-
specific manner (‘VitCDM. Avi_1.1’, ‘FructoseDM. Avi_4.1’, and
‘FructoseDM. Avi_10.1’), three genes coding for ‘chaperone pro-
teins dnaJ’ were identified (Solyc01g105340, Solyc04g009770,
and Solyc10g078560; Table 4). Five more genes coding for

‘heatlcold shock proteins’ (Solyc01g111280, Solyc01g111300,
Solyc01g111750, Solyc04g011440, and Solyc04g011450) were
identified under antagonist and drought-specific QTLs for
fructose and malic acid content (‘FructoseDM.Avi 1.1’ and
‘MalicDM. Avi_4.1’; Table 4).

Three constitutive QTLs, the first two on chromosome 7 con-
trolling glucose and malic acid content and the third on chro-
mosome 10 controlling fructose content, seemed particularly
promising. The first two (‘GlucoseDM.Avi_7.2° and ‘Malic.
Avi.7_2" in Table 3) shared a common interval including a gene
coding for a ‘phosphoenolpyruvate carboxylase’ (Solyc07g062530:
PEPC) and a gene coding for a ‘malate dehydrogenase’
(Solyc07g062650). The PEPC gene presented a non-synon-
ymous polymorphism with a predicted impact on the protein
function when comparing the four re-sequenced accessions. The
third one (‘FructoseDM.Avi_10.2" in Table 3) contained two
genes coding for ‘cell wall invertases’, Lin6 (Solycl10g083290)
and Lin8 (Solyc10g083300), presenting three non-synonymous
polymorphisms between the re-sequenced accessions.

Discussion

To assess the extent of natural variation in tomato responses
to water deficit, we phenotyped a collection of 141 small
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Fig. 3. Focus on QTLs detected for fruit quality traits at the bottom of chromosome 4. (A) Manhattan plot displaying the —log10(P-values) (y-axis) over
genomic positions (x-axis) in a window of 1.46 Mbp corresponding to the common confidence interval of QTLs detected for VitCDM.Avi (MLMM control
condition, blue), GlucoseDM.Avi (MTMM GxW test, purple), GlucoseFM.Avi (MLMM A, red), and pH.Avi (MLMM control, green) on chromosome 4 in
the GWA population. P-values <107* were considered as significant (4 in logit values). The pairwise LD heatmap was drawn using the R package ‘snp.
plotter’ (Luna and Nicodemus, 2007). (B) Box-plot of the allelic effects for the four associated markers: S04_65828262 (VitCDM, ‘control specific’),
S04_65907012 (GlucoseFM, ‘antagonist’), S04_65908608 (GlucoseDM, ‘antagonist’), and S04_6630772 (pH, ‘control specific’). Blue: allelic effects
under control conditions. Red: allelic effects under drought conditions.
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fruit accessions for plant and fruit traits, under control and
drought conditions. Using 6100 SNPs genotyped over the
genome, we achieved association mapping using univariate
and bivariate mixed models. QTLs, QTL by watering regime
interactions, and putative candidate genes were identified.
This study, in combination with the results reported in RILs
grown under the same watering conditions, contributed to a
first detailed characterization of the genetic variations and
genomic determinants of response to water deficit in tomato.

Improving fruit quality while maintaining yield in tomato
under water limitation

Deficit irrigation strategies aiming to reduce non-beneficial
water consumption while maximizing fruit quality and mini-
mizing yield losses are studied in horticultural production to
address environmental issues and market expectations simulta-
neously. It seems particularly relevant for tomato since consum-
ers complain about lack of taste in the new varieties (Bruhn
etal., 1991; Causse et al., 2010). In our trials, after a decrease in
60% of the water supply throughout plant growth, we observed
on average reduced plant vigor and yield, while fruit quality was
improved or stable depending on whether metabolite concentra-
tions were expressed relative to FM or DM. This antagonistic
relationship between quality and yield performances confirmed
the results obtained in RILs (Albert et al., 2016) and the ten-
dencies reported by other authors in tomato (Guichard et al.,
2001; Kirda et al., 2004; Zheng et al., 2013), peach (Miras-
Avalos et al., 2013), or grapevine (Santesteban and Royo, 2006).

Nevertheless, 50 accessions (with small to medium fruit size)
had both improved fruit quality and maintained yield (or even
improved) under water deficit compared with the control water-
ing regime, although their vigor (measured through leaf length
and stem diameter) was decreased. These accessions empha-
sized the opportunity to increase metabolite content in tomato
fruits using deficit irrigation without achieving parallel limita-
tion of the yield. In contrast, no RIL presented such a response
to the water deficit treatment, and the increased sugar and acid
contents observed reflected mainly concentration effects due to
a decreased amount of water in fruit (Albert ef al., 2016).

