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Chapter 1
Optimized High Order Explicit
Runge-Kutta-Nyström Schemes

Marc Duruflé and Mamadou N’diaye

Abstract In this paper, we are interested in solving a non-linear ordinary differential
equation (ODE) of the type:

y′′ = f (t,y).

For this ODE, high-order Runge-Kutta-Nyström have been proposed (see [1]). They
are attractive because they are explicit, one-step methods and can be applied to a
non-linear operator f . In [2], the stability condition (CFL) associated with these
schemes have been studied for order 3, 4 and 5. In this paper, we extend this study
for higher orders, and propose optimized coefficients with respect to the stability
condition. With the obtained optimal CFL, these schemes are of practical interest
for stiff problems where the stability condition is restrictive. These schemes are
used for solving non-linear Maxwell’s equations in 1-D:

ε∞

c2
∂ 2E
∂ t2 + curl(curlE)+

γ

c2
∂ 2

∂ t2

(
|E|2E

)
= 0.

The non-linearity is an instantaneous Kerr effect, where γ is the non-linear suscep-
tibility. High-order finite elements are used in space to obtain the ODE to be solved.

We are interested in the following ordinary differential equation (ODE) y′′(t) = f (t,y(t)), ∀t > 0,
y(0) = y0,
y′(0) = y′0.
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2 Marc Duruflé and Mamadou N’diaye

The unknown y is vectorial, its size is equal to the number of the degrees of free-
dom of the system, the functional f is known and describes the dynamics of the
system. This kind of ordinary differential equation appears naturally in mechanical
systems when the damping terms are neglected, and also in non-linear wave equa-
tion. In order to solve this kind of ODE, Runge-Kutta-Nyström schemes have been
introduced by Hairer ([1]). A RKN (Runge-Kutta-Nyström) scheme is a one-step
scheme, it computes a discrete sequence yn and y′n, which are approximations of y
and y′ at time tn = n∆ t. ∆ t is called the time step, it is assumed constant in this
paper. A step of the RKN scheme is performed as follows:

ki = f
(
tn + ci ∆ t, yn + ci ∆ t y′n +∆ t2

∑ j āi, j k j
)
,

yn+1 = yn +∆ t y′n +∆ t2
∑ j b̄ j k j,

y′n+1 = y′n +∆ t ∑ j b j k j,

ki are intermediate vectors used to compute yn+1 and y′n+1. The coefficients āi, j,ci,bi, b̄i
must satisfy the so-called order conditions such that the scheme is of order r (see
[1] for a detailed description of order conditions). When it is not mentioned, the
subscripts i and j vary between 0 and s− 1 where s is the number of stages of the
scheme. In this paper, only explicit schemes will be studied, the matrix Ā (associated
with coefficients āi, j) is lower triangular, that is to say:

āi, j = 0, if j ≥ i.

Remark 1.1. If we consider a classical Runge-Kutta scheme of order r (with arrays
A,b and c), it is sufficient to take

Ā = A2, b̄ = AT b,

to obtain a Runge-Kutta-Nyström scheme of order r.

1.1 Stability condition

The stability analysis is conducted for a linear functional f , which is then replaced
by a matrix A:

f (t,y) = Ay.

By replacing A by its symbol Â (which will be equal to an eigenvalue of A), a step
of RKN scheme can be written as:[

yn+1
wn+1

]
= D(∆ t2Â)

[
yn
wn

]
where D(∆ t2Â) is a 2x2 matrix depending on coefficients āi, j,bi,ci, b̄i. Let us note:
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z = ∆ t2Â.

The vector wn is equal to:

wn =
y′n

∆ t Â
.

The RKN scheme is equal to:
∆ t2ki = zyn + ci z2 wn + z∑ j āi, j ∆ t2k j,

yn+1 = yn + zwn +∑i b̄i ∆ t2ki,

wn+1 = wn +
1
z ∑i bi ∆ t2ki.

From these relations, it can be remarked that the entries of the 2x2 matrix D(z) are
polynomials in z. The amplification factor G(z) is defined as:

G(z) = Spectral radius of D(z)

The stability condition is computed numerically by searching the first z such that

G(z)> 1.

The square root of this first z is defined as the CFL number:

CFL number = minz≤0{
√
−z such that G(z)> 1}.

1.2 Numerical method to compute the CFL

The eigenvalues of the 2×2 matrix D(z) are directly computed as:

λ (D(z)) =
trace(D(z))±

√
trace(D(z))2−4det(D(z))

2
.

