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with varying geometrical and mechanical properties

Abstract

In this note, we present an analytic/exact solution of the one-dimensional model for blood flow. This solution
describes the oscillation of a pulse wave in an artery with varying characteristics: cross-sectional area at rest
and arterial wall rigidity. It is useful for the validation of numerical methods, especially well-balanced numerical
methods.
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1. Introduction

Large network blood flow simulations are performed using one-dimensional (1D) models that describe the
conservation of mass and momentum in an artery. The 1D system of equations describing blood flow in the
axial position x at time t writes: 
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Using equation (1c), the momentum equation (1b) can be written as the momentum equation of a system of
balance laws with source terms:

∂Q

∂t
+

∂

∂x

[
Q2

A
+

K

3
√
πρ
A

3
2

]
=

A√
πρ

[
∂

∂x

[
K
√
A0

]
− 2

3

√
A
∂K

∂x

]
+ Sf . (2)

The variables Q, A and P are respectively the flow rate, the cross-sectional area and the blood pressure. We
also introduce the radius of the artery R =

√
A/
√
π and the flow velocity u = Q/A. The variables R0, A0 = πR2

0

and K are respectively the radius at rest, the cross-sectional area at rest and the arterial wall rigidity. The
parameter ρ is the density of blood and is supposed constant. The source term Sf represents the viscous friction
term and will be described in the next section.

We propose an analytic solution of system (1) in an artery presenting an aneurysm (expansion of the radius at
rest R0). This solution can be used to validate numerical methods, especially well-balanced numerical methods
[3, 6, 7, 2].

2. Exact solution

Inspired from the solutions of Thacker [11] and Sampson [10] well-known in the shallow water community,
we look for a regular solution of system (1) rewritten in its nonconservative form:
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(3a)

(3b)

The pressure p is given by equation (1c) and S∗f = Sf/A, with:

S∗f = −C̄fu, C̄f ∈ R+. (4)

Remark 1 Usually, the friction term of the nonconservative system (3) is S∗f = Sf/A = − [Cf/A]u with
Cf = 22πν [12]. The expression (4) can be seen as the linearization − [Cf/A]u ' −

[
Cf/Ā0

]
u = −C̄fu, where

Ā0 is a reference constant cross-sectional area at rest.

Proposition 1 Assuming that the vector [A, u]
ᵀ solution of system (3) is regular and that u (x, t) = u0 (t),

system (3) can be written as a single partial differential equation:
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where F0 (t) ∈ R.

Proof. Considering that u (x, t) = u0 (t) and that the solution is regular, we deduce from equation (3b) that:

p = F0 (t)− ρx
[

du0
dt

+ C̄fu0

]
, (6)

and then from equations (3a) and (1c) that:
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Injecting the expression (6) for p in equation (7), we obtain the expected result.
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Remark 2 Equation (6) indicates that for each time t the pressure gradient is constant in space.

To describe aneurysms (expansions) as well as stenoses (constrictions), we choose the following spatial
variations of the cross-sectional area at rest A0 and of the arterial wall rigidity K in the domain x ∈ [−a, a]:




R0 (x) = R̄0

[
1 + δ

[
1− x2

a2

]]
, R̄0 > 0, a > 0, δ > −1

K (x) = cst, K > 0.

(8a)

(8b)

Injecting the expressions (8a) and (8b) in equation (5) and identifying the powers of x, we obtain the system
of equations that will allow us to find an analytic solution for (x, t) ∈ [−a, a]× [0,+∞]:





d2u0
dt2

+ C̄f
du0
dt

+ δω2u0 = 0

dF0

dt
− ρu0

[
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]
= 0.

(9a)

(9b)

The parameter ω = 2c/a is the characteristic pulsation and c =
√

K
2ρ R̄0 is Moens-Korteweg celerity [9, 8].

Proposition 2 Under conditions:
0 < δ and C̄f < 2δω, (10)

and using the following initial and asymptotic viscous relaxation conditions:

u0 (t = 0) = 0, lim
t→∞

p (x, t) = 0, (11)

the analytic solution of system (9) for (x, t) ∈ [−a, a]× [0,+∞] is:
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Remark 3 Conditions (10) describe an aneurysm (expansion) and naturally occur in physiological conditions
as the pulsation ω � C̄f and δ = O (1).