The large phenotypic variations observed mainly resulted
from genotype effects (35-80%) and less from genotype by
watering regime interactions (1-19%). The watering regime
effect represented a significant part of the total phenotypic
variability (up to 40%) only for stem diameter and leaf length.
This suggests that tomato plants buffer the negative effect of
water limitation by limiting their vegetative growth and real-
locating the photo-assimilates to the fruits (Lemoine et al.,
2013; Osorio et al., 2014).

Benefits and limits of GWA to dissect the genetic
architecture of response to water deficit in tomato

Association studies aiming to identify alleles whose effects
are modulated by environmental conditions are still few in
plants. To date, such studies were only reported in Arabidopsis
thaliana (Li et al., 2010; Morrison and Linder, 2014; El-Soda
et al., 2015; Sasaki et al., 2015), and maize (Saidou ez al.,

2014). Explicitly accounting for ‘QTL by environment inter-
actions’ in QTL studies can help to discover novel genes that
act synergistically with the environment, potentially leading
to the identification of superior genotypes according to the
environments (Des Marais et al., 2013).

We identified a total of 141 QTLs with low to medium
effects. The phenotyped traits were strongly polygenic
and justified the use of a multilocus GWA mapping model
(MLMM: Segura et al., 2012). In particular, up to 14, 24, and
28 different QTLs were identified for vitamin C, acid, and
sugar content, respectively. Among the loci identified, 51%
were specific to one watering condition, 31% were constitu-
tive and detected whatever the condition, and 18% were inter-
active between the watering conditions. These proportions
of QTL types are relatively similar to those reported in the
RILs grown in the same conditions (Albert et al., 2016) and
in the study of Gur ez al. (2011) on tomato introgression lines.
However, while most of the interactive QTLs identified in the
RILs presented antagonist effects, a majority of differential
effects was observed in the GWA study. These discrepancies
between both populations may reflect their different genetic
basis: the RILs segregate between a small- and a large-fruited
accession, whereas the GWA collection focuses on the poly-
morphisms between several diverse small-fruited accessions.

Because of the large number of markers to be used in
GWA analysis, it is not straightforward to choose an appro-
priate significance threshold controlling for false positives
while maintaining the statistical power. We thus opted for a
lowered threshold of 10*. If we used Bonferroni correction
usually applied to exclude false positives, we should have used
a significance threshold of 10~°. This would reduce the num-
ber of associations detected to 69 (nine ‘interactive’, 44 ‘spe-
cific’, and 16 ‘constitutive’). With this stringent threshold,
we would not have recovered some well-described tomato
QTLs, such as, for example, FW11.2 and FW11.3 on chro-
mosome 11 (fruit FW QTLs: Huang and van der Knaap,
2011; Illa-Berenguer et al., 2015). The need for more permis-
sive thresholds in GWASSs is often claimed. Strategies based
on enrichment tests using known candidate genes from the
literature to evaluate the false-positive rate and choose the
appropriate threshold values are proposed (Atwell er al.,
2010; Sasaki et al., 2015). However, these approaches are lim-
ited to well-annotated model genomes and simple traits with
already well-described genetic architecture. Another solution
to solve the multiple testing issues could be to use haplotypes
instead of individual markers to minimize the number of
tests, especially in species where the LD spans large genomic
regions (Bader, 2001; McClurg et al., 2006). This has already
been successfully applied in crops (Gawenda et al., 2015) and
would be worth testing in tomato, but may need more mark-
ers to identify haplotypes correctly.

The projection of the QTL intervals onto the physical map
of tomato allowed the comparison of QTL positions between
the RIL and GWA population even though they were geno-
typed with different markers. This projection resulted in a
total of 11 QTLs conserved between both populations. On
the other hand, 45 were specific to the RIL population and
130 to the GWA population. This may seem like a relatively
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small number of common QTLs between the populations,
but the RIL parental accessions reflected only a limited frac-
tion of the genetic variation present in the GWA population.

Searching for candidate genes under QTLs for fruit
quality traits

Our approach, combining linkage and association mapping,
was powerful in recovering previously identified loci associ-
ated with fruit quality. As an example, we mapped a QTL
associated with fruit fructose content on chromosome 9
which included in its interval the gene Lin5 (Solyc09g010080)
known to encode a cell wall invertase affecting tomato fruit
sugar content (Fridman ez al., 2000). Apart from recovering
previously described genes, we identified QTLs in genomic
regions where QTLs associated with related traits were previ-
ously identified in other populations but for which no candi-
date gene was proposed until now (probably because of too
large confidence intervals) or in genomic regions where, to
the best of our knowledge, no QTL was reported for related
traits thus far. The confidence intervals around the asso-
ciation peaks obtained using an LD-based approach were
mostly shorter (1-97 genes for 84 intervals) compared with
the intervals obtained using the RILs or introgression lines
(Semel et al., 2007; Gur et al., 2011; Arms et al., 2015).

