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A TWO-SOLITON WITH TRANSIENT TURBULENT REGIME

FOR THE CUBIC HALF-WAVE EQUATION ON THE REAL LINE

PATRICK GÉRARD, ENNO LENZMANN, OANA POCOVNICU, AND PIERRE RAPHAËL

Abstract. We consider the focusing cubic half-wave equation on the real line

i∂tu+ |D|u = |u|2u, ̂|D|u(ξ) = |ξ|û(ξ), (t, x) ∈ R+ × R.

We construct an asymptotic global-in-time compact two-soliton solution with
arbitrarily small L2-norm which exhibits the following two regimes: (i) a tran-
sient turbulent regime characterized by a dramatic and explicit growth of its
H1-norm on a finite time interval, followed by (ii) a saturation regime in which
the H1-norm remains stationary large forever in time.
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1. Introduction

In this paper we consider the L2-critical focusing half-wave equation on R:

(Half-wave)

{
i∂tu+ |D|u = |u|2u
u|t=0 = u0 ∈ H

1
2 (R)

, (t, x) ∈ R+ × R, u(t, x) ∈ C, (1.1)

where we use the pseudo–differential operators

D = −i∂x, |̂D|f(ξ) = |ξ|f̂(ξ).
Evolution problems with nonlocal dispersion such as (1.1) naturally arise in var-
ious physical settings, including continuum limits of lattice systems [25], models
for wave turbulence [6, 30], and gravitational collapse [10, 12]. The phenomenon
that we study in this paper is the growth of high Sobolev norms in infinite di-
mensional Hamiltonian systems, which has attracted considerable attention over
the past twenty years [2, 49, 30, 4, 52, 6, 7, 13, 43, 21, 19, 22, 23, 20, 17] . The
aim of this paper is to develop a robust approach for constructing solutions whose
high Sobolev norms grow over time, based on multisolitary wave interactions. In
particular, we construct an asymptotic two-soliton solution of (1.1) that exhibits
the following two regimes: (i) a transient turbulent regime characterized by a dra-
matic and explicit growth of its H1-norm on a finite time interval, followed by (ii)
a saturation regime in which the H1-norm remains stationary large forever in time.

1.1. The focusing cubic half-wave equation. Let us recall the main qualitative
features of the half-wave model (1.1). The Cauchy problem is locally well-posed in

H
1
2 , see [15, 26], and for all u0 ∈ H

1
2 , there exists a unique solution u ∈ C([0, T ),H 1

2 )
with the blow up alternative

T < +∞ implies lim
t↑T

‖u(t)‖
H

1
2
= +∞. (1.2)
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Moreover, additional Hs-regularity on the data, s > 1
2 , is propagated by the flow.

The Hamiltonian model (1.1) admits three conservation laws:

Mass :

∫
|u(t, x)|2dx =

∫
|u0(x)|2dx

Momentum : Re

(∫
Duu(t, x)dx

)
= Re

(∫
Du0u0(x)dx

)

Energy : E(u(t)) :=
1

2

∫
||D| 12u|2(t, x)dx− 1

4

∫
|u|4(t, x)dx = E(u0).

The scaling symmetry

uλ(t, x) = λ
1
2u(λ2t, λx)

leaves the L2-norm invariant

‖uλ(t, ·)‖L2 = ‖u(λ2t, ·)‖L2

and hence the problem is L2-critical.
By a standard variational argument, the best constant in the Gagliardo-Nirenberg

inequality

‖u‖4L4 . ‖|D| 12u‖2L2‖u‖2L2 , ∀u ∈ H
1
2 ,

is attained on the unique positive even ground state solution to

|D|Q+Q−Q3 = 0.

Note that the uniqueness of Q is a nontrivial claim, recently obtained in [11]. This
implies the lower bound

E(u) ≥ 1

2

[
1− ‖u‖2L2

‖Q‖2
L2

] ∫

R

||D| 12u|2dx, ∀u ∈ H
1
2 . (1.3)

Using the conservation of mass and energy, it then follows for u0 ∈ H
1
2 with

‖u0‖L2 < ‖Q‖L2 that

‖u(t)‖
H

1
2
6 C(‖u0‖L2 , E(u0)), ∀t ∈ R. (1.4)

Combining this with (1.2), one obtains the global existence criterion:

u0 ∈ H
1
2 and ‖u0‖L2 < ‖Q‖L2 imply T = +∞. (1.5)

This criterion is sharp as there exist minimal mass finite energy finite time blow up
solutions, see [26]. In this paper we will only consider solutions with u0 ∈ H1 of
arbitrarily small mass, which are hence global-in-time u ∈ C(R,H1).

1.2. Growth of high Sobolev norms. One of the main topics in the study of
nonlinear Hamiltonian PDEs is the long time behaviour of global-in-time solutions.
A possible type of behavior, that attracted significant attention over the last twenty
years, is the so called forward energy cascade phenomenon. This phenomenon refers
to the conserved energy of global-in-time solutions moving from low-frequency con-
centration zones to high-frequency ones over time. One way to illustrate it is the
growth of high Sobolev norms:

‖u(t)‖Hs =

(∫
〈ξ〉2s|û(t, ξ)|2dξ

) 1
2

.

Indeed, for sufficiently large s > 0, above the level of regularity of the conserved
Hamiltonian, the growth over time of ‖u(t)‖Hs indicates that the Fourier trans-
form û(t, ξ) is supported on higher and higher frequencies ξ as the time t increases.
To the best of the authors’ knowledge, all the rigorous mathematical analysis that
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has been done on the forward energy cascade focuses on finding infinite dimen-
sional Hamiltonian PDEs that admit examples of solutions exhibiting growth of
high Sobolev norms. A lot of the results available are in the context of nonlin-
ear Schrödinger equations (NLS). In particular, for the defocusing cubic nonlinear
Schrödinger equation on T2, Bourgain [5] asked whether there exist solutions u with
initial condition u0 ∈ Hs(T2), s > 1, such that

lim sup
t→∞

‖u(t)‖Hs = ∞.

Despite attracting considerable attention, this question remains unanswered.
The forward energy cascade phenomenon also appears in the physical theory

of wave (weak) turbulence. This is a theory in plasma physics and water waves,
based on pioneering work of Zakharov from the 1960s, with many similarities to
Kolmogorov’s theory of hydrodynamical turbulence. It can be loosely defined as the
“out-of-equilibrium statistics of random nonlinear waves" (see [21]). Even though
wave turbulence refers to a statistical description of solutions and not to single
solutions, and even though this theory does not yet have a rigorous mathematical
justification, it is believed that exhibiting examples of solutions whose high Sobolev
norms grow over time is a first step and a minimal necessary condition for wave
turbulence. As far as the authors are aware, all mathematically rigorous results
that are available are in this spirit, and so is the main result of this paper.

In the following, we briefly mention some of the references in the literature re-
garding the growth of high Sobolev norms for nonlinear Hamiltonian PDEs. First,
in the context of NLS, polynomial-in-time upper bounds on the growth of ‖u(t)‖Hs ,

‖u(t)‖Hs . 〈t〉c(s−1), s > 1,

were obtained; see Bourgain [2, 5], Staffilani [49], Sohinger [47, 48], Colliander,
Kwon, and Oh [8].

The first examples of Hamiltonian PDEs (nonlinear Schrödinger equations and
nonlinear wave equations) that admit solutions with energy transfer were con-
structed by Bourgain [1, 2, 3]. However, these examples do not deal with standard
NLS or NLW, but with modifications of these specifically designed to exhibit infi-
nite growth of high Sobolev norms (these are PDEs involving, instead of the Laplace
operator, a perturbation of it, or PDEs with a suitably chosen nonlocal nonlinear-
ity). In [29], Kuksin considered small dispersion cubic NLS and proved that generic
solutions grow larger than a negative power of the dispersion. A seminal result is
that by Colliander, Keel, Staffilani, Takaoka, and Tao [7] who proved arbitrarily
large growth of high Sobolev norms in finite time for the defocusing cubic NLS on
T2. More precisely, given s > 1, ε ≪ 1, and K ≫ 1, they constructed a solution u
such that

‖u(0)‖H2 6 ε and ‖u(T )‖Hs > K,

for some finite time T > 0. The influential result in [7], especially their intricate
combinatorial construction, was refined and generalized to various other settings
[21, 19, 18, 22, 20, 23]. In particular, in [22], an example of infinite growth of high
Sobolev norms was obtained for the defocusing cubic NLS on R × Td, d > 2. For
the cubic NLS on T2, however, the fate of the solution u after the growth time T
remains unknown.

For the cubic half-wave equation, due to mass and energy conservation, the H
1
2 -

norm of solutions with initial data in H
1
2 is uniformly bounded in time, both for

the defocusing equation, as well as for the focusing equation with initial data of
sufficiently small mass ‖u(0)‖L2 < ‖Q‖L2 (see (1.4) above). However, in the spirit
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of [7], arbitrarily large growth in finite time of higher Sobolev norms — Hs-norms
with s > 1/2 — was proved on R in [44]1 and on T in [15]. As in [7], the behaviour
of the solutions that exhibit growth remains unknown after some finite time, which
is what motivated our work in the present paper. The results in [15, 44] are based
on information on the totally resonant model associated with the cubic half-wave
equation, namely the Szegő equation. Infinite growth of high Sobolev norms for
solutions of the Szegő equation was obtained on R in [43] and on T in [17]. Moreover,
on T, this was shown [17] to be a generic phenomenon, displaying infinitely many
forward and backward energy cascades. Also notice that long time divergence of high
Sobolev norms was also obtained for a perturbation of the cubic Szegő equation on
T in [51]. We present below the key features of the Szegő equation and its relation
to the cubic half-wave equation.

1.3. The Szegő program. Applying the Szegő projector Π+ of L2 onto nonnega-
tive Fourier modes:

Π̂+u(ξ) = 1ξ>0û(ξ),

the half-wave equation (1.1) becomes



i(∂tu+ − ∂xu+) = Π+(|u|2u)
i(∂tu− + ∂xu−) = (I −Π+)(|u|2u)
u+ := Π+u , u− := (I −Π+)u .

For small data in the range of Π+ and of norm ε≪ 1 in a sufficiently regular Sobolev
space one can show [15, 44] that, for times of order ε−2| log ε|, an approximation of
the half-wave flow is given by the cubic Szegő equation

{
i∂tu = Π+(|u|2u)
u|t=0 = u0 ∈ H

1
2 .

(1.6)

The Szegő equation can be understood as the totally resonant model associated

to (1.1). It is still a nonlinear Hamiltonian model, well-posed in H
1
2 , and the

conservation of mass and momentum implies that all H
1
2 -solutions are global-in-

time and
‖u(t)‖

H
1
2
≃ ‖u(0)‖

H
1
2
, ∀t ∈ R.

A spectacular feature of the cubic Szegő equation discovered in [13] is its complete
integrability in the sense of the existence of a Lax pair, which in particular allows for
the derivation of explicit families of special solutions of either multisolitary waves
or breather-type, both on the line and on the torus, see [42, 43, 13, 14, 16, 17]. The
complete integrability implies the conservation of infinitely many conservation laws

which, however, roughly speaking, all live at the H
1
2 -level of regularity only.

In [43], Pocovnicu exhibits for the flow on the line, one of the very first ex-
plicit examples of growth of high Sobolev norms for a nonlinear infinite dimensional
Hamiltonian model:

‖u(t)‖
H

1
2
. 1, lim

t→+∞
‖u(t)‖H1 = +∞ as t→ +∞.

The analysis in [43] is based on the explicit computation of a two-soliton solution
for the cubic Szegő flow, relying on complete integrability.2 Indeed, as observed in

1In [44], only a relative growth of high Sobolev norms was obtained, ‖u(Tε)‖Hs

‖u(0)‖Hs
→ ∞ as ε → 0 for

some Tε ≫ 1. However, this readily yields arbitrary large growth in finite time via an L2-invariant
scaling argument. Secondly, the result in [44] is stated for the defocusing half-wave equation, but
essentially the same proof works for the focusing half-wave equation with initial data of small mass.

2The key property that triggers growth of high Sobolev norms ‖u(t)‖Hs ∼ t2s−1, s > 1
2
, is that

the Hankel operator Hu in the Lax pair of the Szegő equation has a multiple (double) eigenvalue.
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[42], (1.6) admits a traveling wave solution

u(t, x) = Q+(x− t)e−it with Q+(x) :=
2

2x+ i
. (1.7)

Using complete integrability formulas, an exact two-soliton can be computed:

u(t, x) = α1(t)Q
+

(
x− x1(t)

κ1(t)

)
e−iγ1(t) + α2(t)Q

+

(
x− x2(t)

κ2(t)

)
e−iγ2(t) ,

with the asymptotic behavior on the manifold of solitary waves,
{
α1(t) ∼ 1, κ1(t) ∼ 1− η, x1(t) ∼ (1− η)t, 0 < η ≪ 1
α2(t) ∼ 1, κ2(t) ∼ 1

t2
, x2(t) ∼ t.

(1.8)

In particular, this two-soliton exhibits growth of high Sobolev norms over time
‖u(t)‖Hs ∼ t2s−1, s > 1

2 , and the mechanism of growth is the concentration of the

second bubble k2(t) ∼ 1
t2

.
The full dynamical system underlying two-solitons for the Szegő equation and

the associated codimension one set of turbulent initial data is revisited in details in
Appendix B.

Combining the growth of high Sobolev norms for a two-soliton of the Szegő equa-
tion on R [43] discussed above, with a long time approximation theorem relating
the Szegő model and the half-wave equation, yields the following arbitrarily large
growth in finite time result for the half-wave equation:

Theorem 1.1 ([44]). Let 0 < ε ≪ 1. There exists a solution of the (focus-

ing/defocusing) cubic half-wave equation on R and there exists T ∼ e
c
ε3 such that

‖u(0)‖H1 = ε and ‖u(T )‖H1 >
1

ε
≫ 1.

As in [7], the behaviour of the turbulent solution in the above theorem after the
time T remains unknown. In this paper, we construct a turbulent solution of (1.1)
that we can control for all future times. Furthermore, our aim in this paper is
to develop a robust approach to compute turbulent regimes based on multisolitary
wave interactions, avoiding on purpose complete integrability tools.

1.4. Mass-subcritical traveling waves. As observed in [26] following [11], the
half-wave problem (1.1) admits mass-subcritical small speed traveling waves3

uβ(t, x) = Qβ

(
x− βt

1− β

)
e−it,

|D| − βD

1− β
Qβ +Qβ − |Qβ|2Qβ = 0, (1.9)

with

lim
β→0

Qβ = Q, ‖Qβ‖L2 < ‖Q‖L2 .

An elementary but spectacular observation is that these traveling waves in fact exist
for all |β| < 1 and converge in the singular relativistic limit β → 1 to the soliton of
the limiting Szegő equation given by (1.7):

lim
β↑1

‖Qβ −Q+‖
H

1
2
= 0.

3Note that this phenomenon does not exist for the mass-critical focusing nonlinear Schrödinger
equation on R due to the degeneracy induced by the Galilean symmetry uβ(t, x) = Qβ(x−βt)eiγβ(t)

with Qβ(x) = Q(x)eiβx and hence ‖Qβ‖L2 = ‖Q‖L2 for all β ∈ R, and indeed solutions with mass
below that of the ground state scatter [9].



A TWO-SOLITON FOR THE CUBIC HALF-WAVE EQUATION 7

See Section 2. Note from (1.9) that this is fundamentally a singular elliptic limit,
and the associated almost relativistic traveling waves are arbitrarily small in the
critical space:

lim
β↑1

‖uβ(t, ·)‖L2 = 0.

Hence, another link is made between the half-wave problem and its totally resonant
limit given by the Szegő equation through the sole consideration of the full family
of nonlinear traveling waves.

1.5. Statement of the result. In Theorem 1.1, the turbulent solution of (1.1)
was constructed as a long time approximation of the turbulent two-soliton of the
Szegő equation. The approximation theorem used is valid for any solution of the
Szegő equation (respectively of the half-wave equation) with small regular data, not
only for two-solitons. In this paper, we take a more efficient approach. Instead
of approximating a large class of solutions of (1.1) by their Szegő counterparts,
we concentrate on constructing a single solution of (1.1) that mimics the growth
mechanism of the turbulent two-soliton of the Szegő equation. Of course, complete
integrability is lost, but the analysis initiated by Martel in [31] and revisited in
[27] for the nonlocal Hartree problem paves the way to the construction of compact
two-bubble elements. More precisely, one can in principle extract from the equa-
tion the approximate dynamical system driving each solitary wave of an asymptotic
two-soliton, at least in a regime where the waves are separated in space, and the
robust energy method developed in [27] allows one to follow the flow all the way to
+∞.

Theorem 1.2 (Solution with transient turbulent regime and saturated growth).
There exists a universal constant 0 < δ∗ ≪ 1 and, for all δ ∈ (0, δ∗), there exists
0 < η∗(δ) ≪ 1 such that the following holds. For every η ∈ (0, η∗), let the times

Tin =
1

η2δ
, T− =

δ

η
,

then there exists a solution u ∈ C([Tin,+∞),H1) to (1.1) which is H
1
2 -compact as

t→ +∞ with the following behavior:
1. Initial data: the initial data at time Tin has size

‖u(Tin)‖2L2 ∼ η, ‖||D| 12u(Tin)‖2L2 ∼ 1, ‖Du(Tin)‖2L2 ∼ 1

η1+2δ
.

2. Turbulent regime: on [Tin, T
−], the solution experiences a turbulent interaction

with an explicit monotone growth of the H1-norm

‖u(t)‖2H1 =
t2

η
(1 +O(

√
δ)). (1.10)

3. Saturation: the interaction ceases after T− and there holds the saturation

‖u(t)‖2H1 =
1

η3
eO( 1

δ
) for t > T−.

The turbulent interaction behind (1.10) is an explicit energy transfer along the
singular branch of traveling waves Qβ, and the solution can more explicitly be
described as follows. For all times t ∈ [Tin,+∞), the solution admits a two solitary
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wave decomposition

u(t, x) =

2∑

j=1

1

λ
1
2
j (t)

Qβj(t)

(
x− xj(t)

λj(t)(1 − βj(t))

)
e−iγj(t) + ε(t, x)

with the following properties:

1. Structure of the first soliton: the first soliton remains nearly unchanged, i.e. for
all t > Tin,

λ1(t) ∼ 1, 1− β1(t) ∼ η, x1(t) ∼ (1− η)t, γ1(t) ∼ t.

2. Concentration of the second soliton: the second soliton behaves like a solitary
wave

λ2(t) ∼ 1, x2(t) ∼ β2t, γ2(t) ∼ t

with a concentration of size in the transient turbulent regime:

1− β2(t) =
η(1 +O(

√
δ)

t2
for t ∈ [Tin, T

−],

which saturates after the interaction time T−:

1− β2(t) = η3eO( 1
δ
) for t ≥ T−.

3. Asymptotic compact behaviour: this solution is minimal near +∞, i.e.

lim
t→+∞

‖ε(t)‖H1 = 0.

1.6. Comments on the result. Theorem 1.2 exhibits, for a canonical dispersive
model, an explicit mechanism of growth of high Sobolev norms. To the best of the
authors’ knowledge, this is one of the first results in which one can control for all
times a turbulent solution of a nonlinear Hamiltonian PDE.

1. The two regimes. The key element behind Theorem 1.2 is the derivation of
the leading order ODEs driving the geometrical parameters as in [26]. There are
two main new pieces of information. First, we can compute explicitly the rate of
concentration which is given by the t-growth as in [43]. This rate is very sensitive
to the phase shift between the waves in the transient regime, and another phase
shift would generate another speed. Note that the growth can be computed for any
Hs-Sobolev norm above the energy, i.e. s > 1

2 , and the data can also be taken

arbitrarily small in H1 by a fixed rescaling. Secondly and unlike in the case of
the Szegő equation, there is no infinite growth of the H1-norm for the solution
we construct. Here we encountered an essential feature in the structure of the Qβ

solitary wave. The limiting solitary wave of the Szegő equation has according to
(1.7) a far out decay

Q+(x) ∼ 1

〈x〉 ,

while for Qβ there is a transition regime

Qβ(x) ∼
1

〈x〉(1 + (1− β)〈x〉) , β < 1. (1.11)

In particular, when the waves forming the two-soliton separate and their relative
distance becomes large

|x2 − x1| ≫
1

1− β
,
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their interaction weakens from 1
〈x〉 to 1

〈x〉2 , and this explains why the concentration

mechanism stops in the far out two-soliton dynamics.

2. Compact bubbles with energy transfer. Theorem 1.2 lies within the construction
of compact elements which has attracted a considerable attention for the past ten
years both for global problems since the pioneering breakthrough work [31] and
[32, 27, 36] and blow up problems [39, 46, 37, 26]. It is in particular shown in
[26] how the presence of polynomially decaying interactions can lead to dramatic
deformations of the soliton dynamics, for example from the straight line motion for
each wave to the hyperbolic two body problem of gravitation for the two-soliton
of the gravitational Hartree model on R3. The energy transfer mechanism between
KdV waves [41, 35] or the recent multibubble infinite time blow up mechanism of
[38] are deeply connected to Theorem 1.2. This is the first instance, however, when
modulation analysis used in all the above cited works, is employed to find solutions
that exhibit growth of high Sobolev norms. Let us insist that the growth (1.10) does
not excite the L2-scaling instability of the problem as in [26], but the β-instability

which according to (1.9) is Ḣ
1
2 -critical and hence compatible with the small data

coercive conservation laws. More generally, there is little understanding of the long
time asymptotics of wave equations in small dimensions due to the lack of disper-
sion, see for example [28], and it is essential for the construction to consider compact
nondispersive flows.

3. Specificity of the analysis. The following two problems are simpler than the
result in Theorem 1.2: (i) the construction of an asymptotic two-soliton without
turbulent interaction in the continuation of [27], and (ii) exhibiting a growth mech-
anism of the H1-norm on some sufficiently large time interval as in [44], using the
limiting singular Szegő regime (see Theorem 1.1 above). The aim of Theorem 1.2 is
to perform both the above in the same time and, in particular, to capture the asso-
ciated saturation of the H1-norm which we expect displays some universality, and
hence describes the long time dynamical bifurcation of (1.1) from the Szegő singular
regime (1.8) beyond usual Ehrenfest-like times. We then face two essential difficul-
ties. First, the nonlocal nature of the problem in the presence of slowly decaying
solitary waves makes interactions very large and hard to decouple as in [24, 36]. In
particular, we need to control the logarithmic instability of the phase shift between
the waves, which is central for the derivation of the growth mechanism. This forces
us to develop both the complete description of the bifurcation Q+ → Qβ and a
new strategy for the derivation of sharp modulation equations for geometrical pa-
rameters, see Proposition 4.12. Secondly, the need for high order approximations of
the solution required to capture the leading order mechanism is reminiscent of the
pioneering two-soliton interaction computations in [34, 35]. But the main difficulty
here is the fact that the traveling wave equation (1.9) is a singular elliptic problem
which degenerates as β → 1. Hence one looses the control of natural energy norms
in the concentration process, which a priori should ruin the approach developed in
[24]. The wave-like structure of the equation is essential to overcome this difficulty.
We also need to develop various new estimates involving the Π+ projection operator
onto positive frequencies since in the concentration process, this projection and the
Szegő-like regimes are essential for the analysis.

4. Regularity shift in the growth of Sobolev norms. Compared to previous results on
the growth of high Sobolev norms for nonlinear Schrödinger equations, see [7, 19,



10 PATRICK GÉRARD, ENNO LENZMANN, OANA POCOVNICU, AND PIERRE RAPHAËL

21, 22, 23, 20], it is interesting to notice that Theorem 1.2 implies the existence of
small data in H1 such that the Hs-norm of the solution becomes large, not only for
s = 1, but also for s < 1 close to 1. Notice that this regularity shift also holds —
with unbounded solutions at infinity — for the cubic Szegő equation, see [44, 17],
where in [17] this phenomenon is established to be generic.

Having completed this work, let us mention a number of related open problems.

• The main one is probably the existence of a solution of (1.1) such that
lim supt→∞ ‖u(t)‖H1 = +∞.

• What are the possible growth rates ? From the recent paper [50], we know

that this rate cannot be bigger than eO(t2), how optimal is it ?
• Are unbounded solutions in H1 generic ? Is the behavior ‖u(t)‖H1 −→

t→∞
∞

generic, or rather is it generic to have infinitely many forward and backward
energy cascades, as in the case of the cubic Szegő equation on the circle ?

To conclude, we hope that Theorem 1.2 is an important step towards a better
understanding of the role played by interactions of solitons in turbulent transfers of
energy.

1.7. Strategy of the proof. We outline in this subsection the main steps and
difficulties in the proof of Theorem 1.2.

Step 1: Description of the bifurcation Q+ → Qβ. Our first task is to completely
describe the solutions to the singular elliptic traveling wave equation

|D| − βD

1− β
Qβ +Qβ −Qβ|Qβ|2 = 0

in the limit β → 1. The local existence and uniqueness of the profile Qβ for β close
to 1 in Proposition 2.2 relies on a classical Lyapunov-Schmidt argument, which itself
relies on the non degeneracy of the linearized operator close to Q+ for the Szegő
problem proved in [42]. The Lyapunov-Schmidt argument yields the non degeneracy
of the linearized operator close to Qβ in Proposition 2.4. We then completely de-
scribe the profile in space of Qβ and, in particular, its long range asymptotics which

displays a nontrivial boundary layer at x ∼ 1
1−β , see Section 3. Here we aimed at

avoiding logarithmic losses which would be dramatic for the forthcoming analysis,
and this requires the consideration of suitable norms and Fourier multipliers.

Step 2: Two-soliton ansatz. We now implement the strategy developed in [24] and
construct an approximate solution of the form

u = u1 + u2

after reduction to the slow variables

uj(t, x) =
1

λ
1
2
j

vj(sj, yj)e
iγj ,

dsj
dt

=
1

λj(t)
, yj :=

x− xj(t)

λj(t)(1 − βj(t))
, j = 1, 2.

Here we proceed to an expansion of the profiles vj after separation of variables

vj(sj, yj) = Qβj(sj)(yj) +

N∑

n=1

Tj,n(yj,P(sj)),

where P encodes the geometrical parameters of the problem

P = (λ1, λ2, β2, β2,Γ, R)
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and (Γ, R) denote the phase shift and relative distance between the waves after
renormalization

Γ = γ2 − γ1, R =
x2 − x1
λ1(1− β1)

which is always large R≫ 1. The laws for the parameters are adjusted

(λ)sj
λj

=Mj(P),
(βj)sj
1− βj

= Bj(P) (1.12)

in order to ensure the solvability of the elliptic system defining Tj,n; see Proposition
4.6. In order to keep control of the various terms produced by this procedure, we
need to define a notion of admissible function, see Definition 4.1, which is compati-
ble with the properties of Qβ and stable for this nonlinear procedure of construction
of the approximate solution. The strategy is conceptually similar to [27], but the
functional framework is considerably more challenging due to the slow decay of the
solitary wave Qβ and to the singular nature of the bifurcation Q+ → Qβ.

Step 3: Leading order dynamics. We now extract the leading order dynamics for
the ODEs predicted by (1.12). This step is more delicate than one would expect,
in particular because we need to keep track of a logarithmic instability of the phase
shift Γ which is essential for the derivation of the turbulent growth. We observe in
Proposition 4.12 that mimicking the conservation laws of mass and kinetic momen-
tum for the approximate solution provides nonlinear cancellations and a high order
approximation of the dynamical system for P. Roughly speaking, this reads

(β1)t
1− β1

∼ 0,
(β2)t
1− β2

∼ 2 cos Γ

R(1 + (1− β1)R)
, R ∼ t

which reflects the decay (1.11). Hence, 1 − β1 ∼ η and as long as Γ ∼ 0 and
t 6 1

η ∼ T−, we have the decay

1− β2(t) ∼
1

t2
,

which saturates for t > T−. Keeping the phase under control requires a high order
approximation of the modulation equations (Proposition 4.12) and a careful inte-
gration of the associated modulation equations; see Subsection 4.8.

Step 4: Backwards integration and energy bounds. We now solve the problem from
+∞ following the backward integration scheme designed in [39, 31, 32, 27]. In the
setting of a suitable bootstrap (Proposition 5.2), the solution decomposes into two
bubbles and radiation

u(t, x) =
2∑

j=1

uj + ε(t, x), uj(t, x) =
1

λ
1
2
j

vj(sj , yj)e
iγj ,

where the profiles vj have been constructed above. We pick a sequence Tn → +∞
and look for uniform backwards estimates for the solution to (1.1) with Cauchy data
at Tn given by

ε(Tn) = 0. (1.13)

The heart of the analysis is to design an energy estimate to control ε. Following
[32, 27], the energy functional is a localization in space of the total conserved energy,
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with cut-off functions which are adapted to the dramatic change of size of the second
bubble. The outcome is an energy bound of the type∣∣∣∣

d

dt
G(ε(t))

∣∣∣∣ .
G(ε)
t

+
CN

tN
(1.14)

where N is the order of accuracy of the approximate solution and can be made
arbitrarily large, and G is a suitable energy functional with roughly

G(ε) ∼ ‖ε‖2
H

1
2
,

see Proposition 5.1. Bootstrapping the bound G(ε(t)) 6 1

t
N
2

and integrating in time

using the boundary condition (1.13) yields

G(ε(t)) . 1

Nt
N
2

,

which is an improved bound for N universal sufficiently large. The critical point
in this argument is the 1

t loss only in the RHS of (1.14). In general, the terms
induced by the necessary localization procedure may be difficult to control, and
sometimes the only known way out is a symmetry assumption on the behaviour of
the bubbles as in [27, 38]. This is not an option here since the turbulent regime
is in essence asymmetric. Furthermore, a fundamental difficulty here is that the
linearized operator close to Qβ depends on β and degenerates as β → 1, see (5.16).
We show in Section 5 that the above strategy can be implemented with a sharp loss
of 1

t only, using two new ingredients: a favorable algebra for the localization terms,
which seems specific to wave-like problems and is reminiscent of a related algebra
in [36], see the proof of (E.14), and the splitting of the motion along positive and
negative frequencies which move in space differently. Hence the full energy method
relies very strongly on the localization both in space and frequency of the infinite
dimensional part of the solution.