The amplification factor G(z) is the maximal modulus of these two eigenvalues.
From the computation of this amplification factor, the algorithm used to compute
the CFL is detailed in table 1.1. The computation of local maxima zm and of the
final z such that G(z) = 1+ ε is performed by using a bisection method. The first
float z0 is chosen small (we have chosen z0 =−10−5), this first verification is needed
because it happens that the amplification factor is decreasing at the origin, ie:

G′(0)< 0.

Hence for very small negative values of z, this amplification factor will be greater
than one, leading to an unstable scheme. In this case, the time scheme is therefore
unconditionnally unstable. The step ∆zk is chosen in an interval (we have selected
10−5≤∆zk ≤ 1) such that the intersection of the two complex conjugate eigenvalues
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Table 1.1 Algorithm used to compute the CFL number of RKN schemes

If G(z0)> 1+ ε

return 0
End If
z = z0
While G(z)<= 1+ ε

Adapt ∆zk such that any intersection of roots is not missed
If G(z)> max(G(z−∆zk),G(z+∆zk−1)) Then

Compute the local maximum zm in the interval [z−∆zk,z+∆zk−1]
If G(zm)> 1

z = zm
Terminate the main while loop

End If
End If
z = z−∆zk

End while
Compute z such that G(z) = 1+ ε in the interval [z−∆z,z] by bisection method
Return z

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0√−z

0.0

0.5

1.0

1.5

2.0

Am
pl

ifi
ca

tio
n 

fa
ct

or

Fig. 1.1 Amplification factor G(z) versus
√
−z for a 6-th order RKN scheme, with the two free

parameters equal to 0.0816464646464646 and 0.968757575757576.

is not missed. This intersection occurs when the two eigenvalues get close to the
real axis or when they already lie in the real axis. In the figure 1.1, the amplification
factor is displayed for a 6th order Runge-Kutta-Nystrom method. In this case, the
CFL is equal to 2.858 because of the presence of a local maxima above 1. It has been
observed that usually the first local maximum (if present) occurs around

√
−z≈ π ,

the second maximum would occur if present around 2π , etc. In the figure 1.2, we
have displayed the trajectory of the two eigenvalues of D(z) for

√
−z ∈ [−4,0].

These two eigenvalues start from the point (1,0) they describe an approximate circle
to reach a point close to (−1,0). Then they move away from each other in the
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Fig. 1.2 Trajectory of the two eigenvalues of D(z) for
√
−z ∈ [0,4] for a 6-th order RKN scheme,

with the two free parameters equal to 0.0816464646464646 and 0.968757575757576.

real axis, one reaches the local maximum, and the two eigenvalues get back until
reaching another intersection in the real axis. Finally, they are describing a kind of
hyperbole in the complex plane. With a variable ∆zk, we are able to compute quickly
the CFL with a reasonable number of evaluations of the amplification factor. Finally,
ε is taken equal to 2 ·10−13 for a double precision computation.

1.3 Optimization with a minimal number of stages

In this section, coefficients of Runge-Kutta schemes are optimized to maximize the
CFL number, we consider here only schemes with a minimal number of stages (s).

1.3.1 Order 2 (s = 1)

For example, to obtain a second-order scheme, it is sufficient to satisfy

∑
i

bi = 1, ∑
i

bici =
1
2
, ∑

i
b̄i =

1
2
.

Therefore, a one-stage scheme can be obtained:

Ā = (0) , c =

(
1
2

)
, b = (1) , b̄ =

(
1
2

)
,
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this scheme can be written as:
k0 = f

(
tn +

∆ t
2
, yn +

∆ t
2

y′n

)
,

yn+1 = yn +∆ t y′n +
∆ t2

2
k0,

y′n+1 = y′n +∆ t k0.

This scheme only needs an evaluation of f (i.e. a matrix-vector product if f is lin-
ear), its cost is equivalent to the classical second-order scheme presented in the first
section. When f is linear (replaced by a matrix A), the stability condition of this
scheme is:

∆ t ≤ 2√
||A||2

.

This is exactly the same CFL as the classical second-order scheme:

yn+1−2yn− yn−1

∆ t2 = f (tn,yn).

Therefore, the second-order Runge-Kutta-Nyström (RKN) scheme is optimal.