Proof. The roots of the characteristic equation of the ordinary differential equation (9a) are:

λ1 = − C̄f
2
−√s, λ2 = − C̄f

2
+
√
s, (14)

with s =
[
C̄f

2 − 4δω2
]
/4 ∈ R. In the following, we note τ = 1/

√
|s| the characteristic time. Under conditions

(10) the parameter s < 0. Using the initial condition (11), the solution of equation (9a) is then:
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(
t

τ

)
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Injecting the solution (15) in equation (9b), we obtain:
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and finally we have:
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+ C. (17)

Using the asymptotic viscous relaxation condition (11) we have:

lim
t→∞

p = C = 0. (18)
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The final step is to specify the value of U. It must be chosen with respect to the following nonlinear stability
arguments, namely that the radius R should remain positive:

R (x, t) > 0, ∀ (x, t) ∈ [−a, a]× [0,+∞] , (19)

and that the solution should not be discontinuous:

S2
h (x, t) < 1, ∀ (x, t) ∈ [−a, a]× [0,+∞] . (20)

The variable Sh is the Shapiro number (analogue of the Froude number for shallow water flows) and is defined
as:

S2
h (x, t) =

[
u0 (t)

c (x, t)

]2
=


 u0 (t)√

K
2ρR (x, t)



2

. (21)

Proposition 3 Under conditions (10), the inequalities (19) and (20) are true if the following sufficient condi-
tion is verified:

|U | ≤ 1

5
aω
[√

5 + δ −
√
δ
]
. (22)

Proof. Using the pressure law (1c), we obtain the expression for the radius R (x, t):
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Under conditions (10), the function R (x, t) is concave with respect to the variable x. Therefore two positions
x− and x+ exist in which R (x, t) = 0 and are solutions of the following equation:

[
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U
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δ
= 0. (24)

Noticing that:
∀t ∈ [0,+∞] , |H
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)
| ≤
√
δω2τ2, (25)

we find the following upper and lower bounds of x− and x+ respectively:
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δ
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√
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δ
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The condition (19) is true if (x−, x+) /∈ [−a, a]
2. Therefore a sufficient condition is:

|U | ≤ aω
[√

1 + δ −
√
δ
]

(27)

Under the condition (27), the minimum Rmin (t) of R (x, t) for x ∈ [−a, a] is reached in either x = −a or
x = a. Using the inequality (25), we find the following lower bound of Rmin (t):
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Noticing that:
∀t ∈ [0,+∞] , |u0 (t) | ≤ |U |, (29)

and using the inequality (28), we obtain the following upper bound for Sh (x, t):
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To satisfy the inequality (20), a sufficient condition is that:
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Calculations allow us to show that the inequality (31) is verified if:
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for δ > 0, this concludes the proof.
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3. Numerical experiments

We now compare the analytic solution (12) to the results of a finite volume well-balanced numerical scheme.
For details on the numerical method, we refer the reader to [13, 5, 4, 1]. The parameters of the simulation are
presented in table 1 and are representative of averaged physiological flow conditions in large arteries. Further-
more, they are chosen such that the conditions (10) and (22) are satisfied. The simulations are performed using
N = 100 cells of equal size and a time step ∆t = 1× 10−4.

ρ [g.cm−3] R̄0 [cm] a [cm] δ [cm] K [g.cm−2.s−2] C̄f [s−1] U [cm.s−1]

1 1 4 1
4 1× 104 5 1

c [cm.s−1] ω [s−1] τ [s]

100 50 4.02× 10−2

Table 1: Geometrical and mechanical parameters describing the artery, given in "cgs".

In figure 1, we plot the spacial evolution of the velocity u0 (t), of the flow rate Q (x, t) and of the pressure
p (x, t) at five different times {t1 = 0.05, t2 = 0.2, t3 = 0.4, t4 = 0.6, t5 = 0.9} s. At each time t and for each
quantity, we observe a good agreement between the analytic and the numerical solutions.
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Figure 1: Comparison between the analytic ( ) and the numerical solutions (marks) for the veloc-
ity u0 (t), the flow rate Q (x, t) and the pressure p (x, t) at five different times t =
{t1 = 0.05 (◦) , t2 = 0.2 (���) , t3 = 0.4 (�) , t4 = 0.6 (MMM) , t5 = 0.9 (OOO)} s. We observe a good agree-
ment between the analytic and numerical solutions for each quantity at every time.

In figure 2, we plot the temporal evolution of the velocity u0 (t), of the flow rate Q (x, t) and of the pressure
p (x, t) at three different positions x = {x1 = −a/2, x2 = 0, x3 = +a/2}. At each position x and for each
quantity, we observe a good agreement between the analytic and the numerical solutions.
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Figure 2: Comparison between the analytic ( ) and the numerical solutions (marks) for the veloc-
ity u0 (t), the flow rate Q (x, t) and the pressure p (x, t) at three different positions x =
{x1 = −a/2 (◦) , x2 = 0 (���) , x3 = +a/2 (MMM)}. We observe a good agreement between the analytic
and numerical solutions for each quantity at every position.

4. Conclusion

We have presented a viscous analytic solution of system (3) in an aneurysm. This solution describes the
long-wave oscillations and viscous dissipation of the pressure pulse inside the aneurysm. We found good agree-
ment between this analytic solution and the numerical solution obtained using a finite volume well-balanced
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numerical scheme, indicating that this analytic solution can be used to validate numerical schemes in arteries
with aneurysms.
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