This paper is organized as follows. In Section 2, we construct the bifurcation
Q+ → Qβ à la Lyapunov-Schmidt, and we study in detail the Qβ profile in Section
3. In Section 4, we produce the two-bubble approximate solution (Proposition 4.6)
and derive and study the associated dynamical system for the geometrical param-
eters (Proposition 4.12 and Subsection 4.8). In Section 5, we close the control of
the infinite dimensional remainder by setting up the bootstrap argument (Proposi-
tion 5.2), and by using in particular the key energetic control given in Proposition
5.4. The proof of Theorem 1.2 easily follows from Proposition 5.2 as detailed in
Subsection 5.8. Appendix A is devoted to simple algebraic formulae involving Q+.
Appendix B revisits the two-soliton dynamics for the Szegő equation on the line
studied by Pocovnicu [42]. Appendix C establishes some non degeneracy lemma al-
lowing to implement the modulation theory in this context. Appendix D is devoted
to basic commutator estimates. Appendix E contains estimates on some cut-off
functions which are crucial in our energy method. Finally, Appendix F is devoted
to the coercivity of our energy functional.

Notations. On L2(R), we adopt the real scalar product

(u, v) = Re

(∫

R

uvdx

)
. (1.15)

For x ∈ R, we set

〈x〉 :=
√

1 + x2.
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If s > 0 and f is a tempered distribution such that f̂ is locally integrable near ξ = 0,
we define the tempered distribution |D|sf by

|̂D|sf(ξ) = |ξ|sf̂(ξ) .
We define the differential operators

Λxf := x∂xf, Λf :=
1

2
f + Λxf, Λ̃β := (1− β)∂β

and the function

Φβ := y∂yQβ + (1− β)
∂Qβ

∂β
.

We use the Sobolev norm

‖f‖W k,∞ = Σk
j=0‖∂kxf‖L∞ , k ∈ N.
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2. Existence and uniqueness of traveling waves

2.1. The limiting Szegő profile. We consider

H
1
2
+(R) := {u ∈ H

1
2 (R) : supp(û) ⊂ R+} ,

and, for every u ∈ H
1
2
+(R) \ {0},

J+(u) :=
(Du, u)‖u‖2L2

‖u‖4
L4

, I+ := inf
u∈H

1
2
+ (R)\{0}

J+(u) .

It is known ([42]) that I+ is a minimum and that its minimizers are exactly

Q(x) =
C

x+ p
, Im p > 0 .

Moreover, those minimizers which satisfy the following Euler–Lagrange equation

DQ+Q−Π+(|Q|2Q) = 0 ,

are given by

Q(x) = eiγQ+(x+ x0) , Q
+(x) :=

2

2x+ i
, (γ, x0) ∈ T× R. (2.1)
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2.2. Existence of traveling waves. To show the existence of nontrivial traveling
waves Qβ satisfying (1.9), we consider the minimization problem

Jβ(u) :=
((|D| − βD)u, u)‖u‖2L2

‖u‖4
L4

, Iβ := inf
u∈H

1
2 (R)\{0}

Jβ(u) .

From [26] and a simple scaling argument, we have the following result:

Proposition 2.1 (Small traveling waves). For all 0 6 β < 1, the infimum Iβ is
attained. Moreover, any minimizer Qβ for Jβ(u) such that

‖Qβ‖2L2 =
1

2
‖Qβ‖4L4 =

((|D| − βD)Qβ , Qβ)

1− β
=

2Iβ
1− β

(2.2)

satisfies the following equation:

|D| − βD

1− β
Qβ +Qβ = |Qβ|2Qβ.

In what follows, let Qβ denote the set of minimizers Qβ of Jβ(u) such that (2.2)
holds.

Proposition 2.2 (Profile of Qβ). If Qβ ∈ Qβ and β → 1, β < 1, there exist
x(β) ∈ R and γ ∈ T such that, up to a subsequence,

Qβ(x− x(β)) → eiγQ+(x) ,

strongly in H
1
2 (R). More precisely, for β sufficiently close to 1, we have

∥∥Qβ(x− x(β))− eiγQ+(x)
∥∥
H

1
2
6 C(1− β)1/2| log(1− β)| 12 . (2.3)

Proof. First observe that, since |D| − βD ≥ (1 − β)|D|,
Iβ ≥ (1− β)I0 ,

and, by plugging u = Q+ in Jβ ,

Iβ 6 (1− β)I+ .

We claim that indeed,
Iβ

1− β
→ I+ .

Decompose

Qβ = Q+
β +Q−

β , Q±
β := Π±(Qβ) .

Then identities (2.2) read

‖Q+
β ‖2L2 + ‖Q−

β ‖2L2 =
1

2
‖Q+

β +Q−
β ‖4L4 = (DQ+

β , Q
+
β ) +

1 + β

1− β
(|D|Q−

β , Q
−
β ) =

2Iβ
1− β

.

This implies in particular

‖Q−
β ‖2L2 6 2I+ , (|D|Q−

β , Q
−
β ) ≤ 2I+(1− β) , ‖Q−

β ‖4L4 6
4I2+
I0

(1− β) → 0 .

We are going to improve these estimates on Q−
β , using the following identity on

Fourier transforms, which is an immediate consequence of the equation for Qβ in
Proposition 2.2,

Q̂β(ξ) =
1

1 + |ξ|−βξ
1−β

̂|Qβ|2Qβ(ξ) .
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In particular,

Q̂β
−
(ξ) =

1{ξ<0}

1 + 1+β
1−β |ξ|

̂|Qβ |2Qβ(ξ) . (2.4)

From (2.4) and the Plancherel formula, we immediately get

‖Q−
β ‖2L2 =

1

2π

∫ 0

−∞

1
(
1 + 1+β

1−β |ξ|
)2 | ̂|Qβ |2Qβ(ξ)|2 dξ ≤ C(1− β) , (2.5)

where we used a bound on Qβ in L3, which is a consequence of identities (2.2) and
of the estimate Iβ 6 (1− β)I+ . Similarly, we have

(DQ−
β , Q

−
β ) =

1

2π

∫ 0

−∞

|ξ|
(
1 + 1+β

1−β |ξ|
)2 | ̂|Qβ |2Qβ(ξ)|2 dξ ≤ C(1− β)2| log(1− β)| ,

(2.6)
because of the logarithmic divergence of the integral at ξ = 0. This already implies

‖Q−
β ‖4L4 6 C(1− β)3| log(1− β)| .

Finally, using the bound on Qβ in all the Lp-norms with p finite, we have

‖Q+
β ‖4L4 = ‖Qβ −Q−

β ‖4L4 = ‖Qβ‖4L4 − 4Re

(∫

R

|Qβ |2QβQ
−
β dx

)
+O(‖Q−

β ‖2L4)

= ‖Qβ‖4L4 − 4Re

(
1

2π

∫ 0

−∞

1

1 + 1+β
1−β |ξ|

| ̂|Qβ|2Qβ(ξ)|2 dξ
)

+O((1− β)3/2| log(1− β)|1/2)

= ‖Qβ‖4L4 −O((1− β)| log(1− β)|).
Therefore

I+ ≤ J+(Q+
β ) =

(DQ+
β , Q

+
β )‖Q+

β ‖2L2

‖Q+
β ‖4L4

=

( 2Iβ
1−β

)2

‖Qβ‖4L4 −O((1 − β)| log(1− β)|)

=
Iβ

1− β
−O((1− β) log(1− β)) 6 I+ +O((1− β)| log(1− β)|)).

Summing up, we have proved

0 ≤ I+ − Iβ
1− β

. (1− β)| log(1− β)| ,
∣∣∣‖Q+

β ‖2L2 − 2I+
∣∣∣+
∣∣∣‖Q+

β ‖4L4 − 4I+
∣∣∣+
∣∣∣(DQ+

β , Q
+
β )− 2I+

∣∣∣
. (1− β)| log(1− β)| (2.7)

‖Q−
β ‖Ḣ1/2 . (1− β)| log(1− β)| 12 (2.8)

‖Q−
β ‖H 1

2
. (1− β)

1
2 .

By a concentration-compactness argument on the space H
1
2
+ (see e.g. [42], Prop.

5.1), this yields (2.3). �

By a straightforward argument, we upgrade the convergence of Qβ to any Hs.

Proposition 2.3. Let βn → 1, βn < 1, and suppose that Qβn ∈ Qβn satisfies

Qβn → Q+ in H
1
2 (R). Then, for any s > 0, we have

‖Qβn‖Hs 6 Cs.
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In particular, ‖Qβn‖L∞ 6 C and it holds that

Qβn → Q+ in Hs(R) for all s > 0.

Proof. It suffices to prove the claim for integer s ∈ N. By applying ∇s to the
equation satisfied by Qn := Qβn , we obtain that

∇sQn =
∇

|D|−βnD
1−βn

+ 1
∇s−1(|Qn|2Qn) =: Aβn∇s−1(|Qn|2Qn). (2.9)

Using the simple fact that |ξ|−βξ > (1−β)|ξ|, we see that ‖Aβn‖L2→L2 6 C holds.
Thus, by choosing s = 1, we obtain the uniform bound

‖∇Qn‖L2 6 C‖Qn‖3L6 6 C,

since ‖Qn‖L6 6 C because ofQn → Q+ inH
1
2 . Hence we obtain the uniform bounds

‖Qn‖H1 6 C and ‖Qn‖L∞ 6 C (by Sobolev embedding). Now, by induction over
s ∈ N, Leibniz’ rule, and the uniform bounds ‖Qn‖L∞ 6 C, we find

‖Qn‖Hk 6 Ck

for any k ∈ N. By interpolation, this bound implies that Qn → Q+ in Hs for any

s > 0, since Qn → Q+ in H
1
2 by assumption. �

2.3. Invertibility of the linearized operator. In this section, we fix a solitary
wave Qβ ∈ Qβ . Let the linearized operator close to this solitary wave be

Lβε =
|D| − βD

1− β
ε+ ε− 2|Qβ |2ε−Q2

βε. (2.10)

We may now invert Lβ and prove the continuity of the inverse in suitable weighted
norms.

Proposition 2.4 (Invertibility of Lβ). There exist β∗ ∈ (0, 1) such that for all
β ∈ (β∗, 1) and for all Qβ ∈ Qβ, the following holds. There exists C > 0 such that

for all f ∈ H
1
2 we have

‖f‖
H

1
2
≤ C

(
‖Lβf‖

H−1
2
+ |(f, iQβ)|+ |(f, ∂xQβ)|

)
. (2.11)

Let g ∈ H− 1
2 with

(g, iQβ) = (g, ∂xQβ) = 0. (2.12)

Then, there exists a unique solution to

Lβf = g, (f, iQβ) = (f, ∂xQβ) = 0, f ∈ H
1
2 (2.13)

and

‖f‖
H

1
2
. ‖g‖

H− 1
2
. (2.14)

Proof of Proposition 2.4. The invertibility claim follows easily once one proves (2.11).
Indeed, denote by Pβ the orthogonal projection onto Vβ := spanR(iQβ , ∂xQβ). Since
Vβ ⊂ kerLβ from the invariance of the equation on Qβ by translation and phase
shift, we have

f ∈ kerLβ ⇒ f − Pβf ∈ kerLβ .

Applying estimate (2.11) to f−Pβf , we conclude that f−Pβf = 0, namely f ∈ Vβ.
Therefore, kerLβ = Vβ. The rest of the statement is just Fredholm alternative
applied to the self-adjoint Fredholm operator Lβ.

In the remaining we will prove (2.11).
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Step 1: We first claim that

∀f ∈ H
1
2
+ , ‖f‖

H
1
2
≤ C

(
‖Lf‖

H−1
2
+ |(f, iQ+)|+ |(f, ∂xQ+)|

)
, (2.15)

where L denotes the linearized operator for the equation on Q+,

Lε := Dε+ ε−Π+(2|Q+|2ε+ (Q+)2ε) , ε ∈ H
1
2
+ . (2.16)

To prove this estimate, we closely follow Section 5 of [45]. More precisely, we

decompose f ∈ H
1
2
+ according to the orthogonal decomposition

L2
+ = (V ⊕ iV )⊥ ⊕ iV ⊕ V, V := spanR(iQ

+, ∂xQ
+) ,

which reads

f = f ′ + f ′′1 + f ′′2 .

By translation invariance and phase shift invariance, L = 0 on V . Moreover, an
exact computation yields

L(Q+) = −2(DQ+ +Q+) , L(DQ+) = −2DQ+ − 4Q+ .

Consequently, L : iV → iV is one to one. Finally, L : (V ⊕ iV )⊥ → (V ⊕ iV )⊥ and
is coercive (as shown in [45]),

(Lf ′, f ′) ≥ c‖f ′‖2
H

1
2
, (2.17)

and consequently,

∀f ′ ∈ H
1
2
+ ∩ (V ⊕ iV )⊥ , ‖f ′‖

H
1
2
≤ C‖Lf ′‖

H− 1
2
.

We now proceed by contradiction. Assume (2.15) fails. Then there exists a sequence

(fn) of H
1
2
+ such that

‖fn‖
H

1
2
= 1 , ‖Lfn‖

H− 1
2
→ 0 , |(fn, iQ+)|+ |(fn, ∂xQ+)| → 0 .

Decomposing fn = f ′n + f ′′n1 + f ′′n2, we notice that the last condition exactly means
f ′′n2 → 0 in the plane V . Moreover, since ‖f ′′n1‖L2 ≤ ‖fn‖L2 , we may assume that
f ′′n1 → f ′′1 in the plane iV . Since

Lfn = Lf ′n + Lf ′′n1 ,
we have, for every g ∈ iV ,

(Lf ′′n1, g) = (Lfn, g) → 0 ,

whence (Lf ′′1 , g) = 0, or Lf ′′1 = 0, which implies f ′′1 = 0 since L : iV → iV is one to

one. Finally, we conclude that Lf ′n → 0 in H− 1
2 , which implies f ′n → 0 in H

1
2 , and

finally fn → 0 in H
1
2 , a contradiction.

Step 2: Proof of (2.11). This now follows from a standard perturbation argument.
Indeed, since (2.14) is translation and phase-shift invariant, it is enough to prove it
for Qβ = Qβn → Q+, βn → 1, n ≥ N sufficiently large. In the following, we write

Qn = Qβn .

For f ∈ H
1
2 , we observe that

‖Lβnf‖2
H− 1

2
= ‖Π+Lβnf‖2

H− 1
2
+ ‖Π−Lβnf‖2

H− 1
2
.
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Write f± := Π±(f). We have

Π−(Lβnf) =
1 + βn
1− βn

|D|f− + f− −Π−(2|Qn|2f +Q2
nf)

hence, using the L4 bound for Qn,

(Π−(Lβnf), f
−) ≥ 1 + βn

1− βn
(|D|f−, f−) + ‖f−‖2L2 −O(1)‖f‖L4‖f−‖L4 .

Using the Gagliardo-Nirenberg inequality for f− and βn close to 1, we can absorb
‖f−‖2L4 with a large factor and get

(Π−(Lβnf), f
−) ≥ 1

1− βn
(|D|f−, f−) + ‖f−‖2L2 − o(1)‖f+‖2L4 ,

and finally

‖Π−(Lβnf)‖2
H− 1

2
≥ c

(
1

1− βn
(|D|f−, f−) + ‖f−‖2L2

)
− o(1)‖f+‖2L4 .

On the other hand,

Π+(Lβnf) = Π+(Lβnf
+) + Π+(Lβnf

−) = Lf+ + r+ + r− ,

with

r− = −Π−(2|Qn|2f− +Q2
nf

−) , ‖r−‖
H− 1

2
≤ ‖r−‖L2 ≤ O(1)‖f−‖L4 ,

r+ = −Π+(2(|Qn|2 − |Q+|2)f+ + (Q2
n − (Q+)2)f+) , ‖r+‖

H− 1
2
≤ ‖r+‖L2 ≤ o(1)‖f+‖L4 ,

where we have used uniform estimates on Qn and the fact that Qn → Q+ in Lp for
every p. Finally,

‖Π+(Lβnf)‖2
H− 1

2
≥ ‖Lf+‖2

H
1
2
− o(1)‖f+‖2L4 −O(1)‖f−‖2L4 . (2.18)

Summing up, we get, using again the absorption of ‖f−‖L4 ,

‖Lβnf‖2
H−1

2
≥ c

(
1

1− βn
(|D|f−, f−) + ‖f−‖2L2

)
+ ‖Lf+‖2

H
1
2
− o(1)‖f+‖2L4 .

On the other hand,

|(f, ∂xQn)|2 + |(f, iQn)|2 > |(f+, ∂xQ+)|2 + |(f+, iQ+)|2 − o(1)‖f‖2L2 .

Summing the last two inequalities and using estimate (2.15) for f+, we absorb the
term o(1)(‖f+‖2L4 + ‖f‖2L2) and obtain the desired estimate. �

Remark 2.5. We also have the estimate

‖f‖
H

1
2
≤ C

(
‖Lβf‖

H− 1
2
+ |(f, iQ+)|+ |(f, ∂xQ+)|

)
, (2.19)

if β is close enough to 1 and Qβ is close enough to Q+. This will be useful in the
next subsection for defining a smooth branch of Qβ.

2.4. Uniqueness of traveling waves for β ∈ (β∗, 1) close to 1.

Proposition 2.6. There exists β∗ ∈ (0, 1) such that the following holds.

• For every β ∈ (β∗, 1), for every Qβ, Q̃β in Qβ, there exists (γ, y) ∈ T × R

such that

Q̃β(x) = eiγQβ(x− y) .
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• There exists a neighborhood U of Q+ in H
1
2 such that, for every β ∈ (β∗, 1),

Qβ ∩ U contains a unique point Qβ satisfying

(Qβ, iQ
+) = (Qβ , ∂xQ

+) = 0 .

Moreover, we have

‖Qβ −Q+‖H1 = O
(
|1− β| 12 | log(1− β)| 12

)
. (2.20)

The map β ∈ (β∗, 1) 7→ Qβ ∈ H
1
2 is smooth, tends to Q+ as β tends to 1,

and its derivative is uniquely determined by
{
Lβ(∂βQβ) =

2
1−β2 (Q

−
β −Π−(|Qβ |2Qβ))

(∂βQβ, iQ
+) = (∂βQβ, ∂xQ

+) = 0
(2.21)

Proof. Let us prove the first item. We may assume that Qβ and Q̃β tend to Q+ as
β tends to 1. For (γ, y) ∈ T× R, we then define

ε(x, γ, y, β) := Q̃β(x)− eiγQβ(x− y) ,

and
f(γ, y, β) := (ε(., γ, y, β), iQ̃β) , g(γ, y, β) := (ε(., γ, y, β), ∂xQ̃β) .

These two functions are smooth in (γ, y) and their Jacobian matrix at (γ, y) = (0, 0)
is close to (

(−iQ+, iQ+) (∂xQ
+, iQ+)

(−iQ+, ∂xQ
+) (∂xQ+, ∂xQ

+)

)
=

(
−2π 2π
−2π 4π

)

therefore it is uniformly invertible. Moreover, as β goes to 1, f(0, 0, β) and g(0, 0, β)
tend to 0. By the implicit function theorem, we conclude that there exist functions
γ(β), y(β) with values near (0, 0) such that

f(γ(β), y(β), β) = g(γ(β), y(β), β) = 0 .

Then, coming back to the equations satisfied by Qβ and Q̃β, we infer that ε(x, β) :=
ε(x, γ(β), y(β), β) satisfies

‖LQ̃β
ε( . , β)‖

H− 1
2
6 Co(1)‖ε( . , β)‖

H
1
2
,

and, using estimate (2.14), we conclude that ε(x, β) = 0.

Let us come to the second item. Select a family (Q0
β), with Q0

β ∈ Qβ , which

tends to Q+ as β tends to 1. Applying the implicit function theorem as before to
the functions

f̃(γ, y, β) := (eiγQ0
β(.− y), iQ+) , g̃(γ, y, β) := (eiγQ0

β(.− y), ∂xQ
+) ,

we find functions γ̃(β), ỹ(β) valued near (0, 0) which cancel f̃ , g̃. This provides
the existence of Qβ. The uniqueness comes from Remark 2.5. Furthermore, as a
consequence of (2.3), we get

‖Qβ −Q+‖
H

1
2
= O

(
|1− β| 12 | log(1− β)| 12

)
.

Coming back to the equation satisfied by Qβ,

Qβ =

( |D| − βD

1− β
+ 1

)−1

(|Qβ |2Qβ) ,

and expanding in the L2-norm

|Qβ|2Qβ = |Q+|2Q+ +O((1− β)
1
2 | log(1− β)| 12 ) ,
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we infer, in the L2 norm,

DQβ = D(D+1)−1Π+(|Q+|2Q+)+D

(
(1 + β)|D|

1− β
+ 1

)−1

Π−(|Q+|2Q+)+O((1−β) 1
2 | log(1−β)| 12 ) ,

and finally

DQβ = DQ+ +O((1− β)
1
2 | log(1− β)| 12 ) ,

in the L2 norm, which completes the proof of (2.20).

Using again the equation satisfied by Qβ and the estimate from Remark 2.5, it is
then straightforward to prove that the map β 7→ Qβ is smooth on (β∗, 1) and that
its derivative satisfies

Lβ(∂βQβ) +
(|D| −D)Qβ

(1− β)2
= 0 , (∂βQβ , iQ

+) = (∂βQβ, ∂xQ
+) = 0.

Notice that (|D| −D)Qβ = −2DQ−
β . Projecting the equation for Qβ onto negative

Fourier modes, we get

2DQ−
β

1− β
=

2

1 + β
(Q−

β −Π−(|Qβ |2Qβ)) ,

which, plugged into the equation on ∂βQβ, leads to (2.21). �

3. Properties of Qβ

We collect in this section information on Qβ which will be essential for the con-
struction of the two-bubble approximate solutions.

3.1. Weighted norms and Fourier multipliers. For every function f on R and
β ∈ (β∗, 1), we define the following weighted norm,

||f ||β := sup
x∈R

〈x〉(1 + (1− β)|x|)|f(x)| .

The next lemma will be crucial in all our estimates.

Lemma 3.1. Let {mβ}β∗<β<1 be a family of functions on R such that

sup
β

||mβ||L2 ≤M0 , (3.1)

|xmβ(x)| ≤
M0

1 + (1− β)|x| , (3.2)

for some M0 > 0. Assume {aβ , bβ}β∗<β<1 is bounded in L∞ and is tight in L2,
namely

sup
β∗<β<1

∫

|x|>R
[|aβ(x)|2 + |bβ(x)|2] dx −→

R→∞
0 .

Then there exists a constant A > 0 independent of β such that, if f, h ∈ L2 satisfy

f = mβ ∗ (aβf + bβf) + h ,

the following estimate holds,

||f ||β ≤ A[(||aβ||L∞ + ||aβ ||L2 + ||bβ||L∞ + ||bβ ||L2) ||f ||L2 + ||h||β] .
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Proof. First of all, we have trivially

||f ||L∞ ≤ ||mβ||L2 (||aβ||L∞ + ||bβ||L∞) ||f ||L2 + ||h||L∞ ,

hence it is enough to estimate |f(x)| for x large enough. Let R0 > 0 such that

sup
β

||mβ||L2



(∫

|y|≥R0/2
|aβ(y)|2 dy

)1/2

+

(∫

|y|≥R0/2
|bβ(y)|2) dy

)1/2

 ≤ 1

8
.

For every R > 0, we set

M(R) := sup
|x|≥R

|f(x)| .

For |x| ≥ R, and R ≥ R0, we write

|mβ ∗ (aβf + bβf)(x)| ≤
∣∣∣∣∣

∫

|y|≤R
2

mβ(x− y)(aβ(y)f(y) + bβ(y)f(y)) dy

∣∣∣∣∣

+

∣∣∣∣∣

∫

|y|≥R
2

mβ(x− y)(aβ(y)f(y) + bβ(y)f(y))dy

∣∣∣∣∣

≤ C

R(1 + (1− β)R)
(||aβ||L2 + ||bβ||L2) ||f ||L2 +

1

8
M

(
R

2

)
.

This implies, for every R ≥ R0,

M(R) ≤
C(||aβ||L2 + ||bβ ||L2) ||f ||L2 + ||h||β

R(1 + (1− β)R)
+

1

8
M

(
R

2

)
.

Applying this to R = 2n for n ≥ n0, we obtain

M(2n) ≤ K2−n(1+(1−β)2n)−1+
1

8
M(2n−1) , K := C(||aβ||L2+||bβ||L2) ||f ||L2+||h||β .

Iterating, we get

M(2n) ≤ K

n−n0∑

p=0

2−(n−p)(1 + (1− β)2n−p)−1

(
1

8

)p

+

(
1

8

)n−n0+1

M(2n0−1)

≤ K2−n(1 + (1− β)2n)−1
n−n0∑

p=0

2−p +

(
1

8

)n−n0+1

M(2n0−1)

≤ (2K + 4n0M(2n0−1)) 2−n(1 + (1− β)2n)−1 .

Since |x| ∼ 2n for 2n ≤ |x| ≤ 2n+1, this completes the proof of the lemma. �

We now introduce an important class of families {mβ}β∗<β<1 satisfying estimates
(3.1), (3.2). Denote by M the class of families {µβ}β∗<β<1 such that the Fourier
transform is given by

µ̂β(ξ) = Aβ

(
f+(ξ)1ξ>0 + f−

(
−1 + β

1− β
ξ

)
1ξ<0

)
, (3.3)

where f± ∈ C∞([0,+∞)) satisfy the following requirements,

∀j ≥ 0,∀ζ ∈ (0,+∞), |f (j)± (ζ)| ≤ Cj(1 + ζ)−j−1 , f+(0) = f−(0) ,

and where β 7→ Aβ is smooth on (β∗, 1) and is bounded with bounded derivatives
of any order. Indeed, the L2-estimate (3.1) on µβ is provided by

|f±(ζ)| ≤ C0(1 + ζ)−1 ,
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while (3.2) comes from

xµβ(x) = Aβ

(
F+(x)− F−

(
−1− β

1 + β
x

))
, F±(y) :=

∫ +∞

0
if ′±(ζ) e

iyζ dζ

2π
= O

(
1

1 + |y|

)
.

The advantage of the class M is that it is stable through various important oper-
ations. The first one is of course the product of convolution, which corresponds to
the product of functions β 7→ Aβ and ζ 7→ f±(ζ). The second one is the operator
x∂x+1, which corresponds to replacing f± by −ζf ′±. Finally, if {µβ}β∗<β<1 belongs
to class M, then

(1− β)∂β µ̂β(ξ) = (1− β)A′
β

(
f+(ξ)1ξ>0 + f−

(
−1 + β

1− β
ξ

)
1ξ<0

)
(3.4)

+
2Aβ

1 + β
g−

(
−1 + β

1− β
ξ

)
1ξ<0 , (3.5)

where g−(ζ) := ζf ′−(ζ). Hence the family

{(1− β)∂βµβ}β∗<β<1

is a sum of elements of class M.
A typical example of a family in class M is

mβ = F−1


 1

1 + |ξ|−βξ
1−β


 ,

which corresponds to

Aβ = 1 , f+(ζ) = f−(ζ) = (1 + ζ)−1 .

The above considerations lead to the following result, which will be of constant use
in the sequel.

Lemma 3.2. All the multipliers

mβ,p,q := (x∂x)
p((1− β)∂β)

qmβ, p, q ≥ 0 ,

and any convolution products between them satisfy properties (3.1) and (3.2).

We complete this subsection with three auxiliary results. The first one is the
crucial estimate for Lβ regarding the weighted norm ‖ ‖β .

Proposition 3.3 (Continuity of L−1
β in weighted norms). Let β ∈ (β∗, 1) and

g ∈ H− 1
2 with

(g, iQβ) = (g, ∂xQβ) = 0.

Then any solution f to

Lβf = g, f ∈ H
1
2

satisfies:

‖f‖β ≤ C(‖g‖
H− 1

2
+ |(f, iQβ)|+ |(f, ∂xQβ)|+ ‖mβ ∗ g‖β) (3.6)

where

mβ = F−1


 1

1 + |ξ|−βξ
1−β


 .
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Proof. The equation reads

f = mβ ∗ g +mβ ∗ (2|Qβ |2f +Q2
βf) ,

so we are in position to apply Lemma 3.1 with aβ = 2|Qβ |2, bβ = Q2
β, h = mβ ∗ g.

In view of the L∞-estimates and the tightness property for the family Qβ obtained
from Proposition 2.6, we infer

‖f‖β ≤ B(‖f‖L2 + ‖mβ ∗ g‖β) .
On the other hand, by Proposition 2.4,

‖f‖L2 ≤ ‖f‖
H

1
2
. ‖g‖

H− 1
2
+ |(f, iQβ)|+ |(f, ∂xQβ)|.

This completes the proof. �

Remark 3.4. In view of Remark 2.5, one can replace

|(f, iQβ)|+ |(f, ∂xQβ)|
by

|(f, iQ+)|+ |(f, ∂xQ+)|
in the right hand side of the estimate (3.6).

The second result is the following lemma.