1.3.2 Order 3 (s = 2)

A third-order RKN scheme with 2 stages is given as:

c0 = α, c1 =
2−3α

3−6α
,

b0 =

c1

2
− 1

3
c0(c1− c0)

, b1 = 1−b0,

b̄0 =

c1

2
− 1

6
c1− c0

, b̄1 =
1
2
− b̄0,

ā1,0 =
1

6b1
,

α is a free parameter, an optimal CFL of 2.498 is obtained for

α =
3−
√

3
6

.
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1.3.3 Order 4 (s = 3)

A fourth-order RKN scheme with 3 stages is given as:

c0 = α, c1 =
1
2
, c2 = 1−α,

b0 =
1

6(1−2α)2 , b1 = 1−2b0, b2 = b0,

b̄0 = b0(1− c0), b̄1 = b1(1− c1), b̄2 = b2(1− c2),

ā1,0 =
(1−4α)(1−2α)

8(6α(α−1)+1)
, ā2,0 = 2α(1−2α), ā2,1 =

(1−2α)(1−4α)

2
,

α is a free parameter an optimal CFL of 3.939 is obtained for

α =
1

4
(
1+ cos(π

9 )
) .

1.3.4 Order 5 (s = 4)

A family with two parameters is given in [3]. An optimal CFL of 2.908 is obtained
for

α =
4

11+
√

16
√

10−39
, β =

165α2−195α +50−
√

5(45α4 +90α3−105α2 +36α−4)
225α2−240α +60

.

The ci are given as

c0 = 0, c1 = α, c3 = β , c2 =
12−15(α +β )+20αβ

15−20(α +β )+30αβ
.

For orders 3, 4, 5, we have found the same optima as in [2]. From orders 6, the
optima are new and only computed numerically.

1.3.5 Order 6 (s = 5)

A family with one parameter is given in [3]. An optimal CFL of 3.089 is obtained
for

α ≈ 0.22918326

The ci are given as
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c0 = 0, c1 = α, c2 =
1
2
, c3 = 1−α, c4 = 1.

Another family with two parameters can also be constructed. The optimal CFL is
also equal to 3.089 for this family.

1.3.6 Order 7 (s = 7)

A family with four free parameters is given in [3]. A nearly optimal CFL of 7.0875
is obtained with the following parameters:

α0 = 0.110451398065702, α1 = 0.173816271367107

α2 = 0.459433163929695, α3 = 0.652002232653235

The ci are given as

c0 = 0, c1 =α0, c2 =α1, c3 =α2, c4 =α3, c5 =
− 1

7 +
σ c

1
6 −

σ c
2

5 +
σ c

3
4 −

σ c
4

3

− 1
6 +

σ c
1

5 −
σ c

2
4 +

σ c
3

3 −
σ c

4
2

, c6 = 1.

1.3.7 Order 8 (s = 8)

A family with four free parameters is given in [3]. A nearly optimal CFL of 7.8525
is obtained with the following parameters

α0 = 0.135294127286225, α1 = 0.24015308384744

α2 = 0.453046953126355, α3 = 0.695039606659698

The ci are given as

c0 = 0, c1 =
α0
2 , c2 = α0, c3 = α1, c4 = α2, c5 = α3

c6 =
− 1

8 +
σ c

1
7 −

σ c
2

6 +
σ c

3
5 −

σ c
4

4 +
σ c

5
3

− 1
7 +

σ c
1

6 −
σ c

2
5 +

σ c
3

4 −
σ c

4
3 +

σ c
5

2

, c7 = 1.

1.3.8 Order 10 (s = 11)

A family is detailed in [4] with four free parameters (b0,b2,b3,r5) and a permutation
(to choose among 24 permutations). r5 is an additional free parameter that we have
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recognized during the construction of the family, it is defined as

r5 =
s−1

∑
i=0

bic3
i

i−1

∑
j=0

āi j c5
j .

We denote the Gauss-Lobatto nodes γ1,γ2,γ3,γ4:
γ1 =

1
2

1−

√
7+2

√
7

21

 , γ4 = 1− γ1,

γ2 =
1
2

1−

√
7−2

√
7

21

 , γ3 = 1− γ2.

The CFL is optimal for the following permutation

(c3,c4,c5,c6) = (γ4,γ3,γ1,γ2) .

The other ci are given as

c0 = 0, c2 =
c4 (3c4−5c3)

5c4−10c3
, c1 =

c2

2
, c7 = c3, c8 = c2, c9 = 0, c10 = 1.

For this permutation, we have obtained a nearly optimal CFL of 4.7527 with the
following parameter

r5 = 0.0021632268153138

The CFL is maximal for this permutation, it is strictly lower for other permutations.
For other parameters, we can choose the values proposed by Hairer:

b0 = 0, b2 =−0.1, b3 = 0,

since the CFL does not depend on these three parameters.

1.3.9 Efficiency

s being the number of stages, the efficiency is given as:

Efficiency =
CFL number

2s
.