Combining publicly available expression data (Tomato
Genome Consortium, 2012), exonic variants gained from re-
sequencing of four accessions of the GWA collection (Causse
et al., 2013) and functional analysis of the gene annotations
in the confidence intervals, we proposed 41 putative candidate
genes under three constitutive QTLs and 15 interactive or
specific QTLs. Under the interactive and specific QTLs, genes
related to protein protection (chaperone and heat/cold shock
proteins), water and solute transport (aquaporins and others
transporters), sugar metabolism (sucrose phosphate synthase
and invertases), and hormonal signaling (auxin, gibberellin,
and ethylene) were identified and may play a crucial role in
responses to water deficit (Wang et al., 2003; Shinozaki and
Yamaguchi-Shinozaki, 2007). Some of them presented poly-
morphisms with predicted impacts on the protein function
when comparing the re-sequenced accessions and constitute
promising targets for future functional validations.

On the bottom of chromosome 7, two QTLs, controlling
glucose and malic acid content, shared a common interval
including a gene coding for a ‘phosphoenolpyruvate carboxy-
lase’ (PEPC) and a gene coding for a ‘malate dehydrogenase’.
The PEPC gene presented a non-synonymous polymorphism
with a predicted impact on the protein function in the four re-
sequenced accessions. As the PEPC is catalyzing the carbox-
ylation of the phosphoenolpyruvate arising from glycolysis
into oxaloacetate which is then converted into malate by the
malate dehydrogenase or enters the Krebs cycle (Guillet et al.,
2002), this gene constitutes a likely candidate. Nevertheless,
although if the ‘malate dehydrogenase’ gene did not pre-
sent any exonic SNPs in our data, it remains an interesting
candidate as our four re-sequenced accessions probably did
not represent the full genetic diversity present in the GWA
population, and the phenotypic variations observed may

result from regulation change more than modifications of the
protein. On the bottom of chromosome 10, a QTL interval
controlling fructose content contained two genes coding for
‘cell wall invertases’ (Lin6 and Lin8). Both genes presented
non-synonymous polymorphisms between the re-sequenced
accessions. In contrast to Lin5 on chromosome 9, Lin6 and
Lin8 have not yet been associated with variation in sugar con-
tent in fruit. Cell wall invertases are extracellular hydrolases
which cleave sucrose to glucose and fructose, which are then
transported into the cell. They play a central role in regulat-
ing, amplifying, and integrating different signals that lead to
the source—sink transition in plants.

Subsequent analyses based on either fine mapping around
the candidate genes using target re-sequencing approach or
functional validation, for example by genome editing, could
clarify the involvement of these genes in the phenotypic vari-
ations observed.

Supplementary data

Supplementary data are available at JXB online

Fig. S1. Structuration observed in the GWA population
based on principal co-ordinate analysis (PCoA) on data of
6100 SNPs.

Fig. S2. Box-plot of the mean distribution for the nine
traits that showed a significant genetic group by watering
regime interaction in the ANOVAs.

Fig. S3. Distribution of the accession means for plant traits
in the GWA population grown under two watering regimes..

Fig. S4. Distribution of the accession means for fruit traits
in the GWA population grown under two watering regimes.

Fig. S5. Relationship between plasticity of fruit number
and plasticity of vitamin C content in fruit, in view of the fruit
FW plasticity, in the GWA and RIL populations, respectively.

Fig. S6. Relationship between plasticity of fruit number
and plasticity of citric and malic acid content in fruit (rela-
tive to FW), in view of the fruit FW plasticity, in the GWA
population.

Fig. S7. Physical map of the QTLs detected in the GWA
and RIL populations.

Fig. S8. Example of co-localizations between GWA and
RIL QTLs for soluble solid content and fruit FW on the bot-
tom of chromosome 11.

Fig. S9. Confidence interval (CI) sizes and numbers of
genes underlying the QTLs in the GWA and RIL populations.

Fig. S10. Venn diagram representing common QTLs
between the RIL population (linkage mapping) and the GWA
population (association mapping).

Table S1. Genetic and phenotypic description of the acces-
sions in the GWA population.

Table S2. Genotypic data in the GWA population.

Table S3. Principal co-ordinates analysis in the GWA
population.

Table S4. Correlations between Avignon and Agadir trials.

Table S5. Effect of watering regime (1), genetic group
(Gr), genotype nested in genetic group [Gr(G)] and the inter-
actions [GrX W and Gr(G)X W] on the plant and fruit traits
measured in the GWA population.
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Table S6. QTLs identified under both watering regimes
(‘Control’ and ‘Drought’) using the bivariate multitrait
mixed model (MTMM) genome-wide association mapping
approach.

Table S7. QTLs identified under each watering regime
(‘Control’ and ‘Drought’) using the univariate multilocus
mixed model (MLMM) genome-wide association mapping
approach.

Table S8. QTLs identified for plasticity data each [(Drought—
Control)/Control] using the univariate multilocus mixed model
(MLMM) genome-wide association mapping approach.
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