Lemma 3.5. Assume µβ satisfies (3.1) and (3.2). Then

‖µβ ∗ (h1h2)‖β . ‖h1‖β ‖h2‖β .
Proof. First of all, the L∞-bound is an easy consequence of L2 ∗ L2 ⊂ L∞, so we
may assume |x| ≥ 1. Then we split

µβ ∗ (h1h2)(x) =

∫

|y|< |x|
2

µβ(x− y)h1(y)h2(y) dy +

∫

|y|≥ |x|
2

µβ(x− y)h1(y)h2(y) dy

= O(|x|−1(1 + (1− β)|x|)−1)‖h1h2‖L1

+‖µβ‖L2 ‖h1h2‖L2(|y|>|x|/2)

≤ O(|x|−1(1 + (1− β)|x|)−1)‖h1‖L2‖h2‖L2

+O(|x|−3/2(1 + (1− β)|x|)−2)‖h1‖β‖h2‖β ,
and the lemma follows. �

The third result concerns the Lp norm of elements of class M.

Lemma 3.6. If {µβ}β∗<β<1 belongs to class M, then there exists C > 0 such that,
for every p ∈ (1,∞), for every β ∈ (β∗, 1),

‖µβ‖Lp ≤ C max

(
1

p− 1
, p

)
.

Proof. From (3.3), the following holds,

µβ(x) = Aβ

(
µ+(x) +

1− β

1 + β
µ−

(
−1− β

1 + β
x

))
, µ± := F−1(f±) .

It is therefore sufficient to prove that, for every f ∈ C1(R+) such that

|f(ξ)| ≤ C

1 + ξ
, |f ′(ξ)| ≤ C

(1 + ξ)2
,
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the inverse Fourier transform µ = F−1(f) satisfies

∀p ∈ (1,∞) , ‖µ‖Lp(R) ≤ C̃ max

(
1

p− 1
, p

)
.

First, an integration by part leads to

xµ(x) =
if(0)

2π
+ i

∫ ∞

0
eixξf ′(ξ)

dξ

2π
,

which provides the bound

|µ(x)| . 1

|x| .

Secondly, if x is close to 0, introducing a cut-off function ϕ such that ϕ = 1 near 0,
and writing

µ(x) =

∫ ∞

0
eixξϕ(xξ)f(ξ)

dξ

2π
+

∫ ∞

0
eixξ(1− ϕ(xξ))f(ξ)

dξ

2π
:= µ<(x) + µ>(x) ,

we observe that

|µ<(x)| . log

(
1

|x|

)
,

while

|xµ>(x)| .
∫

R

∣∣∣∣
d

dξ
[ϕ(xξ)f(ξ)]

∣∣∣∣ dξ . |x| .

We infer that, near x = 0,

|µ(x)| . log

(
1

|x|

)
.

Consequently,

‖µ‖pLp .

∫

|x|≤1

(
log

(
1

|x|

))p

dx+

∫

|x|≥1

dx

|x|p

. pp +
1

p− 1
.

This completes the proof. �

3.2. Weighted estimates on Qβ.

Proposition 3.7. For every p, q ∈ N, there exists Cp,q such that

∀β ∈ (β∗, 1) , ||(x∂x)p((1 − β)∂β)
qQβ||β 6 Cp,q .

Proof. First assume p = q = 0. We use the identity

Qβ = mβ ∗ (Qβ|Qβ|2) ,
and Lemma 3.1 with

mβ = F−1


 1

1 + |ξ|−βξ
1−β


 , aβ = |Qβ|2 , bβ = 0 , h = 0 ,

and we easily obtain
||Qβ||β ≤ C0,0 .

Now let us prove the estimate for p = 0 and every q. Set Λ̃β := (1 − β)∂β . From
equation (2.21), we have

{
Lβ(Λ̃βQβ) =

2
1+β (Q

−
β −Π−(|Qβ |2Qβ))

(Λ̃βQβ, iQ
+) = (Λ̃βQβ, ∂xQ

+) = 0
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From a priori Hs estimates on Qβ and inequality (3.6) — in fact Remark 3.4— we
infer ∣∣∣

∣∣∣Λ̃βQβ

∣∣∣
∣∣∣
β
≤ C

(
1 +

∣∣∣
∣∣∣mβ ∗ (Q−

β −Π−(|Qβ |2Qβ))
∣∣∣
∣∣∣
β

)
.

From the equation (1.9) of Qβ, we have

Qβ = mβ ∗ (|Qβ|2Qβ) ,

so that, with m−
β := Π−mβ,

mβ ∗ (Q−
β −Π−(|Qβ |2Qβ)) = (m−

β ∗m−
β −m−

β ) ∗ (|Qβ|2Qβ) .

Notice that

F(m−
β ∗m−

β −m−
β )(ξ) = 1ξ<0

1+β
1−β ξ

(1− 1+β
1−β ξ)

2
,

so that {m−
β ∗m−

β −m−
β }β∗<β<1 belongs to class M, and therefore Lemma 3.5 yields

∣∣∣
∣∣∣Λ̃βQβ

∣∣∣
∣∣∣
β
6 C0,1 .

For further reference, we are going to estimate
∣∣∣
∣∣∣D∂βQ−

β

∣∣∣
∣∣∣
L2

. Projecting the equation

of Λ̃βQβ onto negative Fourier modes, we get

(1+β)D∂βQ
−
β = Λ̃βQ

−
β −Π−(2|Qβ |2Λ̃βQβ+Q

2
βΛ̃βQβ)−

2

1 + β
(Q−

β −Π−(|Qβ |2Qβ)) .

From the estimate on Λ̃βQβ we just established, we infer
∣∣∣
∣∣∣D∂βQ−

β

∣∣∣
∣∣∣
L2

≤ C ′
1 .

Let us prove by induction on q ≥ 1 that
∣∣∣
∣∣∣Λ̃q

βQβ

∣∣∣
∣∣∣
β
≤ C0,q ,

∣∣∣
∣∣∣D∂βΛ̃q−1

β Qβ

∣∣∣
∣∣∣
L2

≤ C ′
q , (3.7)

where C0,q and C ′
q are independent of β. Notice that we just proved the case q = 1.

In order to deal with higher orders, we observe that, for every function fβ depending
smoothly on β,

Lβ(Λ̃βfβ) = Λ̃β(Lβfβ) +
2Df−β
1− β

+ 4Re(QβΛ̃βQβ)fβ + 2QβΛ̃βQβfβ .

From this identity and the formula for Λ̃βQβ, we infer that Lβ((Λ̃β)
q+1Qβ) is a

linear combination of terms of the following form.

• D∂β(Λ̃β)
rQβ, with r ≤ q − 1.

• Aβ(Λ̃β)
rQ−

β for r ≤ q and Aβ depends smoothly on β, is bounded as well as
its derivatives.

• BβΠ−
(
(Λ̃β)

aQβ(Λ̃β)
bQβ(Λ̃β)cQβ

)
, where a + b + c ≤ q, and Bβ depends

smoothly on β, is bounded as well as its derivatives.

• Cβ(Λ̃β)
aQβ(Λ̃β)

bQβ(Λ̃β)cQβ, where a + b + c ≤ q + 1, a, b, c 6 q, and Cβ

depends smoothly on β, is bounded as well as its derivatives.

Since all these terms are bounded in L2 by the induction assumption, and since
((Λ̃β)

q+1Qβ, iQ
+) = ((Λ̃β)

q+1Qβ, ∂xQ
+) = 0, we infer from inequality (3.6) — in
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fact Remark 3.4— that
∣∣∣
∣∣∣(Λ̃β)

q+1Qβ

∣∣∣
∣∣∣
L2

is bounded independently of β.

Now let us prove (3.7) at step q + 1. Applying (Λ̃β)
q+1 to

Qβ = mβ ∗ (|Qβ|2Qβ) ,

we obtain

(Λ̃β)
q+1Qβ = mβ ∗

(
2|Qβ |2(Λ̃β)

q+1Qβ +Q2
β(Λ̃β)q+1Qβ

)
+Rβ,q ,

where Rβ,q is a finite sum of terms of the form

(Λ̃β)
amβ ∗

[
(Λ̃β)

bQβ(Λ̃β)
cQβ(Λ̃β)dQβ

]
, a+ b+ c+ d = q + 1 , max(b, c, d) ≤ q .

Using Lemma 3.1, the L2 estimate on (Λ̃β)
q+1Qβ, and Lemmas 3.2 and 3.5, as well

as the induction assumption, we infer∣∣∣
∣∣∣(Λ̃β)

q+1Qβ

∣∣∣
∣∣∣
β
≤ C0,q+1 .

Furthermore,

D∂β(Λ̃β)
qQ−

β =
Dmβ

1− β
∗
(
2|Qβ |2(Λ̃β)

q+1Qβ +Q2
β(Λ̃β)q+1Qβ

)
+ (1− β)−1DRβ,q ,

where (1− β)−1DRβ,q is a finite sum of terms of the form

(1−β)−1D(Λ̃β)
amβ∗

[
(Λ̃β)

bQβ(Λ̃β)
cQβ(Λ̃β)dQβ

]
, a+b+c+d = q+1 , max(b, c, d) ≤ q .

It remains to observe that, if {µβ} is an element of class M, then

(1− β)−1D̂µ−β (ξ) = 1ξ<0
iξ

1− β
f−

(
−1 + β

1− β
ξ

)

is uniformly bounded in L∞, therefore the convolution with (1 − β)−1Dµ−β is uni-

formly bounded on L2. This proves the L2-estimate on D∂β(Λ̃β)
qQ−

β , and completes

the proof of (3.7) at step q + 1.
Finally, we prove the estimate for every p, q, by induction on p+ q. Assume that∣∣∣

∣∣∣Λr
x(Λ̃β)

sQβ

∣∣∣
∣∣∣
β
≤ Cr,s , r + s ≤ n ,

and let us prove the inequality for r + s = n + 1. Since the case r = 0 is already
known, we may assume r = p+1, s = q with p+ q = n. Recall that Λx := x∂x. We
use the identity

Λx(f ∗ g) = Λx(f) ∗ g + f ∗ Λx(g) + f ∗ g = (Λx + I)f ∗ g + f ∗ Λx(g) (3.8)

to obtain

Λp
x(Λ̃β)

qQβ = mβ ∗
(
2|Qβ |2Λp

x(Λ̃β)
qQβ +Q2

βΛ
p
x(Λ̃β)qQβ

)
+Rβ,p,q ,

where Rβ,p,q is a finite sum of terms of the form

(Λx + I)a
′
(Λ̃β)

amβ ∗
[
Λb′

x (Λ̃β)
bQβΛ

c′

x (Λ̃β)
cQβΛd′

x (Λ̃β)dQβ

]
,

a+ b+ c+ d = q , a′ + b′ + c′ + d′ = p , max(b, c, d) ≤ q − 1 or max(b′, c′, d′) ≤ p− 1 .

Let us first prove that Λp+1
x (Λ̃β)

qQβ is uniformly bounded in L2. We apply Λx

to the above formula giving Λp
x(Λ̃β)

qQβ. We expand ΛxRβ,p,q using again identity
(3.8), and we get, by the induction assumption, that ΛxRβ,p,q is uniformly bounded
in L2. As for the term

mβ ∗
(
2|Qβ |2Λp

x(Λ̃β)
qQβ +Q2

βΛ
p
x(Λ̃β)qQβ

)
,
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we write
x∂x[mβ ∗ f ] = x∂xmβ ∗ f + ∂xmβ ∗ (xf) .

From the induction assumption, we easily get that∣∣∣
∣∣∣x∂xmβ ∗

(
2|Qβ |2Λp

x(Λ̃β)
qQβ +Q2

βΛ
p
x(Λ̃β)qQβ

)∣∣∣
∣∣∣
L2

≤ Ap,q .

On the other hand, since

∂̂xmβ(ξ) =
iξ

1 + |ξ|−βξ
1−β

is uniformly bounded, the uniform bounds on

||xQβ||L∞ , ||Qβ||L∞ ,
∣∣∣
∣∣∣Λp

x(Λ̃β)
qQβ

∣∣∣
∣∣∣
L2

imply ∣∣∣
∣∣∣∂xmβ ∗

(
2x|Qβ|2Λp

x(Λ̃β)
qQβ + xQ2

βΛ
p
x(Λ̃β)qQβ

)∣∣∣
∣∣∣
L2

≤ Bp,q .

Summing up, we have proved that Λp+1
x (Λ̃β)

qQβ is uniformly bounded in L2. It
remains to prove a uniform bound of the weighted norm. But this is now a conse-
quence of the formula

Λp+1
x (Λ̃β)

qQβ = mβ ∗
(
2|Qβ |2Λp+1

x (Λ̃β)
qQβ +Q2

βΛ
p+1
x (Λ̃β)qQβ

)
+Rβ,p+1,q ,

of Lemmas 3.1, 3.2, 3.5 and of the induction assumption. The proof is complete. �

3.3. Inverting Lβ with a special right hand side. In this section, we consider
the equation

Lβ(iρβ) = i∂yQβ , (iρβ, iQβ) = (iρβ , ∂yQβ) = 0 . (3.9)

Since i∂yQβ is orthogonal to iQβ and ∂yQβ, this equation has a unique solution
given by Proposition 3.3. The next lemma describes this solution as β tends to 1.

Lemma 3.8. Let iρβ be defined by (3.9). Then,

iρβ = Qβ +
i

2
∂yQβ +O((1 − β)

1
2 | log(1− β)| 12 ) in H

1
2 (R). (3.10)

Proof. A computation based on the equation satisfied by Qβ shows that

Lβ

(
Qβ +

i

2
∂yQβ

)
= −2|Qβ |2Qβ + iQ2

β∂yQβ.

On the other hand, we have

Lβ(Qβ) =
2βDQβ

1− β
− |Qβ|2Qβ −Q3

β.

From the last two equations, we conclude that

Lβ

(
Qβ +

i

2
∂yQβ +

1

2
(1− β)Qβ

)
= −2|Qβ|2Qβ + iQ2

β∂yQβ + iβ∂yQβ

− 1

2
(1− β)|Qβ |2Qβ − 1

2
(1− β)Q3

β =: RHS

Using (2.20) and Proposition 2.3, we then notice that

RHS = −2|Q+|2Q+ − i|Q+|4 − iQ+2
+O((1− β)1/2| log(1− β)|1/2) in H−1/2

= i∂yQ
+ +O((1− β)1/2| log(1− β)|1/2) in H−1/2

= i∂yQβ +O((1 − β)1/2| log(1− β)|1/2) in H−1/2
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Thus, denoting

gβ := Qβ +
i

2
∂yQβ +

1

2
(1− β)Qβ ,

we have that

Lβ(gβ) = i∂yQβ +O((1 − β)1/2| log(1− β)|1/2) in H−1/2.

Notice that (
Qβ +

i

2
∂yQβ , iQβ

)
=
(
Qβ +

i

2
∂yQβ, ∂yQβ

)
= 0.

Then, considering

g̃β := gβ − 1

2
(1− β)Proj(iQβ ,∂yQβ)

Qβ , (3.11)

we have that (g̃β, iQβ) = (g̃β , ∂yQβ) = 0 and

Lβ(g̃β) = Lβ(gβ) = i∂yQβ +O((1 − β)1/2| log(1− β)|1/2) in H−1/2 .

Since Lβ(iρβ) = i∂yQβ , it follows that (iρβ − g̃β, iQβ) = (iρβ − g̃β, ∂yQβ) = 0 and

Lβ(iρβ − g̃β) = O((1− β)1/2| log(1− β)|1/2) in H−1/2.

Then, by Proposition 2.4, we have that

iρβ − g̃β = O((1− β)1/2| log(1− β)|1/2) in H1/2

In view of (3.11), we have g̃β = Qβ + i
2∂yQβ + O(1 − β) in H

1
2 (R), thus (3.10) is

proved. �

3.4. The profiles of Qβ(x) and of ∂xQβ(x) at infinity.

Proposition 3.9. Consider the following function,

F (x) =

∫ ∞

0

α e−α

α− ix
dα , x ∈ R , (3.12)

and the quantity

cβ :=
i

2π

∫

R

|Qβ(x)|2Qβ(x) dx . (3.13)

Then, as β → 1 and |x| → ∞, we have

Qβ(x) =
cβ
x
F

(
−1− β

1 + β
x

)
+O

(
1

x2

)
(3.14)

∂xQβ(x) =
icβ
x

1− β

1 + β
F

(
−1− β

1 + β
x

)
− cβ
x2

+O

(
1− β

x2
+

log |x|
|x|3

)
. (3.15)

Remark 3.10. (1) From the previous section and by Lemma A.1, we know
that cβ tends to 1 as β tends to 1. In the next subsection — see (3.29)—
we will prove that

cβ = 1 +O((1 − β)| log(1− β)|) . (3.16)

(2) Notice that F (x) = 1 + O(|x|| log |x||) as x → 0 and |F (x)| . 1
|x| for all

|x| > 0. Therefore, as β → 1 and |x| → ∞, we infer from (3.14) that

|Qβ(x)| .
1

|1− β|x2 , ∀|x| > 0. (3.17)
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Furthermore, if 0 < 1 − β ≪ 1, |x| ≫ 1, and (1 − β)|x| ≪ 1, the following
asymptotics follows from (3.14) and (3.16):

Qβ(x) =
1 +O((1− β)| log(1− β)|)

x
[1 +O ((1− β)|x| |log((1− β)|x|)|)]

+O

(
1

x2

)
. (3.18)

(3) In view of the identity

F ′(x) =

(
1

x
− i

)
F (x)− 1

x
, (3.19)

the main term in the asymptotics (3.15) for ∂xQβ(x) is indeed obtained by
deriving the main term in the asymptotics (3.14) of Qβ(x).

Proof. The starting point is again the formula

Qβ = mβ ∗ (|Qβ|2Qβ) ,

where

mβ = F−1


 1

1 + |ξ|−βξ
1−β


 .

We notice that, for x 6= 0,

mβ(x) =
1

2π

(
G(x) +

1− β

1 + β
G

(
−1− β

1 + β
x

))
,

where

G(x) =

∫ ∞

0

eixξ

1 + ξ
dξ =

∫ ∞

0

e−α

α− ix
dα,

the second integral being obtained from the former by writing

1

1 + ξ
=

∫ ∞

0
e−α(1+ξ) dα .

It is easy to check that G is smooth outside x = 0, G(x) = ix−1 + x−2 +O(x−3) as
x→ ∞, and G(x) ∼ log |x| as x→ 0. In particular, G ∈ Lp(R) for every p ∈ (1,∞),
with

‖G‖Lp ≤ Cmax

(
1

p− 1
, p

)
. (3.20)

Next we split

xQβ(x) =

∫

R

(x− y)mβ(x− y)|Qβ(y)|2Qβ(y) dy +

∫

R

mβ(x− y)y|Qβ(y)|2Qβ(y) dy .

Let us estimate the second integral in the right hand side, writing
∫

R

mβ(x− y)y|Qβ(y)|2Qβ(y) dy =

∫

|y|≤|x|/2
mβ(x− y)y|Qβ(y)|2Qβ(y) dy +

∫

|y|>|x|/2
mβ(x− y)y|Qβ(y)|2Qβ(y) dy .

From Hölder’s inequality and the uniform bound |Qβ(x)|〈x〉 from Proposition 3.7,
we have, for every p > 1, close to 1,

∣∣∣∣∣

∫

|y|>|x|/2
mβ(x− y)y|Qβ(y)|2Qβ(y) dy

∣∣∣∣∣ .
1

p− 1
|x|−1− 1

p ,
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which, by choosing

p = 1 +
1

log |x| ,

yields ∣∣∣∣∣

∫

|y|>|x|/2
mβ(x− y)y|Qβ(y)|2Qβ(y) dy

∣∣∣∣∣ .
log |x|
x
2− 1

log |x|

.
log |x|
|x|2 .

On the other hand, because of the bounds on G, we have

|mβ(x)| . |x|−1 , |x| → ∞ .

Indeed, the only non trivial case is (1− β)|x| ≤ 1, so that
∣∣∣∣
1− β

1 + β
G

(
−1− β

1 + β
x

)∣∣∣∣ . (1− β)| log[(1 − β)|x|] . 1

|x| .

We conclude that
∣∣∣∣∣

∫

|y|≤|x|/2
mβ(x− y)y|Qβ(y)|2Qβ(y) dy

∣∣∣∣∣ .
1

|x| ,

so that

Qβ(x) =
1

x

∫

R

(x− y)mβ(x− y)|Qβ(y)|2Qβ(y) dy +O

(
1

x2

)
.

We come to the first integral. We observe that

x̂mβ(ξ) = i∂ξ


 1

1 + |ξ|−βξ
1−β


 = i

(
1 + β

1− β

)
1ξ<0

(
1 +

1 + β

1− β
|ξ|
)−2

− i
1ξ>0

(1 + ξ)2
,

so that

xmβ(x) =
i

2π

(
F

(
−1− β

1 + β
x

)
− F (x)

)
, (3.21)

F (x) :=

∫ ∞

0

eixξ

(1 + ξ)2
dξ =

∫ ∞

0

α e−α

α− ix
dα = 1 + ixG(x) . (3.22)

This leads to
∫

R

(x− y)mβ(x− y)|Qβ(y)|2Qβ(y) dy = −
∫

R

F (x− y)gβ(y) dy

+

∫

R

F

(
−1− β

1 + β
(x− y)

)
gβ(y) dy ,

gβ :=
i

2π
|Qβ|2Qβ .

Again we are going to estimate the above two integrals by using the properties of F ,
namely that F is smooth outside the origin, it is bounded near 0, F (x) = O(x−1)
at infinity, while |F ′(x)| = O(| log |x||) near 0 and F ′(x) = O(x−2) at infinity.
Furthermore, let us recall from Proposition 3.7 that

gβ(y) = O(〈y〉−3) .
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We infer the following estimates,

∫

R

F (x− y)gβ(y) dy =

∫

|y|≤ |x|
2

F (x− y)gβ(y) dy +

∫

|y|> |x|
2

F (x− y)gβ(y) dy

= O(|x|−1) +O(x−2) ,∫

R

F

(
−1− β

1 + β
(x− y)

)
gβ(y) dy = F

(
−1− β

1 + β
x

)∫

|y|≤ |x|
2

gβ(y) dy

+

∫

|y|> |x|
2

F

(
−1− β

1 + β
(x− y)

)
gβ(y) dy

+

∫

|y|≤ |x|
2

(
F

(
−1− β

1 + β
(x− y)

)
− F

(
−1− β

1 + β
x

))
gβ(y) dy

= cβF

(
−1− β

1 + β
x

)
+O(x−2) +O(|x|−1ω((1− β)|x|)) ,

ω(s) :=

{
s| log s| if 0 < s ≤ 1

2
1
s if 1

2 ≤ s
.

This completes the proof of (3.14). Let us come to the proof of (3.15). Notice that

∂̂xmβ(ξ) =
iξ

1 + |ξ|−βξ
1−β

= i


1ξ>0 −

1− β

1 + β
1ξ<0 −

1ξ>0

1 + ξ
+

1− β

1 + β

1ξ<0(
1 + |ξ|−βξ

1−β

)


 ,

so that, using the formulae F−1(1±ξ>0) = ∓ 1
2πipv

(
1
x

)
+ 1

2δ0,

∂xmβ(x) =
−1

π(1 + β)
pv

(
1

x

)
+

iβ

2(1 + β)
δ0−

i

2π
G(x)+

i

2π

(
1− β

1 + β

)2

G

(
−1− β

1 + β
x

)
,

and

∂xQβ(x) =
2i

1 + β
pv

(
1

x

)
∗ gβ +

iβ

2(1 + β)
|Qβ(x)|2Qβ(x)

+

∫

R

((
1− β

1 + β

)2

G

(
−1− β

1 + β
(x− y)

)
−G(x− y)

)
gβ(y) dy .

Using, similarly as above, the estimates on G, and Proposition 3.7 for gβ , we have

∫

|y|>|x|/2
G(x− y)gβ(y) dy = O

(
log |x|
|x|3

)
,

∫

|y|≤|x|/2
G(x− y)gβ(y) dy =

i

x

∫

R

gβ +
1

x2

(
i

∫

R

ygβ +

∫

R

gβ

)
+O

(
log |x|
|x|3

)
.

On the other hand,

pv

(
1

x

)
∗ gβ =

1

x

∫

R

gβ +
1

x2

∫

R

ygβ +
1

x2
pv

(
1

x

)
∗ (y2gβ) .
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From Proposition 3.7, hβ(y) := y2gβ(y) satisfies hβ(y) = O(〈y〉−1) and h′β(y) =

O(〈y〉−2). We infer

pv

(
1

x

)
∗ hβ =

∫ ∞

0

hβ(x− z)− hβ(x+ z)

z
dz

=

∫

||x|−z|>|x|/2

hβ(x− z)− hβ(x+ z)

z
dz

+

∫

||x|−z|≤|x|/2

hβ(x− z)− hβ(x+ z)

z
dz

.

∫

||x|−z|>|x|/2

dz

〈|x| − z〉2 +

∫

||x|−z|≤|x|/2

dz

|x|〈|x| − z〉
= O(|x|−1) +O(|x|−1 log |x|) .

Summing up, we have proved that, as x→ ∞,

2i

1 + β
pv

(
1

x

)
∗ gβ −G ∗ gβ =

i(1 − β)

(1 + β)x

∫

R

gβ − 1

x2

∫

R

gβ +O

(
1− β

x2
+

log |x|
|x|3

)
.

It remains to study the last integral, namely
∫

R

(
1− β

1 + β

)2

G

(
−1− β

1 + β
(x− y)

)
gβ(y) dy =

∫

|y|≤|x|/2
...+

∫

|y|>|x|/2
... .

Using again Hölder’s inequality and optimizing on the power, we get
∣∣∣∣∣

∫

|y|>|x|/2

(
1− β

1 + β

)2

G

(
−1− β

1 + β
(x− y)

)
gβ(y) dy

∣∣∣∣∣ .
(1− β) log |x|

|x|3 .

On the other hand, because of the estimates on G′, we have
∫

|y|≤|x|/2

(
1− β

1 + β

)2

G

(
−1− β

1 + β
(x− y)

)
gβ(y) dy =

(
1− β

1 + β

)2

G

(
−1− β

1 + β
x

)∫

R

gβ(y) dy +O

(
1− β

x2

)
.

In view of the identity

G(x) =
F (x)− 1

ix
,

this completes the proof of (3.15). �

3.5. Further estimates on ∂βQβ. In this subsection, we improve some the esti-

mates on Q̇β := ∂βQβ deduced in Proposition 3.7.

Proposition 3.11. The following estimates hold as β tends to 1.

‖Q̇+
β ‖H 1

2
. | log(1− β)| , (3.23)

| ̂̇Q−
β (ξ)| ≤

C

1− β + (1 + β)|ξ| . (3.24)

Furthermore, if Hβ = (1− β)∂2βQβ or Hβ = ∂βy∂yQβ, we have similarly

‖H+
β ‖

H
1
2
. | log(1− β)| , (3.25)

|Ĥ−
β (ξ)| ≤ C

1− β + (1 + β)|ξ| . (3.26)
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In particular,

d

dβ
‖Qβ‖2L2 = O(| log(1− β)|) , (3.27)

d

dβ
(DQβ, Qβ) = O(| log(1− β)|) , (3.28)

d

dβ

∫

R

|Qβ|2Qβ = O(| log(1− β)|) , (3.29)

and, if Hβ is as above, and ρβ is defined by (3.9), we have

|(Hβ , Qβ)|+ |(Hβ,DQβ)|+ |(Hβ, iρβ)| = O(| log(1− β)|). (3.30)

Proof. We project the equation (2.21) for Q̇β onto the negative and positive modes.
This gives

(1 + β)|D|Q̇−
β + (1− β)Q̇−

β =

2

1 + β
[Q−

β −Π−(|Qβ |2Qβ)] + Π−[2|Qβ |2(1− β)Q̇β +Q2
β(1− β)Q̇β] ,

DQ̇+
β + Q̇+

β −Π+[2|Qβ |2Q̇+
β +Q2

βQ̇
+
β ] = Π+[2|Qβ |2Q̇−

β +Q2
βQ̇

−
β ] ,

(Q̇+
β , iQ

+) = (Q̇+
β , ∂xQ

+) = 0 .

Using the last equation, the invertibility (2.15) of L defined in (2.16), and a per-

turbation argument as in Proposition 2.4, we can estimate Q̇+
β by means of Q̇−

β as
follows,

‖Q̇+
β ‖H 1

2
. ‖|Qβ |2Q̇−

β +Q2
βQ̇

−
β ‖H− 1

2
. ‖Q2

βQ̇
−
β ‖L2 . (3.31)

On the other hand, the first equation leads to

̂̇Q−
β (ξ) =

ℓ̂β(ξ)

1− β + (1 + β)|ξ| ,

ℓβ :=
2

1 + β
Π−[mβ ∗ (|Qβ|2Qβ)− |Qβ|2Qβ] + Π−[2|Qβ |2(1− β)Q̇β +Q2

β(1− β)Q̇β ] .

Using the L2 bound on (1− β)Q̇β from Proposition 3.7, the above expression of ℓβ
implies

‖ℓ̂β‖L∞ ≤ C ,

which proves (3.24). Coming back to (3.31), we infer, using the L1 and the L2

bound on Q̂2
β, and from Young’s L1 ∗ L2 ⊂ L2 inequality,

‖Q̇+
β ‖H 1

2
.



∫

R

∣∣∣∣∣∣

∫

R

|Q̂2
β(ξ − η)|

1− β + (1 + β)|η| dη

∣∣∣∣∣∣

2

dξ




1
2

.

(∫

|η|>1

dη

(1− β + (1 + β)|η|)2

) 1
2

+

∫

|η|≤1

dη

1− β + (1 + β)|η|
. | log(1− β)|.

This proves (3.23).
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Next we prove (3.25) and (3.26). We apply (1−β)∂β to the above equations on Q+
β

and Q−
β . With Hβ := (1− β)∂2βQβ, we infer

(1 + β)|D|H−
β + (1− β)H−

β + (|D| − 1)(1− β)Q̇−
β =

(1− β)∂β

(
2

1 + β
[Q−

β −Π−(|Qβ |2Qβ)] + Π−[2|Qβ |2(1− β)Q̇β +Q2
β(1− β)Q̇β ]

)
,

DH+
β +H+

β −Π+[2|Qβ|2H+
β +Q2

βH
+
β ] =

Π+[2|Qβ|2H−
β +Q2

βH
−
β + 2(1 − β)∂β(|Qβ|2)Q̇β + (1− β)∂β(Q

2
β)Q̇β] ,

(H+
β , iQ

+) = (H+
β , ∂xQ

+) = 0 .