In the table 1.2, we have written the efficiency obtained for the different orders. We
see here that the orders 7 and 8 are attractive since they have a correct efficiency
(close to 50 %). We think that we can achieve an efficiency that tends to 100 % for
high-order schemes by adding stages (the number of stages tending to the infinity).
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Table 1.2 Efficiency for optimized Runge-Kutta-Nyström schemes for different orders

Order 2 3 4 5 6 7 8 10
Efficiency 100 % 62.5 % 65.7 % 36.4 % 30.9 % 50.6 % 49.1 % 21.6 %

1.3.10 Numerical results

We apply the RKN schemes for solving non-linear Maxwell’s equations in 1-D,
namely: 

ε∞

c2
∂ 2E
∂ t2 +

1
c2

∂ 2

∂ t2

(
∑
k

Pk

)
− ∂ 2E

∂ z2 +
γ

c2
∂ 2

∂ t2

(
|E|2E

)
= 0

1
ω2

k

∂ 2Pk

∂ t2 +Pk = αk E

E(z, t = 0) =
∂E
∂ t

(z, t = 0) = 0

E(z = 0, t) = Given impulsion

Here the electric field is searched as a complex field:

E = Ex + iEy,

where Ex and Ey are x and y-components of the electric field. Pk are the polariza-
tions, ε∞,c,γ,αk,ωk are physical constants. We take the constants corresponding to
silica:

ε∞ = 1, c = 299792458, α0 = 0.6961663, α1 = 0.4079426, α2 = 0.8974794

ω0 =
2πc

0.0684043 ·10−6 , ω1 =
2πc

0.1162414 ·10−6 , ω2 =
2πc

9.896161 ·10−6 , γ = 10−33.

The impulsion is centered at λ0 = 1.053µm with a Gaussian envelope and a circular
polarization:

Given impulsion = E0 e
−1

2

(
t−Tmax

τ

)2

eiωLt

where

ωL =
2πc

1.053 ·10−6 , Tmax = 6 ·10−14, τ =
2

2
√

2log2
·10−14, E0 = 109.

The computational domain is the 1-D interval Ω = [0,1.5 ·10−4], a Neumann bound-
ary condition is set on the right extremity. 1-D finite elements are used to discretize
these equations:
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E ∈Vh =
{

u ∈ H1(Ω) such that u|[zi,zi+1] ∈Q10
}

where (zi)0≤i≤250 are a regular subdivision of the computational domain Ω . The
mesh contains 250 elements (i.e. 2501 degrees of freedom), the numerical error
due to the space discretization is around 10−6 (the domain contains more than 200
wavelengths). After space discretization, the system can be written in the form

y′′ = f (t,y)

by using the displacement as unknown

D = ε∞E +

(
∑
k

Pk

)
+ γ|E|2E.

The electric field E is recovered from D by solving the non-linear equation writ-
ten above for each degree of freedom. This equation is solved with a Newton’s
method, two or three iterations are sufficient to get machine precision accuracy.
Gauss-Lobatto points are used both for interpolation (for the discretization of Vh)
and quadrature, leading to a diagonal mass matrix. As a result the computation of
f (t,y) is explicit, it does not involve any solution of a linear system. The electric
field is propagated from t = 0 until t = 5 · 10−11, in the figure 1.3, the solution is
plotted at two different times. The solution at the final time t = 5 ·10−11 is compared
with a reference solution computed with a small time step (with tenth order RKN
scheme). We try to reach an error of 0.01 % for each scheme in order to compare the
efficiency. In the table 1.3, the computational time needed to obtain this accuracy is

Table 1.3 Computational time needed to reach an accuracy of 0.01% for different orders of RKN
schemes.
Order 3 4 5 6 7 8 10
Time 730s 144s 60.9s 70.8s 43.2s 44.8s 103s
Error 1.0 ·10−4 1.0 ·10−4 1.5 ·10−6 7.3 ·10−7 6.5 ·10−7 1.1 ·10−7 2.0 ·10−10

given for each optimized RKN scheme. The simulations are performed in parallel on
20 cores on an Intel-Xeon (2 Dodeca-core Haswell E5-2680, 2.5 Ghz). From order
5, we are using the maximal time step allowed (the CFL becomes quite restrictive),
that’s why the error is below 0.01 % from these orders. We see that RKN schemes
of order 7 or 8 are the most efficient for this problem while order 10 is not very
efficient because of its small CFL.
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opment action with support from Bordeaux INP, LABRI and IMB and other entities:
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Fig. 1.3 Electric field Ex for t = 10−12 and t = 5 ·10−11
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