In view of (3.24), the Fourier transform of (|D|−1)(1−β)Q̇−
β is uniformly bounded.

Furthermore, using again (3.24) and the L2 bound on [(1 − β)∂β ]
kQβ from Propo-

sition 3.7, the Fourier transform of the right hand side of the equation on H−
β is

uniformly bounded. This provides estimate (3.26). In order to obtain (3.25), we
use the equation on H+

β . Notice that, again by (3.23) and (3.24) combined with the

Hausdorff–Young inequality,

‖2(1 − β)∂β(|Qβ|2)Q̇β + (1− β)∂β(Q
2
β)Q̇β‖L2 . (1− β)‖Q̇β‖2L4

. (1− β)

(∫

R

dξ

((1 − β) + (1 + β)|ξ|)4/3
)3/2

+ (1− β)| log(1− β)|2

. (1− β)1/2 .

By the perturbation argument of Proposition 2.4, we infer

‖H+
β ‖

H
1
2
. ‖Q2

βH
−
β ‖L2 +O((1 − β)1/2) ,

and we obtain (3.25) exactly as we obtained (3.23) above.

Next we deal with the case of Hβ := y∂yQ̇β . Applying y∂y to the equation on
Qβ, we get

Lβ(y∂yQβ) = |Qβ|2Qβ −Qβ ,

and, taking the derivative with respect to β and projecting on the negative and
positive modes, we obtain

(1 + β)|D|H−
β + (1− β)H−

β =

Π−[2|Qβ |2(1− β)Hβ +Q2
β(1− β)Hβ ] +

2

1 + β
Π−(y∂yQβ)

+
2

1 + β
[Q−

β −Π−(|Qβ|2Qβ)] + Π−[2|Qβ |2(1− β)Q̇β +Q2
β(1− β)Q̇β ]− (1− β)Q̇−

β

− 2

1 + β
Π−[2|Qβ |2y∂yQβ +Q2

βy∂yQβ]

+ 2Π−[(1− β)Q̇βQβy∂yQβ + (1− β)Q̇βQβy∂yQβ + (1− β)Q̇βQβy∂yQβ],

DH+
β +H+

β −Π+[2|Qβ |2H+
β +Q2

βH
+
β ] =

Π+[2|Qβ |2H−
β +Q2

βH
−
β + 2|Qβ |2Q̇β +Q2

βQ̇β]− Q̇+
β

+ 2Π+[Q̇βQβy∂yQβ + Q̇βQβy∂yQβ + Q̇βQβy∂yQβ],

(H+
β , iQ

+) = (H+
β , ∂xQ

+) = 0 .
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Again, from Proposition 3.7, we notice that the Fourier transform of the right hand
side of the equation on H−

β is bounded. This provides (3.26). Using again the
perturbation argument of Proposition 2.4, we infer

‖H+
β ‖

H
1
2
. ‖Q2

βH
−
β ‖L2 + ‖Q2

βQ̇β‖L2 + ‖Q̇+
β ‖L2 + ‖Q̇βQβy∂yQβ‖L2

and (3.25) again follows from (3.26), (3.24), (3.23), and the L1- and L2- bounds on
̂Qβy∂yQβ.

Let us come to the proof of (3.27). We have

d

dβ
‖Qβ‖2L2 = 2(Qβ , Q̇β) = 2(Q+

β , Q̇
+
β ) + 2(Q−

β , Q̇
−
β ) .

From (3.23) and the L2 bound on Qβ, we infer

|(Q+
β , Q̇

+
β )| . | log(1− β)| .

From (3.24) and the representation of Q−
β , we infer

|(Q−
β , Q̇

−
β )| .

∫

R

(1− β)| ̂|Qβ |2Qβ(ξ)|
(1− β + (1 + β)|ξ|)2 dξ = O(1) .

This completes the proof of (3.27). The proof of (3.28) is similar. As for (3.29), we
write

d

dβ

∫

R

|Qβ|2Qβ = 2

∫

R

|Qβ|2Q̇β +

∫

R

Q2
βQ̇β .

Write Q̇β = Q̇+
β + Q̇−

β in the two integrals of the above right hand side. The

contribution of Q̇+
β is O(| log(1 − β)|) because of (3.23). As for the contribution

of Q̇−
β , we evaluate it by means of the Plancherel theorem. In view of (3.24), it is

O(| log(1− β)|). This completes the proof of (3.29).
The proof of the first two estimates of (3.30) follows exactly the same lines as (3.27).
As for the last estimate, we recall from (3.10) that

‖iρβ −Qβ − 1

2
DQβ‖L2 . (1− β)1/2| log(1− β)|1/2 ,

so that

|(Hβ, iρβ)| . | log(1− β)|+ (‖H+
β ‖L2 + ‖H−

β ‖L2)(1− β)1/2| log(1− β)|1/2 ,

and the proof is completed by using (3.25) and (3.26). �

4. The two-bubble approximate solution

This section is devoted to the construction of the two-bubble approximate solu-
tion. The general strategy follows the lines of [27] for the Hartree problem with
the additional difficulties of keeping very carefully track of the leading order terms
generated by the critically slow decay of the solitary wave and getting estimates
which are uniform in the singular limit β → 1.
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4.1. Renormalization and slow variables. Let

uj(t, x) =
1

λ
1
2
j

vj(sj, yj)e
iγj ,

dsj
dt

=
1

λj(t)
, yj :=

x− xj(t)

λj(t)(1 − βj(t))
,

for j = 1, 2. We have

i∂tuj − |D|uj + uj|uj |2

=
1

λ
3
2
j

[
i∂sjvj −

(|D| − βjD)vj
1− βj

− i
(λj)sj
λj

Λvj −
i

1− βj

(
(xj)sj
λj

− βj

)
∂yjvj

+
i(βj)sj
1− βj

yj∂yjvj − (γj)sjvj + vj|vj |2
]
eiγj (sj , yj).

Let us define the relative numbers

X = x2 − x1, µ =
λ2
λ1
, Γ = γ2 − γ1,

and

b =
1− β2
1− β1

, R =
X

λ1(1− β1)
. (4.1)

We observe the relation

y1 = R+ µby2. (4.2)

We then decompose u(t, x) = u1(t, x) + u2(t, x), expand the nonlinearity

u|u|2 = u1(|u1|2 + 2|u2|2 + u1ū2) + u2(|u2|2 + 2|u1|2 + u2ū1)

and split the contributions of crossed terms using a cut off function

χR(x) = χ
(y1
R

)
= χ

(
1 +

µb

R
y2

)
(4.3)

to obtain:

i∂tu− |D|u+ u|u|2 = 1

λ
3
2
1

E1(s1, y1)eiγ1 +
1

λ
3
2
2

E2(s2, y2)eiγ2

with

E1 = i∂s1v1 −
(|D| − β1D)v1

1− β1
− v1 + v1|v1|2

− i
(λ1)s1
λ1

Λv1 −
i

1− β1

(
(x1)s1
λ1

− β1

)
∂y1v1 +

i(β1)s1
1− β1

y1∂y1v1 − [(γ1)s1 − 1]v1

+ χR

[
2

µ
v1|v2|2 +

e−iΓ

√
µ
v21v2 + 2

eiΓ√
µ
|v1|2v2 +

e2iΓ

µ
v1v

2
2

]
,

E2 = i∂s2v2 −
(|D| − β2D)v2

1− β2
− v2 + v2|v2|2

− i
(λ2)s2
λ2

Λv2 −
i

1− β2

(
(x2)s2
λ2

− β2

)
∂y2v2 +

i(β2)s2
1− β2

y2∂y2v2 − [(γ2)s2 − 1]v2

+ (1− χR)
[
2µv|v1|2v2 + 2

√
µe−iΓv1|v2|2 +

√
µeiΓv1v

2
2 + µe−2iΓv21v2

]
.

The full vector of parameters is denoted by

P = (λ1, λ2, β1, β2,Γ, R). (4.4)
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Following [27], we now look for a solution to

E1 = E2 = 0

in the form of a slowly modulated two-bubble, i.e.

vj(sj , yj) = Vj(yj ,P(sj))

where the time dependence of the parameters is frozen for translation and phase
invariances:

(xj)sj
λj

= βj , (γj)sj = 1, (4.5)

the dependence of scaling and speed is computed iteratively according to a dynam-
ical system

(λj)sj
λj

=Mj(P),
(βj)sj
1− βj

= Bj(P), (4.6)

Γs1 =
1

µ
− 1, Γs2 = 1− µ, Xt = β2 − β1 (4.7)

and the remaining time derivatives for (b,R) are modeled after (4.1), (4.5), (4.6):

Rs1 = 1− b+ (B1 −M1)R, Rs2 = µ(1− b+ (B1 −M1)R). (4.8)

Hence

E1 = −(|D| − β1D)V1
1− β1

− V1 + V1|V1|2 − iM1ΛV1 + iB1

[
y1∂y1V1 + (1− β1)

∂V1
∂β1

]

+ iλ1M1
∂V1
∂λ1

+ iλ1M2
∂V1
∂λ2

+ i
(1− β2)B2

µ

∂V1
∂β2

(4.9)

+ i
1− µ

µ

∂V1
∂Γ

+ i(1− b+ (B1 −M1)R)
∂V1
∂R

+ χR

[
2

µ
V1|V2|2 +

e−iΓ

√
µ
V 2
1 V2 + 2

eiΓ√
µ
|V1|2V2 +

e2iΓ

µ
V1V

2
2

]
,

E2 = −(|D| − β2D)V2
1− β2

− V2 + V2|V2|2 − iM2ΛV2 + iB2

[
y2∂y2V2 + (1− β2)

∂V2
∂β2

]

+ iλ2M2
∂V2
∂λ2

+ iλ2M1
∂V2
∂λ1

+ iµ(1− β1)B1
∂V2
∂β1

(4.10)

+ i(1− µ)
∂V2
∂Γ

+ iµ(1− b+ (B1 −M1)R)
∂V2
∂R

+ (1− χR)
[
2µ|V1|2V2 + 2

√
µe−iΓV1|V2|2 +

√
µeiΓV1V

2
2 + µe−2iΓV 2

1 V2
]
.

and we need to solve the system of nonlinear elliptic equations in V1, V2,

{
E1(y1) = 0 with y2 =

y1−R
bµ ,

E2(y2) = 0 with y1 = R+ bµy2.
(4.11)

in a suitable range of parameters P.
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4.2. Definition of admissible functions. We define the open set of parameters:

P ∈ O ≡





βj ∈ (β∗, 1), j = 1, 2
R > R∗
|1− λ1|+ |1− λ2| < ηδ
η
2 < 1− β1 < 2η, 1− β2 ≥ e−R, 0 < b < δ

(4.12)

for some universal constants R∗ ≫ 1, 0 < η, δ ≪ 1 to be chosen later.

We now define a suitable topology:

Definition 4.1 (Admissible function). We consider functions g = g(y,P) : R×O →
C.
(i) (L∞-admissibility). We say that g is L∞-admissible if ∀α ∈ N7, ∃Aα , ∀P ∈ O,

∥∥∥Λα1
y Λα2

R ∂α3
λ1
∂α4
λ2
∂α5
Γ Λ̃α6

β1
Λ̃α7
β2
g(·,P)

∥∥∥
∞

6 Aα. (4.13)

(ii) (Admissibility with respect to a bubble). Let j ∈ {1, 2}. We say that g is admis-
sible with respect to the bubble j — or j–admissible — if ∀α ∈ N7, ∃Aα, ∀P ∈ O,

∥∥∥Λα1
y Λα2

R ∂α3
λ1
∂α4
λ2
∂α5
Γ Λ̃α6

β1
Λ̃α7
β2
g(·,P)

∥∥∥
βj

6 Aα. (4.14)

(iii) (Strong admissibility with respect to a bubble). Let j ∈ {1, 2}. We say that g is
strongly admissible with respect to the bubble j — or j–strongly admissible — if it
is j–admissible and if, for every family {µβ}β∈(β∗,1) of multipliers in the class M,
the convolution product

µβj
∗ g(.,P)

is j–admissible.

Notice that admissibility with respect to the bubble j implies L∞-admissibility.
Furthermore, we have the following fundamental property.

Lemma 4.2 (Admissibility of Qβ). For j = 1, 2, Qβj
is strongly j–admissible.

Proof. Admissibility of Qβj
with respect to the bubble j is a straightforward con-

sequence of Proposition 3.7. Given {µβ}β∈(β∗,1) a family of multipliers in the class
M, let us come to the j–admissibility of µβj

∗Qβj
. From the identity

Qβ = mβ ∗ (|Qβ|2Qβ) ,

and the invariance of M by convolution, we infer that

µβ ∗Qβ = µ̃β ∗ (|Qβ |2Qβ) ,

where {µ̃β}β∈(β∗,1) belongs to M. Then, applying Λ̃p
βΛ

q
y to this identity, and using

the stability properties of class M through these operations, the j–admissibility of
µβj

∗Qβj
follows from the j–admissibility of Qβj

and from Lemma 3.5. �

4.3. Stability properties of admissible functions. We now prove some elemen-
tary stability properties of admissible functions.

Lemma 4.3 (Stability properties of admissible functions). The following stability
properties hold.
(i) (Stability by derivation). Assume g is j–admissible (resp. strongly j–admissible).
Then

Λyg,ΛRg, ∂λj
g, ∂Γg, Λ̃βj

g (4.15)

are j–admissible (resp. strongly j–admissible).
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(ii) (Stability by multiplication). If g is j–admissible, h is L∞-admissible, then gh
is j–admissible. Furthermore, if g and h are j–admissible, then gh is strongly j–
admissible.
(iii) (Exchange of variables). Given a function g = g(y), we define

g♯(y1) := g

(
y1 −R

bµ

)
(4.16)

and
g♭(y2) := g(R + bµy2) . (4.17)

If g2 is 2–admissible, then R(1+(1−β1)R)b−1χRg
♯
2 is L∞-admissible, and b−1χRg

♯
2

is 1–admissible. If g1 is 1–admissible, then R(1 + (1 − β1)R)((1 − χR)g1)
♭ is L∞-

admissible.
(iv) (Stability by scalar product). If g is j–admissible, then (g, iQβj

) and (g, ∂yQβj
)

are L∞-admissible.
(v) (Stability by convolution). If g is strongly j–admissible and if {µβ}β∈(β∗,1) be-
longs to class M, then µβj

∗ g is strongly j–admissible.
(vi) (Mixed cubic nonlinearity and convolution). Assume g1, h1 are 1–admissible,
and g2, h2 are 2–admissible. Then

R(1 + (1− β1)R)b
−1χRg1g

♯
2h

♯
2 , R(1 + (1− β1)R)b

−1χRg1h1g
♯
2

are strongly 1–admissible, and

R(1 + (1− β1)R)((1 − χR)g1)
♭g2h2 , R(1 + (1− β1)R)((1 − χR)g1h1)

♭g2

are strongly 2–admissible.

Proof of Lemma 4.3. The first two properties are almost immediate — notice that
the strong admissibility of gh is a consequence of Lemma 3.5.

Property (iii) is established by first observing that |y1| ≤ R
2 on the support of χR g

♯
2,

so that

(1− β2)
|y1 −R|
bµ

≥ (1− β1)
R

2µ
.

Similarly, R+ bµy2 ≥ R/4 on the support of ((1 − χR)g1)
♭, so that

(1− β1)|R + bµy2| ≥ (1− β1)
R

4
.

In the first case, we also have, on the support of χR g
♯
2,

|y1 −R| ≥ 1

4
(|y1|+R) ,

so that

‖χRg
♯
2‖β1 . b‖g2‖β2 and R(1 + (1− β1)R)‖χRg

♯
2‖L∞ . b‖g2‖β .

We argue similarly for ((1− χR)g1)
♭. Furthermore,

Λy1(g
♯
2) = (Λy2g2)

♯ +
R

bµ
(∂y2g2)

♯ , Λy2g
♭
1 = (Λy1g1)

♭ −R(∂y1g1)
♭ ,

with similar formulae for derivatives Λ̃βj
,ΛR, ∂λj

. Since

∂kyjgj(yj) = O(〈yj〉−k−1) ,

this provides the correct decay of derivatives of χR g
♯
2 and of ((1− χR)g1)

♭.
Let us prove property (iv). The L∞-admissibility of (g, iQβj

) is a consequence of
the Cauchy–Schwarz inequality and of the j–admissibility of g and Qβj

. As for the
L∞-admissibility of (g, ∂yQβj

), it is a consequence of the j–admissibility of g and
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of the boundedness in L2 of Λ̃a
βQβΛ̃

b
βQβΛ̃

c
βQβ. The latter fact follows from the

identity

∂yQβ = ∂ymβ ∗ (|Qβ |2Qβ) ,

and of the boundedness of the Fourier transforms of ∂yΛ̃
q
βmβ.

Property (v) is an immediate consequence of the invariance of class M by convolu-
tion.
Finally, let us prove property (vi). By properties (iii) and (ii), we immediately get
that

R(1 + (1− β1)R)b
−1χRg1g

♯
2h

♯
2 , R(1 + (1− β1)R)b

−1χRg1h1g
♯
2

are strongly 1–admissible, and

R(1 + (1− β1)R)((1− χR)g1)
♭g2h2

is strongly 2–admissible. Furthermore, R2((1− χR)g1h1)
♭g2 is 2–admissible for the

same reasons.
The strong admissibility of R(1 + (1 − β1)R)((1 − χR)g1h1)

♭g2 requires a specific
proof, as follows. We proceed as in the proof of Lemma 3.5. First of all, the L∞-
bound of µβ2 ∗ R2((1 − χR)g1h1)

♭g2) is a consequence of L2 ∗ L2 ⊂ L∞. Then we
consider the case |y1| ≥ 1. We split

µβ2 ∗ ((1− χR)
♭g♭1h

♭
1g2)(y2) =∫

|y′2|<
|y2|
2

µβ2(y2 − y′2)(1− χR)(R+ µby′2)g1(R+ µby′2)h1(R + µby′2)g2(y
′
2) dy

′
2

+

∫

|y′2|≥
|y2|
2

µβ2(y2 − y′2)(1− χR)(R+ µby′2)g1(R+ µby′2)h1(R + µby′2)g2(y
′
2) dy

′
2 .

In view of decaying properties of µβ and of the L∞-bound on (1−χR)g1h1, the first
term in the right hand side is bounded by

‖g2‖β2

|y2|(1 + (1− β2)|y2|)R2(1 + (1− β1)R)2

∫

R

dy′2
(1 + |y′2|+ (1− β2)|y′2|2)

dy′2

.
| log(1− β2)|

|y2|(1 + (1− β2)|y2|)R2(1 + (1− β1)R)2
.

For the second term, we need the following Lp bound on µβ, proved in Lemma 3.6,

‖µβ‖Lp(R) ≤
C

p− 1
, 1 < p ≤ 2.

Using this bound and Hölder’s inequality, we infer that, for 2 ≤ q <∞, the second
term is bounded by

Cq

R2(1 + (1− β1)R)(1 + |y2|)(1 + (1− β2)|y2|)

(∫

R

dy′2
(1 + (1− β2)|y′2|)q

) 1
q

.
Cq(1− β2)

−1/q

R2(1 + (1− β1)R)(1 + |y2|)(1 + (1− β2)|y2|)
.

Optimizing on q, we get the bound

| log(1− β2)|
(1 + |y2|)(1 + (1− β2)|y2|)R2(1 + (1− β1)R)

.

We conclude that

‖µβ2 ∗ ((1− χR)
♭g♭1h

♭
1g2)‖β2 .

| log(1− β2)|
R2(1 + (1− β1)R)

≤ 1

R(1 + (1− β1)R)
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because of the assumption
1− β2 ≥ e−R (4.18)

from (4.12). Similar estimates hold for the derivatives. This completes the proof.
�

Remark 4.4. Because b is bounded but can be small in the set of parameters O,
there is some asymmetry between bubble 1 and bubble 2, which is reflected by the
specificity of the last case in property (vi), for which we had to introduce assumption
(4.18).

4.4. Continuity of L−1
β on admissible functions. We claim a uniform continuity

property of L−1
β with respect to Schwartz-like norms which will be essential to

control the error in the construction of the approximate 2-bubble. Recall that

Φβ := y∂yQβ + (1− β)∂βQβ .

Lemma 4.5 (Generalized invertibility). Let j = 1 or j = 2, let d be a nonnegative
integer, and α ∈ R such that |α| < α∗(d). If η < η∗(d) and if g is of the form

g(y,P) =
d∑

r=−d

gr(y,P∗) eirΓ ,

where P∗ := (λ1, λ2, β1, β2, R), and each gr , r = −d, . . . , d, is strongly j–admissible,
then the problem

Lβj
f − iα∂Γf = g − iM(P)ΛQβj

+ iB(P)Φβj
, (f, iQβj

) = (f, ∂yQβj
) = 0 ,

admits a unique solution (f,M,B), where M(P), B(P) are real valued, and

f(y,P) =

d∑

r=−d

fr(y,P∗) eirΓ ,

where each fr , r = −d, . . . , d, is in H
1
2 in the variable y. Furthermore, M,B are

L∞-admissible, and f is strongly j–admissible.

Proof. Since Lβ is not C–linear, it is preferable to use the Fourier expansion in
cosines and sines, so we write

g(y,P∗) = g0(y,P∗) +
d∑

r=1

[g+r (y,P∗) cos(rΓ) + g−r (y,P∗) sin(rΓ)] ,

f(y,P∗) = f0(y,P∗) +
d∑

r=1

[f+r (y,P∗) cos(rΓ) + f−r (y,P∗) sin(rΓ)] ,

M(P) =M0(P∗) +
d∑

r=1

[M+
r (P∗) cos(rΓ) +M−

r (P∗) sin(rΓ)] ,

B(P) = B0(P∗) +
d∑

r=1

[B+
r (P∗) cos(rΓ) +B−

r (P∗) sin(rΓ)] .

The problem on f,M,B is therefore equivalent to the following family of problems

Lβj
f0 = iM0ΛQβj

− iB0Φβj
+ g0 , (f0, iQβj

) = (f0, ∂yQβj
) = 0 , (4.19)

{
Lβj

f+r − iαrf−r = iM+
r ΛQβj

− iB+
r Φβj

+ g+r , (f+r , iQβj
) = (f+r , ∂yQβj

) = 0 ,
Lβj

f−r + iαrf+r = iM−
r ΛQβj

− iB−
r Φβj

+ g−r , (f−r , iQβj
) = (f−r , ∂yQβj

) = 0 ,
(4.20)
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Let us first deal with (4.19). Recall from Proposition 2.4 that

kerLβj
= spanR{iQβj

, ∂yjQβj
},

and that the range of Lβj
coincides with the orthogonal of spanR{iQβj

, ∂yjQβj
}.

Consequently, the real numbers M0, B0 must satisfy the orthogonality conditions

(g0 − iM0ΛQβj
+ iB0Φβj

, iQβj
) = (g0 − iM0ΛQβj

+ iB0Φβj
, ∂yjQβj

) = 0 .

Notice that, in view of (3.27), (3.28),

(iΛQβ, iQβ) = (ΛQβ , Qβ) = 0 ,

(iΦβ, iQβ) = (Φβ, Qβ) =
1− β

2

d

dβ
‖Qβ‖2L2 − 1

2
‖Qβ‖2L2 = −π +O((1− β)| log(1− β)|) ,

(iΛQβ , ∂yQβ) =
1

2
(Qβ,DQβ) = π +O((1− β)| log(1− β)|) ,

(iΦβ, ∂yQβ) =
1− β

2

d

dβ
(Qβ ,DQβ) = O((1− β)| log(1− β)|) .

In view of these identities, we infer that M0, B0 are characterized for βj close enough
to 1 — hence for η small enough —, given by the following formulae

B0 =
2(g0, iQβj

)

‖Qβj
‖2
L2 − Λ̃βj

‖Qβj
‖2
L2

, (4.21)

M0 =
2(g0, ∂yQβj

)

(Qβj
,DQβj

)
+

2(g0, iQβj
)Λ̃βj

‖Qβj
‖2L2

(Qβj
,DQβj

)(‖Qβj
‖2
L2 − Λ̃βj

‖Qβj
‖2
L2)

. (4.22)

In view of these formulae and of property (v) in Lemma 4.3, we conclude that M0

and B0 are L∞-admissible.
Then Proposition 3.3 provides existence and uniqueness of function f0, as well as
the estimate

‖f0‖βj
. ‖g0‖L2 + ‖mβj

∗ g0‖βj
.

Applying inductively Λp
yΛ̃

q
βj

to the identity

f0 = mβj
∗ (iM0ΛQβj

− iB0Φβj
+ g0) +mβj

∗ (2|Qβj
|2f0 +Q2

βj
f0) ,

and using that ΛQβj
,Φβj

and g0 are strongly j–admissible, we conclude from Lemma
3.1 that f0 is strongly j–admissible.

Let us come to the systems (4.20). Given g ∈ H− 1
2 , define

B[g] :=
2(g, iQβj

)

‖Qβj
‖2
L2 − Λ̃βj

‖Qβj
‖2
L2

,

M [g] :=
2(g,∂yQβj

)

(Qβj
,DQβj

)
+

2(g, iQβj
)Λ̃βj

‖Qβj
‖2L2

(Qβj
,DQβj

)(‖Qβj
‖2
L2 − Λ̃βj

‖Qβj
‖2
L2)

.

and let

L−1
β : H− 1

2 ∩ (kerLβ)
⊥ → H

1
2 ∩ (kerLβ)

⊥

be the R–linear isomorphism provided by Proposition 2.4 . Then the system (4.20)
is equivalent to

{
f+r = L−1

βj
(g+r + iαrf−r + iM [g+r + iαrf−r ]ΛQβj

− iB[g+r + iαrf−r ]Φβj
),

f−r = L−1
βj

(g−r − iαrf+r + iM [g−r − iαrf+r ]ΛQβj
− iB[g−r − iαrf+r ]Φβj

) .
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The right hand side in the above side defines a mapping of (f+r , f
−
r ) ∈ H1/2 ×H1/2

which is contracting if αr is small enough. This provides existence and uniqueness
of (f+r , f

−
r ) as well as uniform bounds in H1/2, and the formulae

M+
r =M [g+r +iαrf

−
r ], B+

r = B[g+r +iαrf
−
r ],M−

r =M [g−r −iαrf+r ] , B−
r = B[g−r −iαrf+r ] .

The strong j–admissibility of f+r and f−r and the L∞-admissibility of M±
r , B

±
r

are then obtained from the system
{
f+r = mβj

∗ (iM+
r ΛQβj

− iB+
r Φβj

+ g+r + iαrf−r ) +mβj
∗ (2|Qβj

|2f+r +Q2
βj
f+r ) ,

f−r = mβj
∗ (iM−

r ΛQβj
− iB−

r Φβj
+ g−r − iαrf+r ) +mβj

∗ (2|Qβj
|2f−r +Q2

βj
f−r ) ,

applying again Lemma 3.1. �

4.5. Construction of the approximate solution. We are now in position to
construct the approximate two-bubble solution.

Proposition 4.6 (Construction of the two-bubble). Let N be a positive integer,
0 < η ≪ η∗(N). We can find an expansion of the slowly modulated two-bubble for
j = 1, 2:

V
(N)
j (yj ,P) =

N∑

n=0

Tj,n(yj ,P),

M
(N)
j (P) =

N∑

n=0

Mj,n(P),

B
(N)
j (P) =

N∑

n=0

Bj,n(P)

such that the following holds:

(1) (Initialization). For j = 1, 2, Tj,0 = Qβj
(yj), Mj,0 = Bj,0 = 0.

(2) (Control of the error). Let 0 6 n 6 N and (Ej,n)j=1,2 be given by (4.9),

(4.10) with Vj = V
(n)
j . Then

b−1(1+(1−β1)R)Rn+1E1,n is strongly 1–admissible, and (1+(1−β1)R)Rn+1E2,n
is strongly 2–admissible.

(3) (Control of the profile). For all 0 6 n 6 N , j = 1, 2,
b−1(1+(1−β1)R)RnT1,n is strongly 1–admissible, and (1+(1−β1)R)RnT2,n
is strongly 2–admissible.

(4) (Orthogonality). For j = 1, 2, n > 1, (Tj,n, iQβj
) = (Tj,n, ∂yjQβj

) = 0.
(5) (Control of the modulation equations). For all 0 ≤ n ≤ N ,

b−1(1+(1−β1)R)RnB1,n, b
−1(1+(1−β1)R)RnM1,n, (1+(1−β1)R)RnB2,n,

and (1 + (1− β1)R)R
nM2,n are L∞-admissible.

Proof of Proposition 4.6. We argue by induction on N . In order to deal with the
dependence on the phase Γ, we need a more refined description of the error and
claim inductively:

Tj,n =

dn∑

r=−dn

Tj,n,r e
irΓ (4.23)

where dn is an integer, b−1(1 + (1− β1)R)R
nT1,n,r is strongly 1–admissible,

(1 + (1 − β1)R)R
nT2,n,r is strongly 2–admissible, and they do not depend on Γ.
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Moreover,

Ej,n =

dn+1∑

r=−dn+1

Ej,n,r eirΓ (4.24)

where b−1(1+(1−β1)R)Rn+1E1,n,r is strongly 1–admissible, (1+(1−β1)R)Rn+1E2,n,r
is strongly 2–admissible, and they do not depend on Γ. Finally,

Mj,n =

dn∑

r=−dn

Mj,n,r e
irΓ

Bj,n =

dn∑

r=−dn

Bj,n,r e
irΓ

where b−1(1+(1−β1)R)RnM1,n,r, b
−1(1+(1−β1)R)RnB1,n,r, (1+(1−β1)R)RnM2,n,r,

(1 + (1− β1)R)R
nB2,n,r are L∞–admissible and do not depend on Γ nor y.

Step 1: Initialization N = 0. We inject the decomposition

Vj = V
(0)
j = Qβj

(yj), Mj,0 = Bj,0 = 0

j = 1, 2, into the definitions (4.9) and (4.10) of the errors and compute from the
equation of Qβj

:

E1,0 = χR

[
2

µ
Qβ1 |Qβ2 |2 +

e−iΓ

√
µ
Q2

β1
Qβ2 + 2

eiΓ√
µ
|Qβ1 |2Qβ2 +

e2iΓ

µ
Qβ1Q

2
β2

]
,

E2,0 = (1− χR)
[
2µ|Qβ1 |2Qβ2 + 2

√
µe−iΓQβ1 |Qβ2 |2 +

√
µeiΓQβ1Q

2
β2

+ µe−2iΓQ2
β1
Qβ2

]
.

We now recall from that Qβj
is strongly j–admissible. Therefore, a direct application

of Lemma 4.3, property (vi), ensures that b−1(1 + (1 − β1)R)RE1,0 is strongly 1–
admissible, and (1 + (1− β1)R)RE2,0 is strongly 2–admissible. Notice that we have
(4.24) with n = 0, d1 = 2, and that the admissibility properties transfer to the
Fourier coefficients by integration in the Γ variable.
Step 2: Induction. We assume the claim for N = n and prove it for N = n + 1.
We expand

V
(n+1)
j = V

(n)
j + Tj,n+1, j = 1, 2 (4.25)

and show how to choose (Tj,n+1,Mj,n+1, Bj,n+1) so that the corresponding errors
Ej,n+1 are such that b−1(1 + (1 − β1)R)R

n+2E1,n+1 is strongly 1–admissible, and
(1+ (1−β1)R)Rn+2E2,n+1 is strongly 1–admissible. We focus onto the first bubble,
the computations for the second bubble are completely analogous, except that there
is no gain of a b factor.
In general, we split the error term E1 into four contributions: the nonlinear term,

NL1 = −(|D| − β1D)V1
1− β1

− V1 + V1|V1|2, (4.26)

the interaction term,

Int1 = χR

[
2

µ
V1|V2|2 +

e−iΓ

√
µ
(V1)

2V2 + 2
eiΓ√
µ
|V1|2V2 +

e2iΓ

µ
V1(V2)

2

]
, (4.27)

the leading order term for modulation equations,

Mod1 = −iM1ΛV1 + iB1[Λy1V1 + Λ̃β1V1] + i
1− µ

µ

∂V1
∂Γ

(4.28)
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and the lower order term for modulation equations,

Modlow1 = iλ1(M1∂λ1V1 +M2∂λ2V1) + i
B2

µ
Λ̃β2V1 + (4.29)

+ i

(
1− b

R
+B1 −M1

)
ΛRV1 .

Notice that we dropped the notation V ♯ and V ♭ in these formulae, since the indices
1, 2 unambiguously suggest the arguments y1, y2.
Step 3: Choice of T1,n+1,M1,n+1, B1,n+1. We inject the decomposition (4.25) into

(4.26) - (4.29) and define E(k)
1,n+1, k = 1, . . . , 4 by

NL1,n+1 = NL1,n −Lβ1T1,n+1 + E(1)
1,n+1

Int1,n+1 = Int1,n + E(2)
1,n+1

Mod1,n+1 = Mod1,n + {−iM1,n+1ΛQβ1 + iB1,n+1Φβ1}+
i(1− µ)

µ

∂T1,n+1

∂Γ
+ E(3)

1,n+1

Modlow1,n+1 = Modlow1,n + E(4)
1,n+1.

Therefore

E1,n+1 = E1,n − Lβ1T1,n+1 +
i(1 − µ)

µ

∂T1,n+1

∂Γ
− iM1,n+1ΛQβ1 + iB1,n+1Φβ1

+ Σ4
k=1E

(k)
1,n+1.

The smallness assumption on η and the definition of O imply that 1 − µ is small
enough with respect to n, and we may therefore use Lemma 4.5 to solve the equation

Lβ1T1,n+1 + iM1,n+1ΛQβ1 − iB1,n+1Φβ1 − i
1− µ

µ
∂ΓT1,n+1 = E1,n .

From the inductive assumption on E1,n and Lemma 4.5, we infer that b−1(1 + (1−
β1)R)R

n+1T1,n+1 is strongly 1–admissible, and that b−1(1+(1−β1)R)Rn+1M1,n+1,
b−1(1+(1−β1)R)Rn+1B1,n+1 are L∞-admissible. Furthermore, T1,n+1,M1,n+1, Bj,n+1

are trigonometric polynomials of degree dn+1.

Step 4: Estimating E(1)
1,n+1. Explicitly:

E(1)
1,n+1 = 2

[
|V (n)

1 |2 − |Qβ1 |2
]
T1,n+1 +

[
(V

(n)
1 )2 −Q2

β1

]
T1,n+1 (4.30)

+ 2V
(n)
1 |T1,n+1|2 + V

(n)
1 T 2

1,n+1 + T1,n+1|T1,n+1|2.

First of all, we observe that E(1)
1,n+1 is a trigonometric polynomial in Γ, with a

degree d
(1)
n+2 depending only on n. Secondly, using Lemma 4.3, the 1–admissibility

of b−1(1+(1β1)R)R
kT1,k, and the 2–admissibility of (1+(1β1)R)R

kT2,k for k ≤ n+1,

we conclude that b−1(1 + (1− β1)R)R
n+2E(1)

1,n+1 is strongly 1–admissible.

Step 5: Estimating E(2)
1,n+1. First of all, we observe that E(2)

1,n+1 is a trigonometric

polynomial in Γ, with a degree d
(2)
n+2 depending only on n. We then expand the

interaction term Int1,n+1 (4.27). Notice that each term contains an exchange of
variables. Let us consider the term

e2iΓ

µ
χRV

(n)
1 T2,n+1V

(n)
2 .
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Recall that V
(n)
j is j–admissible by the induction assumption, and that

(1 + (1− β1)R)R
n+1T2,n+1 is 1 admissible by step 3. By Lemma 4.3, (vi), we infer

that

b−1(1 + (1− β1)R)R
n+2 e

2iΓ

µ
χRV

(n)
1 T2,n+1V

(n)
2

is strongly 1-admissible. The other terms can be treated similarly. We therefore

conclude that b−1(1 + (1− β1)R)R
n+2E(2)

1,n+1 is strongly 1–admissible.

Step 6: Estimating E(3)
1,n+1. Again, E(3)

1,n+1 is a trigonometric polynomial in Γ, with

a degree d
(3)
n+2 depending only on n.

Let us first observe that the term i1−µ
µ

∂T1,n+1

∂Γ is absent in E(3)
1,n+1 since it is now a

part of the equation of T1,n+1. For example, let us deal with the contribution of the

term −iM1ΛV1 to E(3)
1,n+1. The other contributions can be handled similarly. We

have

M
(n+1)
1 ΛV

(n+1)
1 −M (n)

1 ΛV
(n)
1 −M1,n+1ΛQβ1 =M1,n+1Λ(V

(n)
1 −Qβ1)+M

(n+1)
1 ΛT1,n+1 .

Let us consider the first term M1,n+1Λ(V
(n)
1 −Qβ1) in the right hand side. By step

3, we know that b−1(1+ (1−β1)R)R
n+1M1,n+1 is L∞-admissible, and independent

on y1. On the other hand, RΛ(V
(n)
1 −Qβ1) is strongly 1–admissible. Hence b−1(1+

(1− β1)R)R
n+2M1,n+1Λ(V

(n)
1 −Qβ1) is strongly 1–admissible.

Let us come to the second term M
(n+1)
1 ΛT1,n+1 in the right hand side. From step

3, b−1(1 + (1 − β1)R)R
n+1T1,n+1 is strongly 1–admissible, while, from step 3 and

the induction hypothesis

b−1(1 + (1− β1)R)RM
(n+1)
1 = b−1(1 + (1− β1)R)R

n+1∑

k=1

M1,k

is L∞-admissible and independent on y1. We infer that b−1(1+(1−β1)R)Rn+2Mn+1
1 ΛT1,n+1

is strongly 1–admissible.

Summing up, b−1(1 + (1− β1)R)R
n+2E(3)

1,n+1 is strongly 1–admissible.

Step 7: Estimating E(4)
1,n+1. Finally, we deal with b−1(1+(1−β1)R)Rn+2E(4)

1,n+1 via

the lower order term for modulation equations (4.29). In fact, the worst behavior
occurs in this part, and comes from the term

i
1− b

R
ΛRT1,n+1 .

Indeed, this one only provides a gain of R, so we get exactly that

b−1(1 + (1− β1)R)R
n+2i

1− b

R
ΛRT1,n+1

is strongly 1–admissible. The other terms are easier and left to the reader.

Defining dn+2 := max{d(k)n+2, k = 1, . . . , 4}, this completes the proof.
�

As a consequence of Proposition 4.6, we establish some additional estimates which
will be useful in Section 5.

Corollary 4.7. If Vj = V
(N)
j as in Proposition 4.6, and if

∂′ ∈ {∂Γ,ΛR, ∂λj+1
, (1 − βj+1)∂βj+1

}
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with {j, j + 1} = {1, 2}, we have

‖DΠ−∂′Vj‖L2 .
1− βj
R

.

Proof. From Proposition 4.6, we know that Vj is j–admissible, and that R(Vj −
Qβj

) is j–admissible. Moreover, RN+1Ej is j–admissible, and RMj, RBj are L∞-
admissible. Consequently, in view of the expressions (4.9), (4.10) of Ej and of Lemma
4.3, we conclude that

( |D| − βjD

1− βj
+ 1

)
Vj − |Vj|2Vj = Fj ,

where RFj is j–admissible. Furthermore, since ∂′Qβj
= 0, R∂′Vj is j–admissible,

and so is R∂′(|Vj |2Vj). This implies in particular
∥∥∥∥
( |D| − βjD

1− βj
+ 1

)
Vj

∥∥∥∥
L2

.
1

R
.

The proof is completed by observing that the operator

DΠ−
( |D| − βjD

1− βj
+ 1

)−1

has a norm O(1− βj) on L2. �

Corollary 4.8. If M2 =M
(N)
2 as in Proposition 4.6, we have

|∂ΓM2|+ |R∂RM2|+
2∑

k=1

(1− βk)|∂βk
M2| .

|1− µ|+ (1− β2)| log(1− β2)|+R−1

R(1 + (1− β1)R)
.

Proof. Since R2(1 + (1− β1)R)(M2 −M2,1) is L∞-admissible from Proposition 4.6,
we just have to prove the estimate for M2,1. From the construction of Proposition
4.6 — see also the proof of Lemma 4.5, we have

M2,1 =
2(E2,0 + i(1− µ)∂ΓT2,1, ∂y2Qβ2)

(Qβ2 ,DQβ2)
+
2(E2,0 + i(1− µ)∂ΓT2,1, iQβ2)Λ̃β2‖Qβ2‖2L2

(Qβ2 ,DQβ2)(‖Qβ2‖2L2 − Λ̃β2‖Qβ2‖2L2)
.

Since Qβ2 , and R(1 + (1 − β1)R)T2,1 are 2–admissible, and since (Qβ2 ,DQβ2)
−1,

(‖Qβ2‖2L2 − Λ̃β2‖Qβ2‖2L2)
−1 are L∞-admissible, the only terms to be estimated are

(E2,0, ∂y2Qβ2), (E2,0, iQβ2)Λ̃β2‖Qβ2‖2L2 ,

with

E2,0 = (1−χR)
(
2µ|Qβ1 |2Qβ2 + 2

√
µe−iΓQβ1 |Qβ2 |2 +

√
µeiΓQβ1Q

2
β2

+ µe−2iΓQ2
β1
Qβ2

)
.

We already know that R(1 + (1 − β1)R)E2,0 is 2–admissible. Furthermore, from
Proposition 3.11, we have

|Λ̃β2‖Qβ2‖2L2 |+ |Λ̃2
β2
‖Qβ2‖2L2 | . (1− β2)| log(1− β2)| .

This implies the claimed estimate for (E2,0, iQβ2)Λ̃β2‖Qβ2‖2L2 . As for (E2,0, ∂y2Qβ2),
since R(1−χR)Qβ1 is L∞-admissible, we just have to study the contribution of the
terms with only one factor Qβ1 , namely

2
√
µ((1 − χR)e

−iΓQβ1 |Qβ2 |2, ∂y2Qβ2) +
√
µ((1− χR)e

iΓQβ1Q
2
β2
, ∂y2Qβ2) .

After integrating by parts, this quantity is equal to

−√
µRe

(
e−iΓ

∫

R

∂y2((1− χR)Qβ1)|Qβ2 |2Qβ2 dy2

)
.
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Since R2(1+(1−β1)R)∂y2((1−χR)Qβ1) is L∞-admissible, this completes the proof.
�

4.6. Improved decay for T2,1. In this subsection, we improve some estimates of
the first correction T2,1 to Qβ2 in the approximate solution we have constructed in
the previous paragraph.

Lemma 4.9. We have
(
i
∂T2,1
∂Γ

, ∂y2Qβ2

)
= −2πRe (eiΓQβ1(R))+O

( |1− µ|+ (1− β2)
1/2| log(1− β2)|1/2 +R−1

R(1 + (1− β1)R)

)
.

Proof. Writing i∂y2Qβ2 = Lβ2(iρβ2), we have

(i∂ΓT2,1, ∂y2Qβ2) = −(∂ΓT2,1, i∂y2Qβ2) = −(∂ΓT2,1,Lβ2iρβ2) = −(∂ΓLβ2(T2,1), iρβ2)

= −
(
∂ΓE2,0 − i∂ΓM2,1ΛQβ2 + i∂ΓB2,1(y2∂y2Qβ2 + (1− β2)∂β2Qβ2) + i

1− µ

µ
∂2ΓT2,1, iρβ2

)

= I + II + III + IV (4.31)

For IV, we have by Proposition 4.6 that

|IV | . |1− µ|
R(1 + (1− β1)R)

. (4.32)

For III, we have by Proposition 4.6 that |∂ΓB2,1| . 1
R(1+(1−β1)R) . Then,

|III| =
∣∣∣
(
i∂ΓB2,1(y2∂y2Qβ2 + (1− β2)∂β2Qβ2), iρβ2

)∣∣∣

.
(∣∣(iy2∂y2Qβ2 , iρβ2)

∣∣+ (1− β2)
∣∣(i∂β2Qβ2 , iρβ2)

∣∣
) 1

R(1 + (1− β1)R)

Using Proposition 3.11 and (3.10),

(1− β2)
∣∣(i∂β2Qβ2 , iρβ2)

∣∣ . (1− β2)| log(1− β2)|. (4.33)

Then, by (3.10), (2.20) and the identity

y∂yQ
+ = Q+ +

i

2
∂yQ

+

we have

(iy2∂y2Qβ2 , iρβ2) = (iy2∂y2Qβ2 , Qβ2 +
i

2
∂y2Qβ2) +O((1− β2)

1
2 | log(1− β2)|

1
2 )

= (iy∂yQ
+, Q+ +

i

2
∂yQ

+) +O((1− β2)
1
2 | log(1− β2)|

1
2 )

= O((1− β2)
1
2 | log(1− β2)|

1
2 ) . (4.34)

Thus, we conclude that

|III| . (1− β2)
1/2| log(1− β2)|1/2

R(1 + (1− β1)R)
. (4.35)

For II, we have by Proposition 4.6 that |∂ΓM2,1| . 1
R(1+(1−β1)R) . Then, by (4.34)

and (3.10) :

(iΛQβ2 , iρβ2) =
1

2
(iQβ2 , iρβ2) + (iy2∂y2Qβ2 , iρβ2) (4.36)

=
1

2
(iQβ2 , Qβ2) +

1

4
(iQβ2 , i∂y2Qβ2) +O((1− β2)

1
2 | log(1− β2)|

1
2 )

(4.37)

= O((1− β2)
1
2 | log(1− β2)|

1
2 ).
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Therefore,

|II| . (1− β2)
1
2 | log(1− β2)|

1
2

R(1 + (1− β1)R)
. (4.38)

Finally, for I, we have that

I = −(∂ΓE2,0, iρβ2)

= −
(
(1 − χR)[−2i

√
µe−iΓQβ1 |Qβ2 |2 + i

√
µeiΓQβ1Q

2
β2

− 2iµe−2iΓQ2
β1
Qβ2 ], iρβ2

)

= −√
µRe

(
ieiΓ

∫
(1− χR)Qβ1(y1)[2|Qβ2 |2iρβ2 +Q2

β2
iρβ2 ]dy2

)
+O

( 1

R2(1 + (1− β1)R)2

)

=
√
µIm

(
eiΓ
∫

|y2|6 R
2bµ

Qβ1(y1)[2|Qβ2 |2iρβ2 +Q2
β2
iρβ2 ]dy2

)
+O

( 1

R2(1 + (1− β1)R)2

)
.

Let z2 := bµy2
R . We then Taylor expand for |z2| 6 1

2 , or equivalently |y2| 6 R
2bµ , and

obtain by Proposition 3.7:

Qβ1(y1) = Qβ1 (R(1 + z2)) = Qβ1(R)−
∫ 1

0
Rz2∂y1Qβ1 (R(1 + tz2)) dt

= Qβ1(R) +O

(
R|z2|

R2(1 + (1− β1)R)

)
= Qβ1(R) +O

(
b|y2|

R2(1 + (1− β1)R)

)

Therefore,

I =
√
µIm

(
eiΓQβ1(R)

∫
[2|Qβ2 |2iρβ2 +Q2

β2
iρβ2 ](y2)dy2

)
+O

( 1

R2(1 + (1− β1)R)

)
.

(4.39)

Using (3.10) and Lemma A.1, we have that
∫

[2|Qβ2 |2iρβ2 +Q2
β2
iρβ2 ](y2)dy2 = 3

∫
|Qβ2 |2Qβ2dy2 + i

∫
|Qβ2 |2∂y2Qβ2dy2

− i

2

∫
Q2

β2
∂y2Qβ2dy2 +O((1 − β2)

1
2 | log(1− β2)|

1
2 )

= 3

∫
|Q+|2Q+dy + i

∫
|Q+|2∂yQ+dy − i

2

∫
(Q+)2∂yQ+dy +O((1 − β2)

1
2 | log(1− β2)|

1
2 )

= −6πi+ 2πi+ 2πi+O((1− β2)
1
2 | log(1− β2)|

1
2 )

= −2πi+O((1− β2)
1
2 | log(1− β2)|

1
2 ). (4.40)

Then,

I = −2πRe
(
eiΓQβ1(R)

)
+O

( |1− µ|+ (1− β2)
1
2 | log(1− β2)|

1
2

R(1 + (1− β1)R)

)
+O

( 1

R2(1 + (1− β1)R)

)
.

Combining this with (4.32), (4.31), (4.35) and (4.38), the conclusion of the lemma
follows.

�

Lemma 4.10. We have

(
i
∂T2,1
∂R

, ∂y2Qβ2

)
= −2πIm (eiΓ∂y1Qβ1(R)) +O

( |1− µ|+ (1− β2)
1
2 | log(1− β2)|

1
2

R2(1 + (1− β1)R)

)

+O
( 1

R3(1 + (1− β1)R)

)
.
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Proof. The proof follows the same lines as the above one. With the same notation
as above, we have

(i∂RT2,1, ∂y2Qβ2)

= −
(
∂RE2,0 − i∂RM2,1ΛQβ2 + i∂RB2,1(y2∂y2Qβ2 + (1− β2)∂β2Qβ2), iρβ2

)

−
(
i
1− µ

µ
∂Γ∂RT2,1, iρβ2

)

= V + V I + V II + V III. (4.41)

By Proposition 4.6, we have that

|V III| . |1− µ|
R2(1 + (1− β1)R)

(4.42)

Using Proposition 4.6, we have that |∂RB2,1| . 1
R2(1+(1−β1)R)

. Then, it follows by

(4.33) and (4.34) that

|V II| . (1− β2)
1
2 | log(1− β2)|

1
2

R2(1 + (1− β1)R)
.

Since |∂RM2,1| . 1
R2(1+(1−β1)R)

by Proposition 4.6, we have according to (4.36) that

|V I| . (1− β2)
1
2 | log(1− β2)|

1
2

R2(1 + (1− β1)R)
(4.43)

Lastly, by (4.40) we have that
∫
(2|Qβ2 |2iρβ2 + Q2

β2
iρβ2)dy2 = −2πi + O((1 −

β2)
1
2 | log(1− β2)|

1
2 ), and thus

V = −(∂RE2,0, iρβ2) =
√
µRe eiΓ

∫
(1− χR)∂y1Qβ1(2|Qβ2 |2iρβ2 +Q2

β2
iρβ2)dy2

+O

(∫
χ′
(
1 + µ

by2
R

)
µb|y2|
R2

(|Qβ1 |2 + |Qβ1 ||Qβ2 |)|Qβ2iρβ2 |dy2
)

+O
(∫

(1− χR)|Qβ1 ||∂y1Qβ1 ||Qβ2iρβ2 |dy2
)

= −2πIm (eiΓ∂y1Qβ1(R)) +O

(
(1− β2)

1
2 | log(1− β2)|

1
2

R2(1 + (1− β1)R)

)

+O

(
1

R3(1 + (1− β1)R)

)
.

�

Lemma 4.11. We have

∣∣∣(1−β2)
(
i
∂T2,1
∂β2

, ∂y2Qβ2

)∣∣∣ . (1− β2)
1
2 | log(1− β2)|

1
2 + |1− µ|

R(1 + (1− β1)R)
+

√
b

R2(1 + (1− β1)R)
.

Proof. Using the symmetry of Lβ2 with respect to the real scalar product, we write
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(1− β2)
(
i
∂T2,1
∂β2

,∂y2Qβ2

)
= −(1− β2)

(∂T2,1
∂β2

, i∂y2Qβ2

)
(4.44)

= −
(
(1− β2)

∂T2,1
∂β2

,Lβ2(iρβ2)
)
= −

(
(1− β2)Lβ2

(∂T2,1
∂β2

)
, iρβ2

)

= −(1− β2)
(
∂β2(Lβ2T2,1) + 2∂β2(|Qβ2 |2)T2,1 + ∂β2(Q

2
β2
)T2,1, iρβ2

)

−
(2DT−

2,1

1− β2
, iρβ2

)
.

We start by estimating the last term. Firstly,
∣∣∣∣∣
(2DT−

2,1

1− β2
, iρβ2

)∣∣∣∣∣ 6
∥∥∥∥∥
2DT−

2,1

1− β2

∥∥∥∥∥
L2

‖iρ−β2
‖L2 .

Projecting the equation satisfied by T2,1 onto negative frequencies, we obtain:

−1 + β2
1− β2

DT−
2,1 + T−

2,1 − 2Π−(|Qβ2 |2T2,1)−Π−(Q2
β2
T2,1)

= Π−(E2,0)− iM2,1Π
−(ΛQβ2) + iB2,1Π

−(y2∂y2Qβ2 + (1− β2)∂β2Qβ2)

+ i(1− µ)∂ΓT
−
2,1

and therefore, using the 2–admissibility of R(1 + (1 − β1)R)T2,1 and R(1 + (1 −
β1)R)E2,0, as well as the L∞-admissibility R(1 + (1 − β1)R)B2,1 and R(1 + (1 −
β1)R)M2,1, we infer ∥∥∥∥∥

2DT−
2,1

1− β2

∥∥∥∥∥
L2

.
1

R(1 + (1− β1)R)
.

On the other hand, by (3.10), we have

‖iρ−β2
‖L2 =

∥∥∥∥Q−
β2

+
i

2
∂y2Q

−
β2

∥∥∥∥
L2

+O((1 − β2)
1
2 | log(1− β2)|1/2) . (1− β2)

1
2 | log(1− β2)|1/2.

This shows that ∣∣∣∣∣
(2DT−

2,1

1− β2
, iρβ2

)∣∣∣∣∣ .
(1− β2)

1
2 | log(1− β2)|1/2

R(1 + (1− β1)R)
. (4.45)

Then, by (3.10), we easily notice that, for every p ∈ (2,∞),

∣∣∣
(
2∂β2(|Qβ2 |2)T2,1 + ∂β2(Q

2
β2
)T2,1, iρβ2

)∣∣∣ .
‖Q̇+

β2
‖L2 + ‖Q̇−

β2
‖Lp + ‖Q̇−

β2
‖L2(1− β2)

1/2| log(1− β2)|1/2
R(1 + (1− β1)R)

.
| log(1− β2)|+ p(1− β2)

−1/p + | log(1− β2)|1/2
R(1 + (1− β1)R)

,

where we have used (3.23) and (3.24) combined to the Hausdorff–Young inequality.
Choosing p = | log(1− β2)|, we conclude

(1− β2)
∣∣∣
(
2∂β2(|Qβ2 |2)T2,1 + ∂β2(Q

2
β2
)T2,1, iρβ2

)∣∣∣ . (1− β2)| log(1− β2)|
R(1 + (1− β1)R)

. (4.46)

Finally, we deal with the term

(1− β2)
(
∂β2(Lβ2T2,1), iρβ2

)
.
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Recalling the equation of T2,1, we have:

∂β2

(
Lβ2T2,1

)
= ∂β2E2,0 − i∂β2M2,1ΛQβ2 − iM2,1Λ∂β2Qβ2 (4.47)

+ i∂β2B2,1

[
y2∂y2Qβ2 + (1− β2)

∂Qβ2

∂β2

]

+ iB2,1

[
y2∂y2∂β2Qβ2 − ∂β2Qβ2 + (1− β2)∂

2
β2
Qβ2

]

+ i(1− µ)∂Γ∂β2T2,1

with

E2,0 = (1−χR)
[
2
√
µe−iΓQβ1 |Qβ2 |2 + µe−2iΓQ2

β1
Qβ2 + 2µQβ2 |Qβ1 |2 +

√
µeiΓQβ1Q

2
β2

]
.

Because of Proposition 4.6, we have the pointwise bound on the Fourier coefficients
of E2,0:
∑

±

2∑

r=1

|E±
2,0,r(y2)|+ |E2,0,0(y2)| .

1

R(1 + (1− β1)R)〈y2〉(1 + (1− β2)|y2|)
. (4.48)

Using the fact that ∂y1
∂β2

= − µy2
1−β1

, we also have the pointwise bound

∑

±

2∑

r=1

|∂β2Ep
2,0,rm(y2)|+ |∂β2E2,0,0(y2)| (4.49)

.
|y2|

(1− β1)R
111|y1|∼R,|y2|∼R

b

(
|Qβ1 ||Qβ2 |2 + |Qβ1 |2|Qβ2 |

)

+
|y2|

1− β1
111|y1|>R

4
|∂y1Qβ1 |

(
|Qβ1 ||Qβ2 |+ |Qβ2 |2

)

+111|y1|>R
4
|∂β2Qβ2 |

(
|Qβ1 |2 + |Qβ1 ||Qβ2 |

)

= IX +X +XI .

Using the bounds (3.7) on Qβ and (3.23), (3.24) combined with Hausdorff–Young
yield

‖IX‖L2 + ‖X‖L2 .
1

(1− β1)
√
bR2(1 + (1− β1)R)

, (4.50)

‖XI‖L2+Lp .
| log(1− β2)|+ p(1− β2)

−1/p

R(1 + (1− β1)R)
, 2 ≤ p <∞ . (4.51)

We are going to use this to estimate ∂β2B2,1 and ∂β2M2,1. Recall that

B±
2,1,r = −

(E±
2,0,r + i(1 − µ)T±

2,1,r, iQβ2)(
iy2∂y2Qβ2 + i(1− β2)

∂Qβ2
∂β2

, iQβ2

) ,

and a similar identity for B2,1,0. Taking the derivative with respect to β2 and using
(4.48), we have

|∂β2B
±
2,1,r| .

∣∣∣
(
∂β2E±

2,0,r + i(1− µ)∂β2T
±
2,1,r, iQβ2

)∣∣∣

+
∣∣∣(E±

2,0,r + i(1− µ)T±
2,1,r, i∂β2Qβ2)

∣∣∣

+
1

R(1 + (1− β1)R)

∣∣(iy2∂y2∂β2Qβ2 − i∂β2Qβ2 + i(1− β2)∂
2
β2
Qβ2 , iQβ2

)∣∣

+
1

R(1 + (1− β1)R)

∣∣(iy2∂y2Qβ2 + i(1− β2)∂β2Qβ2 , i∂β2Qβ2

)∣∣ .
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We estimate the inner products in the right hand side of the above inequality as
follows. Notice that, from the admissibility properties and (4.48), for every q ∈ (1, 2],

‖Qβ2‖Lq .
1

q − 1
, ‖T±

2,1,r‖Lq + ‖E±
2,1,r‖Lq .

1

(q − 1)R(1 + (1− β1)R)
.

Given p ∈ [2,∞), using (4.50), (4.51), (3.23), (3.24), Hölder’s inequality leads to

|(∂β2E±
2,0,r, iQβ2)| .

1

(1− β1)
√
bR2(1 + (1− β1)R)

+
p| log(1− β2)|+ p2(1− β2)

−1/p

R(1 + (1− β1)R)

|(E±
2,0,r, i∂β2Qβ2)| .

p| log(1− β2)|+ p2(1− β2)
−1/p

R(1 + (1− β1)R)

|(T±
2,1,r, i∂β2Qβ2)| .

p| log(1− β2)|+ p2(1− β2)
−1/p

R(1 + (1− β1)R)

|(∂β2T
±
2,1,r, iQβ2)| .

1

(1− β2)R(1 + (1− β1)R)
.

The other inner products are estimated thanks to (3.30). Choosing p = | log(1−β2)|
in the above inequalities, we infer

(1−β2)|∂β2B
±
2,1,r| .

√
b

R2(1 + (1− β1)R)
+
(1− β2)(log(1− β2))

2

R(1 + (1− β1)R)
+

|1− µ|
R(1 + (1− β1)R)

.

We obtain the same estimate for (1− β2)∂β2B2,1,0.
Arguing analogously, we obtain

(1−β2)|∂β2M
±
2,1,r| .

√
b

R2(1 + (1− β1)R)
+
(1− β2)(log(1− β2))

2

R(1 + (1− β1)R)
+

|1− µ|
R(1 + (1− β1)R)

.

Putting together the above estimates and using the fact that |B2,1| + |M2,1| .
1

R(1+(1−β1)R) , we obtain from (4.47):

∣∣∣(1− β2)
(
∂β2(Lβ2T2,1), iρβ2

)∣∣∣ .
√
b

R2(1 + (1− β1)R)
+

(1− β2)(log(1− β2))
2 + |1− µ|

R(1 + (1− β1)R)
.

This together with (4.44), (4.45), and (4.46) show that

∣∣∣(1−β2)
(
i
∂T2,1
∂β2

, ∂y2Qβ2

)∣∣∣ . (1− β2)
1
2 | log(1− β2)|

1
2 + |1− µ|

R(1 + (1− β1)R)
+

√
b

R2(1 + (1− β1)R)
,

which proves (4.44).
�

4.7. Sharp modulation equations. We now compute explicitly the leading order
modulation equations. We need to exhibit some fine cancellations which could be
computed to the expense of lengthy computations4 which can be avoided using the
following nonlinear algebra.

Before stating the result, let us define some more notation. We set

Nβ :=
1

2π
‖Qβ‖2L2 , Pβ :=

1

2π
(DQβ, Qβ) . (4.52)

and we recall that

cβ :=
i

2π

∫

R

|Qβ(y)|2Qβ(y) dy .

4because we need the cancellation to the order 2 in the scaling law.
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and the asymptotics from Proposition 3.11,

Nβ = 1 +O((1 − β) log(1− β)) , Λ̃βNβ = O((1− β) log(1− β)) ,

Pβ = 1 +O((1 − β) log(1− β)) , cβ = 1 +O((1− β) log(1− β)) .

Proposition 4.12 (Sharp modulation equations). Let B
(N)
j ,M

(N)
j be defined by

Proposition 4.6. The following estimates hold for P ∈ O.

B
(N)
1 = 2

Re
(
Qβ2

(
− R

bµ

)
cβ1 e

iΓ
)

Nβ1 − Λ̃β1Nβ1

+O

(
b(|1− µ|+R−1)

R(1 + (1− β1)R)

)
, (4.53)

B
(N)
2 = 2

Re
(
Qβ1(R) cβ2 e

−iΓ
)

Nβ2 − Λ̃β2Nβ2

+O

( |1− µ|+R−1

R(1 + (1− β1)R)

)
. (4.54)

M
(N)
1 − Λ̃β1Pβ1

Pβ1

B
(N)
1 = O

(
b(|1− µ|+R−1)

R(1 + (1− β1)R)

)
, (4.55)

M
(N)
2 − Λ̃β2Pβ2

Pβ2

B
(N)
2 + 2(1− µ)Re (eiΓQβ1(R)) + 2Im (eiΓ∂y1Qβ1(R)) (4.56)

= O
((|1 − µ|+R−1)(|1− µ|+ b+ (1− β2)

1/2| log(1− β2)|1/2) +R−2

R(1 + (1− β1)R)

)
.

Proof. We recall the system of nonlinear elliptic equations solved in Proposition 4.6.

‖E1,N‖β1 = O(bR−N−1) , ‖E2,N‖β2 = O(R−N−1) .

To simplify the notation, we will use vj instead of V
(N)
j all along this proof. We

will also drop the indices (N) from Bj,Mj for j = 1, 2.

Let us recall the expressions of E1, E2.

E1 = −(|D| − β1D)v1
1− β1

− v1 + v1|v1|2 − iM1Λv1 + iB1

[
y1∂y1v1 + (1− β1)

∂v1
∂β1

]

+ iλ1M1
∂v1
∂λ1

+ iλ1M2
∂v1
∂λ2

+ i
(1− β2)B2

µ

∂v1
∂β2

(4.57)

+ i
1− µ

µ

∂v1
∂Γ

+ i(1− b+ (B1 −M1)R)
∂v1
∂R

+ χR

[
2

µ
v1|v2|2 +

e−iΓ

√
µ
v21v2 + 2

eiΓ√
µ
|v1|2v2 +

e2iΓ

µ
v1v

2
2

]
,

E2 = −(|D| − β2D)v2
1− β2

− v2 + v2|v2|2 − iM2Λv2 + iB2

[
y2∂y2v2 + (1− β2)

∂v2
∂β2

]

+ iλ2M2
∂v2
∂λ2

+ iλ2M1
∂v2
∂λ1

+ iµ(1− β1)B1
∂v2
∂β1

(4.58)

+ i(1 − µ)
∂v2
∂Γ

+ iµ(1− b+ (B1 −M1)R)
∂v2
∂R

+ (1− χR)
[
2
√
µe−iΓv1|v2|2 + µe−2iΓv21v2 + 2µv2|v1|2 +

√
µeiΓv̄1v

2
2

]
.

Our strategy is to extract information on Bj,Mj from (4.11), (4.57), (4.58) and the
admissibility properties of v1, v2.
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Step 1: Speed for the first bubble and estimate on B1. We take the scalar product
of (4.57) with iv1. We observe the cancellations

(
− (|D| − β1D)v1

1− β1
− v1 + v1|v1|2, iv1

)
= 0 , (iΛv1, iv1) = 0 .

Recall from Proposition 4.6 that

|B1|+ |M1| .
b

R(1 + (1− β1)R)
,

and that b−1(1 + (1− β1)R)R
jT1,j is 1–admissible. We obtain

B1[(Λy1Qβ1 + Λ̃β1Qβ1 , Qβ1) +O(R−1)] = − 1√
µ
Im

(
eiΓ
∫

R

χR|v1|2v1v2 dy1
)

+O

(∫

R

χR|v1|2|v2|2 dy1 +
b

R(1 + (1− β1)R)

[
|1− µ|+ 1

R

])
.

From the 2–admissibility of v2, we have

χR(y1)

∣∣∣∣v2
(
y1 −R

bµ

)∣∣∣∣
2

≤ b2

R2(1 + (1− β1)R)2
.

This allows to neglect the integral∫

R

χR|v1|2|v2|2 dy1 .

On the other hand,
∣∣∣∣χR(y1)

(
v2

(
y1 −R

bµ

)
− v2

(−R
bµ

))∣∣∣∣ .
b2

R2(1 + (1− β1)R)
,

and more precisely, since Rj(1 + (1− β1)R)T2,j is 2–admissible,
∣∣∣∣v2
(−R
bµ

)
−Qβ2

(
− R

bµ

)∣∣∣∣ .
b

R2(1 + (1− β1)R)2
.

Therefore we can replace v2 by Qβ2(−R/(bµ)) in the integral
∫

R

χR|v1|2v1v2 dy1 .

Similarly, because of the estimates on T1,j , one can replace v1 by Qβ1 in the above
integral, and finally drop the factor χR, since the tale of |Qβ1 |3 at infinity is small
enough. Identifying the coefficient of B1, we infer

−πB1(Nβ1 − Λ̃β1Nβ1) = − 1√
µ
Im

(
Qβ2

(−R
bµ

)∫

R

|Qβ1 |2Qβ1
eiΓ
)

+O

(
b

R(1 + (1− β1)R)

[
|1− µ|+ 1

R

])
,

which, using the notation for cβ , provides (4.53). Notice that the factor 1/
√
µ has

been replaced by 1 up to an error

O

( |1− µ|b
R(1 + (1− β1)R)

)
.

Step 2: Speed for the second bubble and estimate on B2. We proceed for the
second bubble exactly as in Step 1. This leads to (4.54), as can be checked easily
by the reader. Notice that the absence of the factor b in the remainder term is due
to the slightly different estimate for T2,1 in Proposition 4.6.
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Step 3: Scaling for the first bubble and estimate on M1. We take the scalar product
of (4.57) with ∂y1v1. We observe the cancellation

(
− (|D| − β1D)v1

1− β1
− v1 + v1|v1|2, ∂y1v1

)
= 0.

We now compute the leading order non linear term. First, by integration by parts,
(
χR

[
2

µ
v1|v2|2 +

e2iΓ

µ
v1v

2
2

]
, ∂y1v1

)
(4.59)

= − 1

µ

∫
|v1|2∂y1(χR|v2|2)dy1 −

1

2µ
Re

(∫
e2iΓv1

2∂y1(χRv
2
2)dy1

)
.

From Proposition 4.6, we have the rough bound

|vj |+ |yj∂yjvj | .
1

〈yj〉(1 + (1− βj)|yj |)
. (4.60)

Combining this with the fact that on the support of χR we have R
2µb 6 |y2| 6 3R

2µb ,
we estimate

|∂y1(χR|v2|2)| .
111|y2|> R

2µb

R
|v2|2 +

111|y2|> R
2µb

bµ
∂y2(|v2|2) .

b2

R3(1 + (1− β1)R)2

Then, by (4.59) and (4.60), we have
∣∣∣
(
χR

[ 2
µ
v1|v2|2 +

e2iΓ

µ
v1v

2
2

]
, ∂y1v1

)∣∣∣ . b2

R3(1 + (1− β1)R)2
. (4.61)

For the remaining nonlinear term, we integrate by parts and obtain
(
χR

[
e−iΓ

√
µ
v21v2 + 2

eiΓ√
µ
|v1|2v2

]
, ∂y1v1

)

= Re

(∫
χR√
µ

[
e−iΓv21v2∂y1v1 + 2eiΓv1v1v2∂y1v1

]
dy1

)

= Re

(∫
χR√
µ

[
e−iΓv2

[
∂y1(v

2
1v1)− 2v1∂y1v1v1

]
+ 2eiΓv1v1v2∂y1v1

]
dy1

)

= −Re

(∫
e−iΓ

√
µ
v1|v1|2∂y1 [χRv2] dy1

)
(4.62)

We extract the leading order term using the following pointwise bound which is a
consequence of the 1–admissibility of b−1R(1 + (1 − β1)R)(v1 − Qβ1), and of the
2–admissibility of R(1 + (1− β1)R)(v2 −Qβ2),∣∣∣v1|v1|2∂y1 [χRv2]−Qβ1 |Qβ1 |2∂y1

[
χRQβ2

] ∣∣∣

.
b

R3(1 + (1− β1)R)2〈y1〉3
and thus:

−Re

(∫
e−iΓ

√
µ
v1|v1|2∂y1 [χRv2] dy1

)
= −Re

(∫
e−iΓ

√
µ
Qβ1 |Qβ1 |2∂y1

[
χRQβ2

]
dy1

)

+O

(
b

R3(1 + (1− β1)R)2

)
(4.63)

We now compute the leading order term. Let

z1 =
y1
R
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Then, using |∂2y2Qβ2 | . 1
〈y2〉3 , we have for |z1| 6 1

2 that

∂y2Qβ2(y2) = ∂y2Qβ2

(−R
bµ

(1− z1)

)

= ∂y2Qβ2

(−R
bµ

)
+

∫ 1

0

Rz1
bµ

∂2y2Qβ2

(−R
bµ

(1− tz1)

)
dt

= ∂y2Qβ2

(−R
bµ

)
+O

(
R|z1|
b

( b
R

)3)
= ∂y2Qβ2

(−R
bµ

)
+O

(
b2|y1|
R3

)
.

Thus,

− Re

(∫
e−iΓ

√
µ
Qβ1 |Qβ1 |2∂y1

[
χRQβ2

]
dy1

)

= −Re

(∫

|y1|6R
2

e−iΓ

bµ
√
µ
Qβ1 |Qβ1 |2χR∂y2Qβ2dy1

)

− Re

(∫

R
4
6|y1|6R

2

e−iΓ

√
µ
Qβ1 |Qβ1 |2 [∂y1χR]Qβ2dy1

)

= −Re

(∫

|y1|6R
2

e−iΓ

bµ
√
µ
Qβ1 |Qβ1 |2∂y2Qβ2dy1

)

− Re

(∫

|y1|6R
2

e−iΓ

bµ
√
µ
(χR − 1)Qβ1 |Qβ1 |2∂y2Qβ2dy1

)
+O

(
b

R4

)

= −Re

(
∂y2Qβ2

(−R
bµ

)∫

|y1|6R
2

e−iΓ

bµ
√
µ
Qβ1 |Qβ1 |2dy1

)
+O

(
b

R3

)

= − 1

bµ
Re

(
∂y2Qβ2

(−R
bµ

)
eiΓ√
µ

∫
Qβ1

|Qβ1 |2dy1
)
+O

(
b

R3

)

=
2π

bµ
√
µ
Im

(
eiΓcβ1∂y2Qβ2

(−R
bµ

))
+O

(
b

R3

)
. (4.64)

Finally we use again the following bound,

1

bµ

∣∣∣∣∂y2Qβ2

(−R
bµ

)∣∣∣∣ .
b

R2(1 + (1− β1)R)
.

This together with (4.62), (4.63), and (4.64), yields

∣∣∣
(
χR

[
e−iΓ

√
µ
v21v2 + 2

eiΓ√
µ
|v1|2v2

]
, ∂y1v1

) ∣∣∣ . b

R2(1 + (1− β1)R)
.

Combining this with (4.61), we get that the contribution of the nonlinearity is

∣∣∣
(
χR

[ 2
µ
v1|v2|2+

e2iΓ

µ
v1v

2
2 +

e−iΓ

√
µ
v21v2+2

eiΓ√
µ
|v1|2v2

]
, ∂y1v1

)∣∣∣ . b

R2(1 + (1− β1)R)
.

(4.65)
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In view of the expression (4.57) of E1, we infer —assuming N large enough—,

M1(−iΛv1, ∂y1v1) +B1

(
iy1∂y1v1 + i(1− β1)

∂v1
∂β1

, ∂y1v1

)

+ λ1M1

(
i
∂v1
∂λ1

, ∂y1v1

)
+ λ1M2

(
i
∂v1
∂λ2

, ∂y1v1

)
+

(1− β2)B2

µ

(
i
∂v1
∂β2

, ∂y1v1

)

+
1− µ

µ

(
i
∂v1
∂Γ

, ∂y1v1

)
+ (1− b+ (B1 −M1)R)

(
i
∂v1
∂R

, ∂y1v1

)
= O(bR−2(1 + (1− β1)R)

−1).

We now compute the terms involving the modulation equations. First, by Proposi-
tion 4.6, we have that

(−iΛv1, ∂y1v1) = (−iΛQβ1 , ∂y1Qβ1) +O

(
b

R(1 + (1− β1)R)

)

= −πPβ1 +O

(
b

R(1 + (1− β1)R)

)
. (4.66)

On the other hand,

(
iy1∂y1v1 + i(1 − β1)

∂v1
∂β1

, ∂y1v1

)
=

(
i(1− β1)

∂Qβ1

∂β1
, ∂y1Qβ1

)
+O

(
b

R(1 + (1− β1)R)

)
,

= πΛ̃β1Pβ1 +O

(
b

R(1 + (1− β1)R)

)
.

Then, by Proposition 4.6,
∣∣∣∣
(
i
∂v1
∂λ1

, ∂y1v1

)∣∣∣∣+
∣∣∣∣
(
i
∂v1
∂λ2

, ∂y1v1

)∣∣∣∣+
∣∣∣∣
(
i(1− β2)

∂v1
∂β2

, ∂y1v1)
)∣∣∣∣

.
b

R(1 + (1− β1)R
,

and
∣∣∣∣
1− µ

µ

(
i
∂v1
∂Γ

, ∂y1v1

)∣∣∣∣+
∣∣∣∣
(
i
∂v1
∂R

, ∂y1v1

)∣∣∣∣

.
b(|1− µ|+R−1)

R(1 + (1− β1)R)
.

The collection of above bounds yields the identity:

−πPβ1M1 + Λ̃β1Pβ1B1 = O

(
b(|1− µ|+R−1)

R(1 + (1− β1)R)

)
,

which leads to the bound
∣∣∣∣∣M1 −

Λ̃β1Pβ1

Pβ1

B1

∣∣∣∣∣ .
b(|1 − µ|+R−1)

R(1 + (1− β1)R)
. (4.67)

Step 4: Scaling for the second bubble and estimate on M2. We take the scalar
product of (4.10) with ∂y2v2. We observe the cancellation

(
− (|D| − β2D)v2

1− β2
− v2 + v2|v2|2, ∂y2v2

)
= 0.
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We now compute the contribution of the non linear term. Firstly, by integration by
parts,

(
(1− χR)

[
2µv2|v1|2 + µe−2iΓv2v

2
1

]
, ∂y2v2

)
(4.68)

=− µ

∫
|v2|2∂y2((1− χR)|v1|2)dy2 −

µ

2
Re

(∫
e−2iΓv2

2∂y2((1− χR)v
2
1)dy2

)
.

By the rough bound (4.60), we have

∣∣∂y2
(
(1− χR)|v1|2

)∣∣ .
bµ

R
1R

4
6|y1|6R

2
|v1|2 + bµ1|y1|>R

4
∂y1(|v1|2)

.
b1R

4
6|y1|6R

2

R〈y1〉2
+ b

1|y1|>R
4

〈y1〉3
.

b

R3(1 + (1− β1)R)2
.

Then, by (4.68), we have

∣∣∣
(
(1− χR)

[
2µv2|v1|2 + µe−2iΓv2v

2
1

]
, ∂y2v2

)∣∣∣ . b

R3(1 + (1 − β1)R)2
. (4.69)

For the remaining nonlinear term, we integrate by parts and obtain

(
(1− χR)

[√
µeiΓv22v1 + 2

√
µe−iΓ|v2|2v1

]
, ∂y2v2

)

= Re

(∫ √
µ(1− χR)

[
eiΓv22v1∂y2v2 + 2e−iΓv2v2v1∂y2v2

]
dy2

)

= Re

(∫ √
µ(1− χR)

[
eiΓv1

[
∂y2(v

2
2v2)− 2v2∂y2v2v2

]
+ 2e−iΓv2v2v1∂y2v2

]
dy2

)

= −Re

(∫ √
µeiΓv2|v2|2∂y2 [(1− χR)v1] dy2

)
(4.70)

We extract the leading order term using the pointwise bound:
∣∣∣v2|v2|2∂y2 [(1− χR)v1]−Qβ2 |Qβ2 |2∂y2

[
(1− χR)Qβ1

] ∣∣∣

.
1

R〈y2〉3

[
bµ1R

4
6|y1|6R

2

R〈y1〉(1 + (1− β1)|y1|)
+

bµ1|y1|>R
4

〈y1〉2(1 + (1− β1)|y1|)

]
.

b

R3〈y2〉3(1 + (1− β1)R)
.

Thus,

− Re

(∫ √
µeiΓv2|v2|2∂y2 [(1− χR)v1] dy2

)

= −Re

(∫ √
µeiΓQβ2 |Qβ2 |2∂y2

[
(1− χR)Qβ1

]
dy2

)
+O

(
b

R3(1 + (1− β1)R)

)

(4.71)

We now compute the leading order term. Let z2 =
bµy2
R , then for |z2| 6 1

2 :

∂y1Qβ1(y1) = ∂y1Qβ1 (R(1 + z2)) = ∂y1Qβ1(R) +

∫ 1

0
Rz2∂

2
y1Qβ1 (R(1 + tz2)) dt

= ∂y1Qβ1(R) +O

(
R|z2|
R3

)
= ∂y1Qβ1(R) +O

(
bµ|y2|
R3

)
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and thus:

−Re

(∫ √
µeiΓQβ2 |Qβ2 |2∂y2

[
(1− χR)Qβ1

]
dy2

)

= −Re

(∫

|y2|> R
2bµ

bµ
√
µeiΓQβ2 |Qβ2 |2∂y1

[
(1− χR)Qβ1

]
dy2

)

− Re

(∫

|y2|6 R
2bµ

bµ
√
µeiΓQβ2 |Qβ2 |2∂y1

[
(1− χR)Qβ1

]
dy2

)

= −Re

(∫

|y2|6 R
2bµ

bµ
√
µeiΓQβ2 |Qβ2 |2∂y1Qβ1dy2

)
+O

(
b3

R4

)

= −Re

(
bµ

√
µeiΓ∂y1Qβ1(R)

∫

|y2|6 R
2bµ

Qβ2 |Qβ2 |2dy2
)

+ O

(
b3

R4
+ b

∫

|y2|6 R
2bµ

bµ

R3

|y2|
〈y2〉3

dy2

)

= −Re

(
bµ

√
µeiΓ∂y1Qβ1(R)

∫
Qβ2 |Qβ2 |2dy2

)
+O

(
b

R3

)

= O

(
b

R2(1 + (1− β1)R)

)

where we used (3.15) in the last step. Combining this with (4.70) and (4.71), we
obtain that

∣∣∣
(
(1− χR)

[√
µeiΓv22v1 + 2

√
µe−iΓ|v2|2v1

]
, ∂y2v2

)∣∣∣ . b

R2(1 + (1− β1)R)
.

This, together with (4.69) yields

∣∣∣
(
(1− χR)

[
2µv2|v1|2 + µe−2iΓv2v

2
1 +

√
µeiΓv22v1 + 2

√
µe−iΓ|v2|2v1

]
, ∂y2v2

)∣∣∣

.
b

R2(1 + (1− β1)R)
.

In view of the expression (4.58) of E2, we infer

M2(−iΛv2, ∂y2v2) +B2

(
iy2∂y2v2 + i(1− β2)

∂v2
∂β2

, ∂y2v2

)

+ λ2M2

(
i
∂v2
∂λ2

, ∂y2v2

)
+ λ2M1

(
i
∂v2
∂λ1

, ∂y2v2

)
+ µB1

(
i(1− β1)

∂v2
∂β1

, ∂y2v2

)

+ (1− µ)

(
i
∂v2
∂Γ

, ∂y2v2

)
+ (1− b+ (B1 −M1)R)

(
i
∂v2
∂R

, ∂y2v2

)

= O

(
b

R2(1 + (1− β1)R)
+

1

RN+1

)
.

Next we compute the terms involving the modulation equations. On the one hand,

(iΛv2, ∂y2v2) = (iΛQβ2 , ∂y2Qβ2)+O

(
1

R(1 + (1− β1)R)

)
= πPβ2+O

(
1

R(1 + (1− β1)R)

)
.
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On the other hand, taking into account Lemma 4.11 and (3.23), (3.24),
(
iy2∂y2v2 + i(1 − β2)

∂v2
∂β2

, ∂y2v2

)
=

(
i(1− β2)

∂Qβ2

∂β2
, ∂y2Qβ2

)

+ O

(
|1− µ|+ (1− β2)

1/2| log(1− β2)|1/2 +R−1

R(1 + (1− β1)R)

)
,

= πΛ̃β2Pβ2 +O

(
|1− µ|+ (1− β2)

1/2| log(1− β2)|1/2 +R−1

R(1 + (1− β1)R)

)
.

Then, by construction,
∣∣∣∣
(
i
∂v2
∂λ1

, ∂y2v2

)∣∣∣∣+
∣∣∣∣
(
i
∂v2
∂λ2

, ∂y2v2

)∣∣∣∣+
∣∣∣∣
(
i(1− β1)

∂v2
∂β1

, ∂y2v2

)∣∣∣∣ .
1

R(1 + (1− β1)R)
.

Moreover, by Lemmas 4.9 and 4.10, we have

(1− µ)
(
i
∂v2
∂Γ

, ∂y2v2

)
+ µ(1− b)

(
i
∂v2
∂R

, ∂y2v2

)

= (1− µ)
[
− 2πRe (eiΓQβ1(R))

]
+ µ(1− b)

[
− 2πIm (eiΓ∂y1Qβ1(R))

]

+O
((1− µ)2 + |1− µ|((1− β2)

1/2| log(1− β2)|1/2 +R−1) +R−2

R(1 + (1− β1)R)

)
.

Notice that, in view of (3.15), the factor µ(1− b) in the above right hand side can
be replaced by 1 up to the expense of the additional error

O

(
b(|1− µ|+R−1)

R(1 + (1− β1)R

)
.

Summing up, we obtain

M2 −
Λ̃β2Pβ2

Pβ2

B2 + 2(1− µ)Re (eiΓQβ1(R)) + 2Im (eiΓ∂y1Qβ1(R)) =

O
( (|1− µ|+R−1)(|1 − µ|+ b+ (1− β2)

1/2| log(1− β2)|1/2) +R−2

R(1 + (1− β1)R)

)
.

This completes the proof. �

4.8. Solving the reduced dynamical system. Our aim in this section is to
exhibit a suitable exact solution to the idealized dynamical system

(S)∞





(xj)t = βj , (γj)t =
1
λj
,

(λj)t =Mj(P),
(βj)t
1−βj

=
Bj(P)
λj

,

Γ = γ2 − γ1, R = x2−x1
λ1(1−β1)

j = 1, 2, (4.72)

with P = (λ1, λ2, β1, β2,Γ, R), which will correspond to the leading order two-soliton
motion, and where from now on and for the rest of this paper we omit the subscript
N for the sake of simplicity.

Let 0 < η, δ ≪ 1. Define the times

Tin =
1

η2δ
< T− =

δ

η
(4.73)

and consider explicitly the solution

P̃∞ = (λ∞1 , λ
∞
2 , β

∞
1 , β

∞
2 , γ

∞
1 , γ

∞
2 , x

∞
1 , x

∞
2 )
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to (4.72) with data at t = T−:




λ∞1 = 1, λ∞2 = 1,
γ∞1 = γ∞2 = 0,
1− β∞1 = η, b∞ = 1

(T−)2
ie 1− β∞2 = η

(T−)2
,

x∞1 = 0, R∞ = T− ie x∞2 = T−η = δ.

(4.74)

The fact that the system (4.72) with data (4.74) admits a unique maximal solution
is a simple consequence of the Cauchy–Lipschitz theorem.

We first claim the backwards control of this solution in the following perturbative
form.

Lemma 4.13 (Control of the solution in the perturbative turbulent regime). Let

δ > 0 small enough and 0 < η < η∗(δ,N) small enough. Let P̃ be the solution to
the approximate system





(xj)t = βj +O
(
1
t3

)
, (γj)t =

1
λj

+O
(
1
t3

)
,

(λj)t =Mj(P) +O
(
1
t3

)
,

(βj)t
1−βj

=
Bj(P)
λj

+O
(
1
t3

)
,

Γ = γ2 − γ1, R = x2−x1
λ1(1−β1)

j = 1, 2, (4.75)

with initial data at T− satisfying :

|P̃(T−)− P̃∞(T−)| 6 η10, (4.76)

then the parameters satisfy in t ∈ [Tin, T
−] the bounds:





λ1(t) = 1 +O
(
ηδ

t

)
, λ2(t) = 1 +O

(
ηδ+ηt| log ηt|

t

)

1− β1(t) = η(1 +O(ηδ)), b(t) = 1+O(
√
δ)

t2

Γ(t) = O(ηt| log ηt|)
R = t(1 +O(ηδ)).

(4.77)

Remark 4.14. Notice that the small quantity ηt| log ηt| grows on [Tin, T
−] from

(1− δ)η1−δ | log η| to δ| log δ|. Therefore, if δ is small and if η < η∗(δ), this quantity
is first smaller that ηδ, then it becomes bigger than ηδ . This explains why we have
to keep both quantities in the remainder terms.

Proof of Lemma 4.13. From (4.74) and (4.76), we may assume the following bounds:




|λ1(t)− 1| 6 ηδ

t , j = 1, 2

|λ2(t)− 1| 6 K ηδ+ηt| log(ηt)|
t

|1− β1(t)− η| 6 η1+δ ,
η
2t2

6 1− β2(t) 6
2η
t2

|R(t)−t|
t 6 ηδ

|Γ(t)| 6 K(ηδ + ηt| log(ηt)|)

(4.78)

and aim at improving them for some large enough universal constant K, and for
0 < δ < δ∗(K), 0 < η < η∗(K, δ), which proves (4.77) through a standard continuity
argument. The difficulty is that the growth of Sobolev norms in (4.77) relies on an
uniform control of the phase which is not allowed to move, and this requires two
integrations in time in the presence of O( 1

t2
) decay only and hence some suitable

cancellation in the modulation equations.
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Step 1: Leading order modulation equations. We extract the leading order modu-
lation equations of Proposition 4.12 in the regime (4.77) using the sharp description
of the asymptotic structure of Qβ given by Proposition 3.9. We estimate from (4.78)

R ∼ t 6
δ

η

and hence

0 < (1− β1)R . ηt . δ ≪ 1.

Now we appeal to the precise description of Qβ given by (3.18):

Qβ1(R) =
1 +O((1− β1)| log(1− β1)|)

R
[1 +O((1− β1)R log((1− β1)R))] +O

(
1

R2

)

=
1

t
+O

(
ηδ

t
+ η| log ηt|

)
(4.79)

where we used the localization of R given by (4.78) in the last step. Similarly, using
(3.15), it follows that

∂y1Qβ1(R)

=
1 +O(η| log η|)

R2

{
−1 +

i

2
(1− β1)R [1 +O((1− β1)R| log(1− β1)R|)]

}
+O

(
ηδ

R2

)

=
1

t2

[
−1 +

i

2
ηt

]
+O

(
ηδ

t2
+ η2| log(ηt)|

)
. (4.80)

We also have

(1− β2)
R

bµ
=

(1− β1)R

µ
. (1− β1)R . δ

and thus,

Qβ2

(
− R

bµ

)

= −1 +O((1− β2)| log(1− β2)|)
R
bµ

[
1 +O((1− β2)

R

b
log((1 − β2)

R

b
))

]
+O

(
b2

R2

)

= O

(
b

t

)
. (4.81)

We now compute the leading order modulation equations of Proposition 4.12. We
first have the rough bound

B1 = O

(
b

t

)
(4.82)

and the finer control from (4.79):

B2 = 2 [1 +O((1− β2)| log(1− β2)|)] Re
{
(cos Γ− i sin Γ)

[
1

t
+O

(
ηδ

t
+ η| log ηt|

)]}

+ O

(
1− µ

t
+

1

t2

)

=
2cos Γ

t
+O

(
ηδ

t
+ η| log(ηt)| + |1− µ|

t

)
(4.83)

=
2

t
+O

(
ηδ

t
+ η| log(ηt)|

)
(4.84)
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where in the last step we used from (4.78):

Γ2

t
.

K2(η2δ + η2t2| log(ηt)|2)
t

.
ηδ

t
+ η| log(ηt)|K2ηt| log(ηt)|

.
ηδ

t
+ η| log(ηt)|K2δ| log δ| . ηδ

t
+ η| log(ηt)| (4.85)

for δ < δ∗(K) small enough. We similarly derive the rough bound

|M1| . |1− β1|| log(1− β1)||B1|+
|b(1− µ)|

t
+

|b|
t2

.
η2δ

t2
. (4.86)

We now estimate M2. First we compute from (4.79), (4.85):

2(1 − µ)Re (eiΓQβ1(R)) = 2(1− µ)Re

{
(cos Γ + i sin Γ)

(
1

t
+O

(
ηδ

t
+ η| log ηt|

))}

=
2(1− µ) cos Γ

t
+ |1− µ|O

(
ηδ

t
+ η| log ηt|

)

=
2(1− µ)

t
+O

(
ηδ

t2
+Kη2| log ηt|2

)

where we used in the last step from (4.78):

|1− µ| . |λ2 − 1|+ |λ1 − 1| . K
ηδ + ηt| log(ηt)|

t
(4.87)

and hence

|1− µ|
(
ηδ

t
+ η| log ηt|

)
. K

(ηδ + ηt| log ηt|)2
t2

.
ηδ

t2
+Kη2| log ηt|2

for η < η∗(K, δ) small enough. similarly from (4.80):

2Im
{
eiΓ∂y1Qβ1(R)

}
= 2Im

{
(cos Γ + i sin Γ)

[
1

t2

(
−1 +

i

2
ηt

)
+O

(
ηδ

t2
+ η2| log(ηt)|

)]}

= −2 sin Γ

t2
+
η

t
cos Γ +O

(
ηδ

t2
+ η2| log(ηt)|

)

= −2Γ

t2
+
η

t
+O

(
ηδ

t2
+ η2| log(ηt)|

)
,

where we used in the last step the development of cos Γ, sin Γ with the bounds:

|Γ|3
t2

+
ηΓ2

t
.

K3(η3δ + η3t3| log ηt|3)
t2

+
ηK2(η2δ + η2t2| log ηt|2)

t

.
ηδ

t2
+ η2| log ηt|

[
K3ηt| log ηt|2 +K2ηt| log ηt|

]

.
ηδ

t2
+ η2| log ηt|K3δ| log δ|2 6

ηδ

t2
+ η2| log ηt|

for δ < δ∗(K) small enough. Using from (4.83) the rough bound |B2| . 1
t ensures

the finer bound from (4.56):

∣∣∣M2 +
2(1− µ)

t
− 2Γ

t2
+
η

t

∣∣∣ . ηδ

t2
+K2η2| log(ηt)|2 + |1− β2|| log(1− β2)|

t

.
ηδ

t2
+K2η2| log(ηt)|2 (4.88)

where we used (4.78) in the last step to estimate 1− β2.
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Step 2: Control of the speeds. We first integrate the law for β2 from (4.83):

(β2)t
1− β2

=
B2

λ2
=

1

λ2

[
2

t
+O

(
ηδ

t
+ η| log(ηt)|

)]
=

2

t
+O

(
ηδ

t
+ η| log(ηt)|

)
.

We integrate on [t, T−] and use
∫ T−

t
η| log(ητ)|dτ .

∫ δ

0
| log σ|dσ 6

√
δ

∫ T−

t

ηδ

τ
dτ = O

(
ηδ| log η|

)
6

√
δ,

for η < η∗(K, δ), to estimate

− log

(
1− β2(T

−)
1− β2(t)

)
= 2 log

(
T−

t

)
+O(

√
δ)

from which using the initialization (4.74), (4.76):

1− β2(t) =
(T−)2(1− β2(T

−))
t2

eO(
√
δ) =

[
1 +O(

√
δ)
] η
t2
. (4.89)

We now compute for β1 from (4.82):
∣∣∣ (β1)t
1− β1

∣∣∣ =
∣∣∣B1

λ1

∣∣∣ . b

t
.

1

t3

which time integration using (4.74), (4.76) yields

1− β1(t) = (1− β1(T
−))eO( 1

t2
) = η

(
1 +O

(
1

t2

))
. (4.90)

Since t ≥ Tin = η−δ, this improves the estimate on 1 − β1 − η. This yields with
(4.89):

b(t) =
1 +O(

√
δ)

t2
. (4.91)

Step 3: Control of the scaling and the phase shift. We need to be extra careful
to reintegrate the law for Γ which requires two integrations in time in the presence
of 1

t2 decay only, and hence the possibility of logarithmic losses which would be
dramatic to control the smallness of the phase and hence the growth of the Sobolev
norm. We first integrate λ1 from (4.86):

|(λ1)t| . |M1| .
η2δ

t2

and hence from (4.74), (4.76):

λ1(t) = 1 +O

(
η2δ

t

)
. (4.92)

Now consider

v = 1− µ

. Using (4.92), we have

Γt =
1

λ2
− 1

λ1
=

1− µ

λ2
=

1− µ

λ1(1− (1− µ))
= v

[
1 +O

(
η2δ

t

)]
[1 +O(v)]

= v +O

(
ηδ

t2

)
+O(v2) .
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and we now estimate from (4.87):

v2 . K2 (η
δ + ηt| log ηt|)2

t2
.
ηδ

t2
+K2η2| log ηt|2,

whence the first equation,

Γt = v +O

(
ηδ

t2
+K2η2| log ηt|2

)
.

Hence from (4.86), (4.88):

vt = −µt = −µ
[
(λ2)t
λ2

− (λ1)t
λ1

]
= µ

M1

λ1
− M2

λ1

= −M2

[
1 +O

(
η2δ

t

)]
+O

(
η2δ

t2

)
= −M2 +O

(
η2δ

t2

)
.

and hence from (4.88):

vt =
2v

t
− 2Γ

t2
+
η

t
+O

(
ηδ

t2
+K2η2| log(ηt)|2

)
.

We therefore obtain the following system,
{

Γt = v +RΓ(t),

vt =
2v
t − 2Γ

t2
+ η

t +Rv(t)
(4.93)

with

|RΓ(t)|+ |Rv(t)| .
ηδ

t2
+K2η2| log(ηt)|2,

and with the initial data

Γ(T−) = O(η10) , v(T−) = O(η10).

A basis of solutions to the linear homogeneous system
{

Γt = v

vt =
2v
t − 2Γ

t2
(4.94)

is given by {(Γ1(t), v1(t)) = (t, 1), (Γ2(t), v2(t)) = (t2, 2t)}, with Wronskian

W = v2Γ1 − Γ2v1 = t2

and hence the explicit solution with data (4.74) is given by:

Γ(t) = Γ0(t)− Γ1(t)

∫ T−

t

RΓv2 −RvΓ2

W
dτ − Γ2(t)

∫ T−

t

RvΓ1 −RΓv1
W

dτ,

v(t) = v0(t)− v1(t)

∫ T−

t

RΓv2 −RvΓ2

W
dτ − v2(t)

∫ T−

t

RvΓ1 −RΓv1
W

dτ,

where (Γ0, v0) is the explicit homogeneous solution given by

Γ0(t) = Γ1(t)

(
O(η10) +

∫ T−

t

η

τ
ψ2
dτ

W

)
− Γ2(t)

(
O(η10) +

∫ T−

t

η

τ
Γ1
dτ

W

)
= O (ηt(| log ηt|)) ,
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and

v0(t) = v1(t)

(
O(η10) +

∫ T−

t

η

τ
ψ2
dτ

W

)
− v2(t)

(
O(η10) +

∫ T−

t

η

τ
Γ1
dτ

W

)

=

∫ T−

t

η

τ
dτ − 2t

∫ T−

t

η

τ2
dτ = η log

(
T−

t

)
− 2ηt

(
1

t
− 1

T−

)

= O

(
ηt(| log ηt|)

t

)
.

We now estimate the error:∣∣∣∣∣v1(t)
∫ T−

t

RΓv2 −RvΓ2

W
dτ − v2(t)

∫ T−

t

RvΓ1 −RΓv1
W

∣∣∣∣∣

.

∫ T−

t

[
ηδ

τ2
+K2η2| log(ητ)|2

]
dτ .

ηδ

t
+K2η

∫ δ

0
| log τ |2dτ .

ηδ

t
+K2ηδ| log δ|2

.
ηδ

t
+
K2δ| log δ|2ηt| log ηt|

t| log ηt| .
ηδ

t
+
K2δ| log δ|2

| log δ|
ηt| log ηt|

t
.
ηδ + ηt| log ηt|

t
,

for δ < δ∗(K) small enough, and similarly:
∣∣∣∣∣Γ1(t)

∫ T−

t

RΓv2 −RvΓ2

W
dτ − Γ2(t)

∫ T−

t

RvΓ1 −RΓv1
W

∣∣∣∣∣ . ηδ + ηt| log ηt|.

The collection of above bounds using the modified initial data easily ensures

|v(t)| . ηδ + ηt| log ηt|
t

, |Γ(t)| . ηδ + ηt| log ηt|

which closes the bootstrap (4.77) for λ2,Γ on [Tin, T
−] for K universal large enough.

Step 4: Control of the centers and the relative distance.
We compute from (4.90), (4.91):

(x2)t − (x1)t = β2 − β1 = 1− β1 − (1− β2) = (1− β1)(1− b(t))

= η

(
1 +O

(
1

t2

))[
1− 1 +O(

√
δ)

t2

]
= η

(
1 +O

(
1

t2

))
.

Hence using (x2 − x1)(T
−) = ηT− +O(η9) from (4.74), we obtain by integration in

time:

(x2 − x1)(t) = (x2 − x1)(T
−) + η(t− T−) +O

(η
t

)
= ηt+O

(η
t

)
,

and hence, using (4.90), (4.92):

R(t)− t

t
=

x2 − x1
tλ1(1− β1)

− 1 =
x2 − x1
ηt

(1 +O(η2δ))− 1

= O(η2δ) 6
1

2
ηδ

which closes the R bound in (4.77).
�

We now come back the exact solution P̃∞ of (4.72) with data (4.74) and claim
that the corresponding dynamics is frozen for t ≥ T−.
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Lemma 4.15 (Post interaction dynamics). For δ sufficiently small and η < η∗(δ),
there holds on [T−,+∞):





λ∞1 (t) = 1 +O(η), λ∞2 (t) = 1 +O(η)

1− β∞1 (t) = η(1 +O(ηδ)), 1− β∞2 (t) = η3eO( 1
δ
),

Γ∞(t) = O(t)
R∞ = t(1 +O(ηδ)).

(4.95)

Proof. We bootstrap the following bounds on [T−,+∞),
∣∣∣∣∣∣

|1− λ1(t)|+ |1− λ2| 6 Kη,
|1− β1 − η| 6 Kηδ, |1− β2| 6 η2

R(t) > t
2

(4.96)

for some large enough universal constant K = K(δ), and where we omit the ∞
subscript for the sake of clarity. Notice that the notation A . B in this context
means A ≤ C B with a constant C independent of δ, assuming η < η∗(δ).

By (4.96) we have

|b| . η (4.97)

and using (3.17) and (3.15), it follows for R(1− β1) & δ that

|Qβ1(R)| .
1

ηt2
,

|Q′
β1
(R)| . 1

t2
,

∣∣∣∣Qβ2

(
− R

bµ

)∣∣∣∣ .
b

(1− β1)t2
.

1

t2
.

We may therefore estimate in brute force the parameters using Proposition 4.12:

|B1| .
η

t2
+
Kη2

ηt2
.

1

t2

|B2| .
1

ηt2
+
Kη

ηt2
.

1

ηt2

|M1| .
(1− β1)| log(1− β1)|

t2
+
Kη2

ηt2
+
Kη

t2
.
η| log η|
t2

|M2| .
1

t2
+

|1− µ|
ηt2

.

We therefore control the speeds on [T−,+∞) using (4.77):
∣∣∣∣
(β1)t
1− β1

∣∣∣∣ . |B1| .
1

t2
, i.e. 1− β1(t) = ηe

O
(

1
T−

)

= η(1 +O(η))

∣∣∣∣
(β2)t
1− β2

∣∣∣∣ . |B2| .
1

ηt2
, i.e. 1− β2(t) =

η

(T−)2
e
O
(

1
ηT−

)

= η3eO( 1
δ
)

and similarly for the first size,
∣∣∣∣
(λ1)t
λ1

∣∣∣∣ . |M1| .
√
η

t2
, i.e. λ1(t) = 1 +O(η).

Hence:

|µt| . |M2|+ |M1| .
|1− µ|
ηt2

+
1

t2
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from which we infer, using µ(T−) = 1,

|1− µ(t)| . 1

T− +

∫ t

T−

|1− µ(τ)|
ητ2

dτ.

By Gronwall’s lemma, we conclude

|1− µ(t)| . 1

T− e
O
(

1
ηT−

)

= η eO( 1
δ
) .

Hence the control of scalings and speeds is closed for K = K(δ) large enough in
(4.96). We now integrate the position.

(x2)t − (x1)t = β2 − β1 = 1− β1 − (1 − β2) = η(1 +O(η))

from which we get

x2(t)− x1(t) = η(1 +O(η))(t − T−) + ηT− = ηt+O(η2t)

and

R(t) =
x2 − x1

tλ1(1− β1)
>

2

3
,

which concludes the proof of Lemma 4.15. �

5. Energy estimates

This section is devoted to the construction of an exact solution to (1.1) with two-
soliton asymptotic behavior and transient turbulent regime. The strategy is based
as in [27, 40] on an energy method near the explicit approximate solution which can
be closed thanks to the arbitrary high order expansion of the approximate solution,
and the R(t) ∼ t distance between the two waves.

5.1. Backwards integration and parametrization of the flow. Given param-
eters

P = (λ1, λ2, β1, β2,Γ, R), P̃ = (P, x1, x2, γ1, γ2),
we let

Φ
(N)

P̃ (x) = Φ
(N,1)

P̃ (x) + Φ
(N,2)

P̃ (x)

with

Φ
(N,j)

P̃ (x) =
1

λ
1
2
j

V
(N)
j (yj,P)eiγj , yj =

x− xj
λj(1− βj)

, j = 1, 2,

constructed in Proposition 4.6. We now fix one and for all a large enough number
N ≫ 1, and for the rest of the paper, we omit the subscript N in order to ease
notations. We then pick a small enough universal constant δ > 0 and, for 0 < η <
η∗(δ), we consider

P̃∞ = (λ∞1 , λ
∞
2 , γ

∞
1 , γ

∞
2 , x

∞
1 , x

∞
2 )

to be the exact solution to (4.72) with data (4.74) which is well defined on [T−,+∞)
from Lemma 4.15.
We now build an exact solution to the full system (1.1) by integrating backwards
in time from +∞: we let a sequence Tn → +∞ and consider un(t) the solution to

{
i∂tun = |D|un − |un|2un,
un(Tn) = ΦP̃∞(Tn)

(x). (5.1)

We will very precisely study the properties of un(t). Here and in the sequel, we
omit as much as possible the subscript n to ease notations.

From standard modulation argument, as the solution remains close in H
1
2 to a
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modulated tube around the decoupled two solitary waves , we may consider a de-
composition of the flow

u(t, x) = ΦP̃(t)
(x) + ε(t, x) (5.2)

where the parameters

P̃(t) = (λ1(t), λ2(t), β1(t), β2(t), x1(t), x2(t),Γ(t), R(t)) ,

with the explicit dependence

Γ = γ2 − γ1, R =
x2 − x1
λ1(1− β1)

, (5.3)

are chosen for each fixed t in order to manufacture suitable orthogonality conditions
on the remainders

εj(t, yj) := λ
1
2
j (t)ε

(
t, λj(t)(1− βj(t))yj + xj(t)

)
e−iγj(t), j = 1, 2. (5.4)

Observe that

‖ε‖2L2 = (1− βj)‖εj‖2L2 , j = 1, 2. (5.5)

Let ω be the symplectic form

ω(f, g) = Im

∫
f ḡdx = (f, ig),

and consider the generalized null space of the operator iLβ formed of functions

f ∈ H1/2 such that (iLβ)
2f = 0. This generalized null subspace consists of iQβ,

∂yQβ, ΛQβ, and iρβ, where ρβ is the unique H
1
2 solution to the problem (3.9).

Indeed, one can directly check that iLβ(iQβ) = iLβ(∂yQβ) = 0 and

(iLβ)
2(ΛQβ) = (iLβ)

2(iρβ) = 0.

We then impose the set of symplectic orthogonality conditions:

ω(εj , iQβj
) = ω(εj , ∂yjQβj

) = ω(εj ,ΛQβj
) = ω(εj , iρj) = 0, j = 1, 2,

or equivalently,

(εj , Qβj
) = (εj , i∂yjQβj

) = (εj , iΛQβj
) = (εj , ρj) = 0, j = 1, 2. (5.6)

Let σj := (λj , xj, γj , βj), j = 1, 2 and Σ be a compact subset of
(
R∗
+ × R× R× (1− β∗, 1)

)2
.

For (σ1, σ2) ∈ Σ and f ∈ H1/2, we define

Sσjf(x) =
1

λ
1/2
j

f
( x− xj
λj(1− βj)

)
eiγj .

The existence and uniqueness for each t of P̃(t) ensuring the decomposition (5.2),
(5.6) is now a standard consequence of the implicit function theorem applied to the

function G : H1/2 × Σ → R8, G(ψ, σ) = 0, where G is defined by

G(ψ, σ) =




(ψ − Sσ1V1(P)− Sσ2V2(P),Sσ1Qβ1)
(ψ − Sσ1V1(P)− Sσ2V2(P),Sσ1 i∂xQβ1)
(ψ − Sσ1V1(P)− Sσ2V2(P),Sσ1 iΛQβ1)
(ψ − Sσ1V1(P)− Sσ2V2(P),Sσ1ρβ1)
(ψ − Sσ1V1(P)− Sσ2V2(P),Sσ2Qβ2)
(ψ − Sσ1V1(P)− Sσ2V2(P),Sσ2 i∂xQβ2)
(ψ − Sσ1V1(P)− Sσ2V2(P),Sσ2 iΛQβ2)
(ψ − Sσ1V1(P)− Sσ2V2(P),Sσ2ρβ2)




,



A TWO-SOLITON FOR THE CUBIC HALF-WAVE EQUATION 71

where σ = (σ1, σ2) and P = (λ1, λ2, β1, β2,Γ, R). The key ingredient here is that,
for any (σ01 , σ

0
2) ∈ Σ, the Jacobian matrix

∂σG
(
Sσ0

1
V

(N)
1 + Sσ0

2
V

(N)
2 , σ

)∣∣∣
σ=(σ0

1 ,σ
0
2)

is invertible, which follows from the fact that the matrix

Aj =




(ΛQβj
, Qβj

) (ΛQβj
, i∂yjQβj

) (ΛQβj
, iΛQβj

) (ΛQβj
, ρj)

(iQβj
, Qβj

) (iQβj
, i∂yjQβj

) (iQβj
, iΛQβj

) (iQβj
, ρj)

(∂yjQβj
, Qβj

) (∂yjQβj
, i∂yjQβj

) (∂yjQβj
, iΛQβj

) (∂yjQβj
, ρj)

(Σj, Qβj
) (Σj , i∂yjQβj

) (Σj , iΛQβj
) (Σj , ρj)




with

Σj := y∂yQβj
+ (1− βj)∂βj

Qβj
(5.7)

is non degenerate

lim
βj→1

|detAj | 6= 0, j = 1, 2, (5.8)

see Appendix C.

5.2. Localized H
1
2 -energy. The heart of our analysis is the derivation of a suitable

monotonicity formula for a suitable localized H
1
2 energy identity. The localization

procedure is mandatory in order to dynamically adapt the functional to the dra-
matically changing size of the bubble, but this will lead to serious difficulties due
to nonlocal nature of the problem and the slow decay of the solitary wave. The
limiting Szegő problem will arise in the form of various different estimates for Π±ε
which will be essential to close the estimates.

Let us start by introducing suitable cut-off functions which adapt the energy
functional to the dramatic change of size of the second solitary wave.

Space localization. We pick explicitly a sufficiently smooth non increasing function

Ψ1(z1) =

∣∣∣∣∣∣

1 for z1 6
1
4

(1− z1)
10 for 1

2 6 z1 6 1
0 for z1 > 1.

. (5.9)

and let

Φ1(t, z1) = Ψ1 + b(t)(1 −Ψ1) =

∣∣∣∣
1 for z1 6

1
4

b(t) for z1 > 1.
(5.10)

From this function of (t, z1) we deduce a function of (t, y1) and (t, x) via the following
change of variables,

φ(t, x) = φ1(t, y1) = Φ1(t, z1), z1 =
y1

R(t)(1 − b(t))
.

We then define the localization associated to kinetic momentum

ζ(t, x) = β1(t) + (1− β1(t))(1− φ(t, x)), (5.11)

so that

ζ(t, x) = ζ1(t, y1) =

{
β1(t) for y1 6

(1−b(t))R(t)
4

β2(t) for y1 > (1− b(t))R(t).
. (5.12)

similarly, let

Φ̃1(t, z1) = µ(t)Ψ1(z1) + (1−Ψ1(z1)) =

∣∣∣∣
µ(t) for z1 6

1
4

1 for z1 > 1,
(5.13)
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with the same change of variables as before,

φ̃(t, x) = φ̃1(t, y1) = Φ̃1(t, z1), z1 =
y1

R(t)(1 − b(t))
.

We define the localization attached to the localization of mass,

θ(t, x) =
1

λ2(t)
φ̃(t, x) = θ1(t, y1), (5.14)

so that

θ(t, y1) =

{
1

λ1(t)
for y1 6

(1−b(t))R(t)
4

1
λ2(t)

for y1 > (1− b(t))R(t)
.

Explicit estimates used throughout the proof involving functions ζ, θ are stated in
Appendix E.

Localized energy. We now introduce the localized energy functional:

G(ε) : =
1

2
[(|D|ε− ζDε, ε) + (θε, ε)]

− 1

4

[∫

R

(|ε+Φ|4 − |Φ|4)dx− 4(ε,Φ|Φ|2)
]

(5.15)

Notice that the inner products are taken in the x variable, and that Φ denotes
the approximate solution ΦP̃(t). This functional will be used as our main energy

functional. We indeed first claim that G is a coercive functional.

Proposition 5.1 (Coercivity of the localized energy). There holds5 :

G(ε) & (1− β1)

[∫
|ε1|2dy1 +

∫
φ1||D| 12 ε+1 |2dy1

]
+

∫
||D| 12 ε−1 |2dy1 (5.16)

where ε1 was defined in (5.4).

The proof adapts the argument in [33] and relies on a careful localization of the
kinetic energy and the coercivity of the limiting Szegő quadratic form. A key fact is
that the relative distance R between the solitary waves is always large. The presence
of the localization φ1 in (5.16) is an essential difficulty of the analysis and shows that

one looses control of ‖D 1
2 ε+‖L2 as β1 → 1 (through the factor 1−β1), which reflects

the singular nature of the bifurcation Q+ → Qβ. This will be a fundamental issue
for the forthcoming analysis. The proof of Proposition 5.1 is detailed in Appendix
F.

5.3. Bootstrap argument. Since ε(Tn) = 0 and P(Tn) = P∞(Tn), we run a
bootstrap argument in the following form. Let

β̃j := log(1− βj) (5.17)

and

|∆λj |(t) := sup
τ∈[t,Tn]

|λj − λ∞j |(τ), |∆β̃j |(t) := sup
τ∈[t,Tn]

|β̃j − β̃∞j |(τ), (5.18)

|∆R|(t) := sup
τ∈[t,Tn]

|R−R∞|(τ), |∆Γ|(t) := sup
τ∈[t,Tn]

|Γ− Γ∞|(τ), (5.19)

5for some universal coercivity constant which is related to the coercivity of the limiting Szegő
functional (2.17).
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we assume on some interval [T, Tn], with Tin ≤ T ≤ Tn, the H1-bounds:

∀t ∈ [Tin, Tn],

{ G(ε(t)) 6 1

t
N
2

‖ε(t)‖2H1 6 1

t
N
4

(5.20)

and the bounds on the parameters:
1. post interaction estimates: for t ∈ [T−, Tn] ∩ [T, Tn],





|∆R| 6 1

t
N
8 −1

|∆β̃j |+ |∆Γ| 6 1

t
N
8
,

∑
j=1,2 |∆λj | 6 1

t
N
8 +1

;

(5.21)

2. rough turbulent bounds: for t ∈ [Tin, T
−] ∩ [T, Tn],





|λ1 − 1|+ |λ2 − 1| 6 1
t

η
2 6 1− β1(t) 6 2η, 1

2 6 t2b(t) 6 2

|Γ(t)| 6
√
δ

t
2 6 R 6 2t.

(5.22)

The heart of our analysis is that all these bounds can be improved.

Proposition 5.2 (Bootstrap). For N > N∗ large enough and 0 < η < η∗(N) small
enough, the following holds:

∀t ∈ [T, Tn],

{ G(ε(t)) . 1

Nt
N
2

‖ε(t)‖2H1 . 1

Nt
N
4

(5.23)

and the bounds on the parameters:
1. post interaction estimates: for t ∈ [T−, Tn] ∩ [T, Tn],





|∆R| . 1

Nt
N
8 −1

|∆β̃j |+ |∆Γ| . 1

Nt
N
8
,

∑
j=1,2 |∆λj | . 1

Nt
N
8 +1

;

(5.24)

2. rough turbulent bounds: for t ∈ [Tin, T
−] ∩ [T, Tn], P satisfies (4.77).

Of course, the bounds (5.23), (5.24), (4.77) improve on (5.20), (5.21), (5.22) for
N universal large enough, so that we can finally set T = Tin. Proposition 5.2 is
the heart of the analysis and implies Theorem 1.2 through a now classical argument
which we detail in Subsection 5.8 for the convenience of the reader.

From now until Subsection 5.8, we assume the bounds (5.20), (5.21), (5.22) and
aim at improving them. Since t > Tin = 1

η2δ
, we will systematically use the bound

1

ηCt
√
N

6 1 for N > N(δ), η < η∗(N).

Let us also observe from (5.21), (5.22), (4.95) injected into Proposition 4.12 the
bounds: ∀t ∈ [Tin, Tn],

|B1|+ |M1| .
b

t
, |B2| .

1

t
, |M2| .

1

t2
. (5.25)
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5.4. Equation for ε. Let us start by writing the equation for ε. Using
dsj
dt = 1

λj
,

we compute from (5.3) the generalized modulation equations:

Γs1 =
(γ2)s2
µ

− (γ1)s1 =
1

µ
− 1 +

(γ2)s2 − 1

µ
− ((γ1)s1 − 1), Γs2 = µΓs1 (5.26)

and

Rs1 = 1− b+ (B1 −M1)R+
1

1− β1

(
(x2)s2
λ2

− β2

)
− 1

1− β1

(
(x1)s1
λ1

− β1

)

− R

(
(λ1)s1
λ1

−M1

)
+R

(
(β1)s1
1− β1

−B1

)
(5.27)

We compute by construction:

i∂tΦP̃ − |D|ΦP̃ +ΦP̃ |ΦP̃ |2 = Ψ+

2∑

j=1

1

λ
3
2
j

Sj (t, yj) e
iγj , j = 1, 2,

where

Sj(t, yj) := −i
[
(λj)sj
λj

−Mj

]
ΛVj −

1

1− βj

[
(xj)sj
λj

− βj

]
i∂yjVj

+

[
(βj)sj
1− βj

−Bj

]
i[yj∂yjVj + (1− βj)∂βj

Vj]− [(γj)s1 − 1]Vj

+ S̃j (5.28)

encodes the deviation of modulation equations from the idealized dynamical system
(4.72) with the lower order error computed from (5.26):

S̃1 := i

[
γs2 − 1

µ
− (γs1 − 1)

]
∂V1
∂Γ

(5.29)

+ i

{
1

1− β1

(
xs2
λ2

− β2

)
− 1

1− β1

(
xs1
λ1

− β1

)
−R

(
(λ1)s1
λ1

−M1

)

+ R

(
(β1)s1
1− β1

−B1

)}
∂V1
∂R

+ iλ1

[
(λ1)s1
λ1

−M1

]
∂V1
∂λ1

+ iλ1

[
(λ2)s2
λ2

−M2

]
∂V1
∂λ2

+ i
(1− β2)

µ

[
(β2)s2
1− β2

−B2

]
∂V1
∂β2

S̃2 := i [γs2 − 1− µ(γs1 − 1)]
∂V2
∂Γ

(5.30)

+ iµ

{
1

1− β1

(
xs2
λ2

− β2

)
− 1

1− β1

(
xs1
λ1

− β1

)
−R

(
(λ1)s1
λ1

−M1

)

+ R

(
(β1)s1
1− β1

−B1

)}
∂V2
∂R

+ iλ2

[
(λ1)s1
λ1

−M1

]
∂V2
∂λ1

+ iλ2

[
(λ2)s2
λ2

−M2

]
∂V2
∂λ2

+ iµ(1− β1)

[
(β1)s1
1− β1

−B1

]
∂V2
∂β1

.
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The error term

Ψ(t, x) =

2∑

j=1

1

λ
3
2
j

Ej,N (yj,P(t)) eiγj (5.31)

encodes the error in the construction of Vj and satisfies by construction

‖Ψ‖H2 6
CN

ηC0RN+1
6

1

ηCtN+1
, (5.32)

where we recall that N will be fixed later and η < η∗(N). We write the equation
for ε,

i∂tε− |D|ε+ 2|ΦP̃ |2ε+ (ΦP̃ )
2ε = −N(ε)−Ψ−

2∑

j=1

1

λ
3
2
j

Sj (t, yj) e
iγj , (5.33)

where

N(ε) = (ΦP̃ + ε)|ΦP̃ + ε|2 − ΦP̃ |ΦP̃ |2 − 2|ΦP̃ |2ε− (ΦP̃ )
2ε.

In the sequel, we use the notation

j + 1 = 1 for j = 2.

5.5. Modulation equations. At this stage we can evaluate the right hand side
of the modulation system applied to the parameters P(t) given by the modulation
argument.

Lemma 5.3 (Modulation equations). Let

Modj(t) :=

∣∣∣∣
(λj)sj
λj

−Mj

∣∣∣∣+
1

1− βj

∣∣∣∣
(xj)sj
λj

− βj

∣∣∣∣+
∣∣∣∣
(βj)sj
1− βj

−Bj

∣∣∣∣+
∣∣(γj)sj − 1

∣∣ ,

then

Modj(t) .
1

ηCtN+1
+

‖εj‖L2

t
. (5.34)

Proof of Lemma 5.3. Let j = 1 or j = 2 and consider a generic multiplier

Θ(t, x) =
1

λ
1
2
j

Θj(yj , βj)e
iγj , (5.35)

with Θj strongly j-admissible. We compute from (5.33):

d

dt
(ε,Θ) = (ε, ∂tΘ) + (i∂tε, iΘ) = (ε,−i∂t(iΘ) + |D|(iΘ)− 2|ΦP̃ |2(iΘ)− (ΦP̃)

2iΘ))

−


N(ε) + Ψ + Σ2

k=1

1

λ
3
2
k

Sk (yk) e
iγk , iΘ


 (5.36)

and estimate all terms in this identity.
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The linear terms. Using the fact that Mj, Bj are L∞-admissible, we estimate:

i∂tΘ− |D|Θ =
1

λ
3
2
j

[
− (|D| − βjD)Θj

1− βj
−Θj − i

(λj)sj
λj

ΛΘj −
i

1− βj

(
(xj)sj
λj

− βj

)
∂yjΘj

+ i
(βj)sj
1− βj

[yj∂yjΘj + (1− βj)∂βj
Θj ]− ((γj)sj − 1)Θj

]
eiγj (yj)

= − 1

λ
3
2
j

[
(|D| − βjD)Θj

1− βj
+Θj

]
eiγj (yj)

+O
(
Modj(t)

(
|ΛΘj(yj)|+ |∂yjΘ(yj)|+ |yj∂yjΘj |+ |(1− βj)∂βj

Θj|+ |Θj(yj)|
))

+O
(
|Mj ||ΛΘj |+ |Bj||yj∂yjΘj + (1− βj)∂βj

Θj|

= − 1

λ
3
2
j

[
(|D| − βjD)Θj

1− βj
+Θj

]
eiγj (yj)

+
(
Modj(t) +

1

t

)
O
(
|Θj |+ |∂yjΘj |+ |ΛΘj |+ |(1− βj)∂βj

Θj|
)
.

Then, changing to the yj variable, using the definition of εj in (5.4), and Cauchy–
Schwarz, we have:

(ε,− i∂t(iΘ) + |D|iΘ − 2|ΦP̃ |2(iΘ)− (ΦP̃)
2(iΘ)) =

(
ε,

1

λ
3
2
j

[
Lβj

(iΘj)
]
eiγj (yj)

)

+ (1− βj)
(
Modj(t)‖εj‖L2 +

‖εj‖L2

t

)

×O
(
‖Θj‖L2 + ‖∂yjΘj‖L2 + ‖ΛΘj‖L2 + ‖(1− βj)∂βj

Θj‖L2

)

+ (1− βj)O
(
‖(|Vj |2 − |Qβj

|2)Θj‖L2‖εj‖L2

)

+ (1− βj)O
(
‖|Vj+1|2Θj‖L2‖εj‖L2

)

+ (1− βj)O
(
‖VjVj+1Θj‖L2‖εj‖L2

)

with the convention yj+1 = y1 for j = 2. To estimate the remainder, we estimate
using that R(Vj −Qβj

) is j-admissible:

‖(|Vj |2 − |Qβj
|2)Θj‖L2 . ‖ 1

R〈yj〉
‖L2 .

1

t
.

We now use

y1 = R+ bµy2 (5.37)

so that |y1| 6 R
2 implies |y2| > R

2µb and hence the bounds

∫
dy1

〈y1〉2〈y2〉4
=

∫

|y1|6R
2

dy1
〈y1〉2〈y2〉4

+

∫

|y1|>R
2

dy1
〈y1〉2〈y2〉4

.
b4

R4

∫

|y1|6R
2

dy1
〈y1〉2

+
1

R2

∫
bdy2
〈y2〉4

.
b

R2
.

b

t2
,
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∫
dy1

〈y2〉2〈y1〉4
=

∫

|y1|6R
2

dy1
〈y2〉2〈y1〉4

+

∫

|y1|>R
2

dy1
〈y2〉2〈y1〉4

.
b2

R2

∫

|y1|6R
2

dy1
〈y1〉4

+
1

R4

∫
b dy2
〈y2〉2

.
1

t2
,

which implies

‖|Vj+1|2Θj‖L2 + ‖VjVj+1Θj‖L2 .
1

t
.

The above collection of bounds yields

(ε,−i∂t(iΘ) + |D|Θ− 2|ΦP̃ |2(iΘ)− (ΦP̃ )
2(iΘ)) =

1− βj
λj

(
εj ,Lβj

(iΘj)
)

+ (1− βj)O
[‖εj‖L2

t
+Modj(t)‖εj‖L2

]
(5.38)

The nonlinear term. We estimate using (5.20):

|(N(ε), iΘj)| . (1− βj)

∫ |εj |2|ΦP̃ |+ |εj |3
〈yj〉

dyj . (1− βj)
(
‖εj‖2L2 + ‖εj‖2L2‖εj‖H1

)

. (1− βj)‖εj‖2L2 6 (1− βj)
‖εj‖L2

t
(5.39)

The Ψ term. From (5.32),

(Ψ, iΘ) .
1

ηCtN+1
. (5.40)

The S-terms and conclusion. We now pick

Θj ∈ Aj := {Qβj
, i∂yjQβj

,ΛQβj
, ρj}

which are strongly j-admissible, and estimate all terms in (5.36) using (5.38), (5.39),
(5.40). The derivative in time of (ε,Θ) drops using the orthogonality conditions
(5.6). Moreover, the same orthogonality conditions (5.6) imply that (εj ,Lβj

(iΘj)) =
0. We now use Appendix C to compute all the scalar products and conclude:

∣∣∣
(
(Sj − S̃j)e

iγj , iΘ
)∣∣∣ ∼ (1− βj)Modj .

Thus, in order to estimate Modj, we are left with computing the crossed terms and

the error S̃j terms given by (5.30), (5.29). The detailed estimates are given below.

Case j = 1. We rescale to the y1 variable and use the 1–admissibility of R(V1−Qβ1)
to estimate:

|(S̃1eiγ1 , iΘ)| . (1− β1)
|Mod1|+ |Mod2|

t
.
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We now recall (5.37) to estimate:
∫

dy1
〈y1〉(1 + (1− β1)〈y1〉)〈y2〉(1 + (1− β2)〈y2〉)

.

∫

|y1|6R
2

dy1
〈y1〉(1 + (1− β1)〈y1〉)〈y2〉

+

∫

|y1|>R
2

dy1
〈y1〉(1 + (1− β1)〈y1〉)〈y2〉(1 + (1− β2)〈y2〉)

.
b

R

∫
dy1

〈y1〉(1 + (1− β1)〈y1〉)
+

1

R(1 + ηR)

∫
bdy2

〈y2〉(1 + (1− β2)〈y2〉)

.
b

t

| log η|+ log t

1 + ηt
.
b| log η|

t
,

and hence the estimate of the crossed term:

|(S2eiγ2 ,Θ1)| . (1− β1)

[
b| log η|

t
(Mod2 +Mod1)

]
.

This yields the first bound,

Mod1 .
Mod1 +Mod2

t
+

‖ε1‖L2

t
+

1

ηCtN+1
, (5.41)

Case j = 2. We estimate similarly

|(S̃2eiγ2 ,Θ)| . (1− β2)
Mod1 +Mod2

t
and ∫

dy2
〈y1〉(1 + (1− β1)〈y1〉)(〈y2〉(1 + (1− β2)〈y2〉)

.
1

b

∫
dy1

〈y1〉(1 + (1− β1)〈y1〉)(〈y2〉(1 + (1− β2)〈y2〉)
.

| log η|
t

from which

Mod2 .
Mod1 +Mod2

t
+

| log η|
t

(Mod1 +Mod2) +
‖ε2‖L2

t

.
| log η|
t

(Mod1 +Mod2) +
‖ε2‖L2

t
+

1

ηCtN+1
.

Conclusion. Combined with (5.41), since t≫ | log η|, this yields

Mod1 +Mod2 .
‖ε1‖L2 + ‖ε2‖L2

t
+

1

ηCtN+1

and hence using ‖ε1‖L2 =
√
b‖ε2‖L2 :

Mod2 . Mod1 +Mod2 .
‖ε1‖L2 + ‖ε2‖L2

t
+

1

ηCtN+1
.

1

ηCtN+1
+

‖ε2‖L2(1 +
√
b)

t

.
1

ηCtN+1
+

‖ε2‖L2

t

and from (5.41):

Mod1 .
1

ηCtN+1
+

‖ε1‖L2

t
+

‖ε2‖L2

t2
.

1

ηCtN+1
+

‖ε1‖L2

t

[
1 +

1

t
√
b

]

.
1

ηCtN+1
+

‖ε1‖L2

t
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where we used
t
√
b & 1 (5.42)

�

5.6. Energy estimate. We are now in position to derive the key monotonicity for-
mula for the linearized energy G which is the second crucial element of our analysis.

Proposition 5.4 (Energy estimate for G). There holds the improved pointwise
bound on [Tin, Tn]:

G(ε(t)) 6 C

Nt
N
2

(5.43)

for some universal constant C independent of N, η, t.

Proof of Proposition 5.4. The proof relies on the careful treatment of all terms in-
duced by the localization of mass and energy when computing the time variation
of the energy G. The main difficulty is the loss of control of the kinetic energy and
mass as β → 1 for ε+1 as reflected by (5.16), which forces different set of estimates
for ε±.
We rewrite (5.33) as:

i∂tε− |D|ε+ (Φ + ε)|Φ + ε|2 − Φ|Φ|2 = F, (5.44)

F := −Ψ− S, S =
2∑

j=1

1

λ
3
2
j

Sj (yj) e
iγj ,

or equivalently ∣∣∣∣∣∣

i∂tε− |D|ε+ 2|Φ|2ε+Φ2ε = G
N(ε) := (Φ + ε)|Φ + ε|2 − Φ|Φ|2 − 2|Φ|2ε− Φ2ε
G := F −N(ε) = −Ψ− S −N(ε).

(5.45)

Step 1: Localization of mass. We compute the localized mass conservation law and
claim

d

dt

1

2
(θε, ε) =

1

2
((∂tθ)ε, ε) + (−i|D|ε, θε) + (iΦ2, θε2) + (iS, θε)

+ O

(G
t
+

1

tN+1

)
. (5.46)

Indeed, from (5.45):

d

dt

1

2
(θε, ε) = (θ∂tε, ε) +

1

2
((∂tθ)ε, ε) (5.47)

= (−i|D|ε + i(2|Φ|2ε+Φ2ε̄)− iG, θε) +
1

2
((∂tθ)ε, ε)

= (iΦ2, θε2)− (iG, θε) +
1

2
((∂tθ)ε, ε)

=
1

2
((∂tθ)ε, ε) + (−i|D|ε, θε) + (iΦ2, θε2) + (iN(ε), θε) + (iΨ, θε) + (iS, θε).

We estimate from (5.32), (5.20):

|(Ψ, θε)| . ‖ε‖L2

ηCtN+1
.

1

tN+1
.

For the nonlinear term, we estimate from (5.20) and (5.16),

|(N(ε), θε)| .
∫

(|ε|4 + |ε|3) . ‖ε‖L∞‖ε‖2L2 .
G
t
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and (5.46) is proved.

Step 2: Localization of kinetic momentum. We compute the localized kinetic
momentum conservation law and claim

1

2

d

dt
(ζDε, ε) = (2Φ|ε|2 +Φε2, ζ∂xΦ) +O

(G
t
+

1

tN+1

)
(5.48)

+
1

2
(∂tζDε, ε) + (−i|D|ε, ζDε+ 1

2
εDζ) + (iS, ζDε+

1

2
εDζ).

Indeed, we compute from (5.44):

1

2

d

dt
(ζDε, ε) =

1

2
(∂tζDε, ε) +

1

2
(ζD∂tε, ε) +

1

2
(ζDε, ∂tε)

=
1

2
(∂tζDε, ε) + (∂tε, ζDε+

1

2
εDζ)

=
1

2
(∂tζDε, ε) + (−i|D|ε + i(2|Φ|2ε+Φ2ε̄)− iG, ζDε+

1

2
εDζ)

=
1

2
(∂tζDε, ε) + (−i|D|ε, ζDε + 1

2
εDζ)

+ (i(2|Φ|2ε+Φ2ε̄), ζDε+
1

2
εDζ) + (−iG, ζDε+ 1

2
εDζ).

We integrate by parts the quadratic term using the pointwise bound (E.2):

(i(2|Φ|2ε+Φ2ε̄), ζDε) = (2Φ|ε|2 +Φε2, ζ∂xΦ) +O

(‖ε‖2L2

t

)
.

We estimate from (5.32) after integrating by parts:

|(iΨ, ζDε+ 1

2
εDζ)| . ‖Ψ‖H1‖ε‖L2 .

1

tN+1
.

For the nonlinear term:

|(iN(ε), ζDε +
1

2
εDζ)| . ‖ε‖H1‖ε‖2L2 .

G
t

and (5.48) is proved.

Step 3: Localized energy identity. We now compute the variation of the linearized
energy:

d

dt

{
1

2
(|D|ε, ε) − 1

4

[∫
(|ε+Φ|4 − |Φ|4)− (4ε,Φ|Φ|2)

]}
(5.49)

= (∂tε, |D|ε) −
(
(ε+Φ)|ε+Φ|2, ∂tε+ ∂tΦ

)
+ (Φ|Φ|2, ∂tΦ)

+ (∂tε,Φ|Φ|2) + (ε, ∂t(Φ|Φ|2))
= (∂tε, |D|ε − (ε+Φ)|ε+Φ|2 +Φ|Φ|2)− (∂tΦ, N(ε))

= (iΨ + iS, |D|ε − (ε+Φ)|ε+Φ|2 +Φ|Φ|2)− (∂tΦ, N(ε))

We estimate all terms in (5.49) and in particular first extract the quadratic terms.
From (5.32), Sobolev, ‖Φ‖L∞ . 1 and (5.20):

∣∣∣(iΨ, |D|ε − (Φ + ε)|Φ + ε|2 +Φ|Φ|2)
∣∣∣ . ‖Ψ‖H1‖ε‖L2 .

1

tN+1
. (5.50)
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Let us estimate the term (∂tΦ, N(ε)). Since Vj, R(Vj −Qβj
) are j–admissible, and

RMj , RBj are L∞-admissible, we compute

∂sjVj =
2∑

k=1

[∂Vj
∂λk

(λk)sj + (1− βk)
∂Vj
∂βk

· (βk)sj
1− βk

]
+
∂Vj
∂Γ

Γsj +
∂Vj
∂R

Rsj

and hence, using (5.34) and the bootstrap assumption, we infer

|∂sVj | .
1

t〈yj〉
. (5.51)

Consequently, the admissibility of Vj , (5.34), and the bounds 1−β1 ∼ η and 1−β2 &

η3 ensure

∂tΦ =

2∑

j=1

1

λ
3
2
j

[
∂sjVj −

(λj)sj
λj

ΛVj −
1

1− βj

[
(xj)sj
λj

− βj

]
∂yjVj −

βj
1− βj

∂yjVj

+
(βj)sj
1− βj

yj∂yjVj + i(γj)sjVj

]
eiγj (yj) = O




2∑

j=1

1

ηC〈yj〉


 (5.52)

We use this with (5.20) to estimate:

−(∂tΦ, N(ε)) = −(∂tΦ, (Φ + ε)|Φ + ε|2 − Φ|Φ|2 − 2|Φ|2ε− Φ2ε)

= −
(
∂tΦ, 2Φ|ε|2 +Φε2

)
+O

(‖ε‖H1‖ε‖2L2

ηC

)
= −

(
∂tΦ, 2Φ|ε|2 +Φε2

)
+O

(G
t

)
.

similarly, using (5.34) and (5.20):

(iS, |D|ε − (Φ + ε)|Φ + ε|2 +Φ|Φ|2)

= (iS, |D|ε − 2|Φ|2ε− Φ2ε) +O

(
Mod1 +Mod2

ηC
‖ε‖2L2

)

= (iS, |D|ε − 2|Φ|2ε− Φ2ε) +O

(G
t

)
.

The collection of above bounds yields

d

dt

{
1

2
(|D|ε, ε) − 1

4

[∫
(|ε+Φ|4 − |Φ|4)− (4ε,Φ|Φ|2)

]}
(5.53)

= (ε, |D|(iS) − 2|Φ|2(iS)− Φ2iS)−
(
∂tΦ, 2Φ|ε|2 +Φε2

)

+ O

(G
t
+

1

tN+1

)
.

We now treat the remaining quadratic terms more carefully and combine them with
the leading order quadratic terms in (5.46), (5.48). Indeed, we rewrite (5.52) using
(5.34), (5.51), (5.25) and the j-admissibility of Vj:

∂tΦ

=

2∑

j=1

1

λ
3
2
j

[
∂sjVj −

(λj)sj
λj

ΛVj −
1

1− βj

[
(xj)sj
λj

]
∂yjVj +

(βj)sj
1− βj

yj∂yjVj + i(γj)sjVj

]
eiγj (yj)

=

2∑

j=1

i

λj
Φ(j) − βj∂xΦ

(j) +O




2∑

j=1

1

t

1

〈yj〉



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where we have set

Φ(j)(t, x) :=
1

λ
1
2
j

Vj

(
x− xj

λj(1− βj)

)
eiγj .

We infer the bound

−
(
∂tΦ, 2Φ|ε|2 +Φε2

)
+ (ε2, iθΦ2)− (2Φ|ε|2 +Φε2, ζ∂xΦ)

=

(
β1∂xΦ

(1) + β2∂xΦ
(2) +O

(
Σ2
j=1

1

t

1

〈yj〉

)
, 2Φ|ε|2 +Φε2

)
− (2Φ|ε|2 +Φε2, ζ∂xΦ)

+ (ε2, iΦ

[
θΦ− Σ2

j=1

1

λj
Φ(j)

]
)− 2(i

(
Φ(1)

λ1
+

Φ(2)

λ2

)
, (Φ(1) +Φ(2))|ε|2)

= −(2Φ|ε|2 +Φε2, (ζ − β1)∂xΦ
(1) + (ζ − β2)∂xΦ

(2)) + (ε2, iΦΣ2
j=1

(
θ − 1

λj

)
Φ(j))

− 2

λ1
(|ε|2, iΦ(1)Φ(2))− 2

λ2
(|ε|2, iΦ(2)Φ(1)) +O

(‖ε‖2L2

t

)

We recall (5.37), and hence |y1| 6 R
2 implies |y2| > R

2bµ from which

‖|Φ(1)Φ(2)‖L∞ . ‖ 1

〈y1〉〈y2〉
‖L∞ .

1

t

and hence

|(|ε|2, iΦ(1)Φ(2))|+ |(|ε|2, iΦ(2)Φ(1))| . ‖ε‖2L2

t
.

G
t
.

We then use 〈y1〉 & R on Supp(1 − φ1) and Supp( 1
λ1

− θ) and the explicit formula

(5.11) to estimate:

∣∣∣(ζ − β1)∂xΦ
(1)
∣∣∣ . |1− φ1|

〈y1〉2
.

1

t∣∣∣∣
(
θ − 1

λ1

)
Φ(1)

∣∣∣∣ .
1

t
.

Similarly, we use 〈y2〉 & R on Supp(b − φ1) and Supp( 1
λ2

− θ), and the relation

β2 − ζ = (1− β1)(φ1 − b) to get

∣∣∣(ζ − β2)∂xΦ
(2)
∣∣∣ . |b− φ1|

b〈y2〉2
.

1

t∣∣∣∣
(
θ − 1

λ2

)
Φ(2)

∣∣∣∣ .
1

t
.

The second estimate above is straightforward. Let us explain how to obtain the first
estimate. Recall that b− φ1 = (b− 1)Ψ1, and 0 ≤ Ψ(z1) ≤ 1, with Ψ1(z1) = 1 for
z1 ≤ 1/4, Ψ1(z1) = (1 − z1)

10 for 1/2 ≤ z1 ≤ 1, and Ψ1(z1) = 0 for z1 ≥ 1, so we
may assume z1 ≥ 1. Moreover, recall that

1− z1 = 1− y1
R(1− b)

= 1− R+ µby2
R(1− b)

=
−b
1− b

(
1 +

µy2
R

)
≥ 0 .

If

−1 ≥ µy2
R

≥ − 1√
b
,
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then |1− z1| .
√
b, and

Ψ1

b〈y2〉2
.

b4

〈y2〉2
≤ b4

R2
.

1

t
.

On the other hand, if
µy2
R

≤ − 1√
b
,

then 〈y2〉 & R/
√
b, and

Ψ1

b〈y2〉2
≤ 1

b〈y2〉2
.

1

R2
.

1

t
.

We conclude using ‖Φ‖L∞ . 1:

−
(
∂tΦ, 2Φ|ε|2 +Φε2

)
+ (ε2, iθΦ2)− (2Φ|ε|2 +Φε2, ζ∂xΦ) = O

(G
t

)
.

Injecting this estimate into (5.46), (5.48) and (5.53) yields the full localized energy
identity:

d

dt

{
1

2
(|D|ε + θε, ε)− 1

2
(ζDε, ε)− 1

4

[∫
(|ε+Φ|4 − |Φ|4)− (4ε,Φ|Φ|2)

]}

=
1

2
((∂tθ)ε, ε) + (−i|D|ε, θε) + (ε, |D|(iS) + iθS − 2|Φ|2(iS)− Φ2iS)

− 1

2
(∂tζDε, ε) + (i|D|ε, ζDε + 1

2
εDζ)− (iS, ζDε+

1

2
εDζ)

+ O

(G
t
+

1

tN+1

)

=
1

2
((∂tθ)ε, ε) + (−i|D|ε, θε)− 1

2
(∂tζDε, ε) + (i|D|ε, ζDε + 1

2
εDζ)

+ (ε, (|D| − ζD)(iS) + iθS − 2|Φ|2(iS)− Φ2iS) +
1

2
(ε, iSDζ)

+ O

(G
t
+

1

tN+1

)
(5.54)

where we integrated by parts the term (iS, ζDε+ 1
2εDζ) in the last step. We now

estimate all remaining terms in (5.54). The linear terms in (5.54) induced by the
localization of the mass and kinetic momentum6 are particularly critical for our
analysis.

Step 4: Modulation equations terms. We estimate the remaining modulation equa-
tions terms in (5.54) and claim

∣∣(ε, (|D| − ζD)(iS) + iθS − 2|Φ|2(iS)− Φ2iS)
∣∣+ |(ε, iSDζ)| . G

t
+

1

tN+1
. (5.55)

Indeed, we first estimate the S terms in the y1 variable. From (5.28), (5.29) and

(5.34) with ‖ε2‖L2 =
‖ε1‖L2√

b
:

‖S1‖H1
y1

. Mod1 +
Mod2
t

.
1

ηCtN+1
+

‖ε1‖L2

t

[
1 +

1√
bt

]

.
1

ηCtN+1
+

‖ε1‖L2

t
(5.56)

6which is necessary due to the dramatic change of size of each bubble.



84 PATRICK GÉRARD, ENNO LENZMANN, OANA POCOVNICU, AND PIERRE RAPHAËL

where we used (5.42) in the last step, and

‖S2‖H1
y2

. Mod2 +
Mod1
t

.
1

ηCtN+1
+

‖ε2‖L2

t
. (5.57)

We also have similarly the pointwise bound using the admissibility of Vj :

|∂ky2S2| .
1

〈y2〉k
[

1

ηCtN+1
+

‖ε2‖L2

t

]
. (5.58)

In particular,

‖S‖L2
y1

. ‖S1‖L2
y1

+ ‖S2‖L2
y1

. ‖S1‖L2
y1

+
√
b‖S2‖L2

y2

.
1

ηCtN+1
+

‖ε1‖L2

t
. (5.59)

We therefore renormalize to the y1 variable and estimate from (5.59), (5.11):

|(ε, iSDζ)| . (1− β1)|(ε1, S∂y1φ1)| .
1− β1
t

‖ε1‖2L2 +
1

tN+1
,

and similarly using ‖Φ‖L∞ . 1:

|
∣∣(ε, iθS − 2|Φ|2(iS)− Φ2iS)

∣∣ . (1− β1)‖ε1‖L2‖S‖L2
y1

.
1− β1
t

‖ε1‖2L2 +
1

tN+1
.

We now use ζ1 = β1 + (1− β1)(1 − φ1) = 1− (1− β1)φ1 to compute:

|(ε, (|D| − ζD)(iS))| . |((|D| − ζ1D)ε1, iS)|
. (1− β1)|(φ1Dε1, iS)|+ |(iε−1 ,DΠ−S)| := I + II.

We claim:

I + II .
G
t
+

1

tN+1
(5.60)

which concludes the proof of (5.55).

Control of I. We split S = S1 + S2 and first estimate after an integration by parts
and using (5.56):

|(1−β1)|(φ1Dε1, iS1)| . (1−β1)‖ε1‖L2‖S1‖H1
y1

.
1

tN+1
+
1− β1
t

‖ε1‖2L2 .
1

tN+1
+
G
t
.

Next,

|(1− β1)|(φ1Dε1, iS2) . (1− β1)|(φ2Dε2, iS2)|
. (1− β2)|(ε2, iDS2)|+ (1− β1)|(ε2,D((φ2 − b)iS2)|.

The first term is estimated from (5.57):

(1− β2)|(ε2, iDS2)| . (1− β2)‖ε2‖L2

[
1

ηCtN+1
+

‖ε2‖L2

t

]
.

1

tN+1
+

G
t
.

The second term is estimated using (5.58), (5.37), 〈y2〉 & b
R on Supp(b − φ2) and

‖∂y2φ2‖L∞ . b‖∂y1φ1‖L∞ . b
R so that:

(1− β1)|(ε2,D((φ2 − b)iS2)| . (1− β1)
b

R

[
1

ηCtN+1
+

‖ε2‖L2

t

] ∫ |ε2|
〈y2〉

dy2

.
1− β2
t

‖ε2‖2L2 +
1

tN+1
.

G
t
+

1

tN+1

which concludes the proof of (5.60) for I.
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Control of II . Consider Sj − S̃j . Then by commuting the null space relations

Lβ(ΛQβ) = −Qβ, Lβ(iQβ) = 0, Lβ(∂yQβ) = 0

and (2.21) with Π−, we estimate:

‖DΠ−(ΛQβ)‖L2 + ‖DΠ−Qβ‖L2 + ‖DΠ−Λ̃Qβ‖L2 + ‖DΠ−∂yQβ‖L2 . 1− β.

Hence from (5.28):

‖DΠ−(Sj − S̃j)‖L2
yj

. (1− βj)Modj . (1− βj)

[
1

ηCtN+1
+

‖εj‖L2

t

]

from which:

|(iε1,DΠ−(S1 − S̃1))| . (1 − β1)‖ε1‖L2

[
1

ηCtN+1
+

‖ε1‖L2

t

]
.

G
t
+

1

tN+1

and renormalizing to the y2 variable:

|(iε1,DΠ−(S2 − S̃2))| = |(iε2,DΠ−(S2 − S̃2))| . (1− β2)‖ε2‖L2

[
1

ηCtN+1
+

‖ε2‖L2

t

]

.
G
t
+

1

tN+1
.

We now argue similarly for the S̃j terms. Indeed, from Corollary 4.7, we have

‖DΠ−∂ΓVj‖L2+‖DΠ−ΛRVj‖L2+‖DΠ−∂λj+1
Vj‖L2+‖DΠ−(1−βj+1)∂βj+1

Vj‖L2 .
1− βj
R

.

Hence, arguing like for (5.56):

‖‖DΠ−S̃1‖L2
y1

.
1− β1
t

[Mod1 +Mod2] . (1− β1)

[
1

ηCtN+1
+

‖ε1‖L2

t

]

which implies

|(iε1,DΠ−S̃1)| . (1− β1)‖ε1‖L2

[
1

ηCtN+1
+

‖ε1‖L2

t

]
.

G
t
+

1

tN+1
.

similarly:

‖‖DΠ−S̃2‖L2
y2

.
1− β2
t

[Mod1 +Mod2] . (1− β2)

[
1

ηCtN+1
+

‖ε2‖L2

t

]

and

|(iε2,DΠ−S̃2)| . (1− β2)‖ε2‖L2

[
1

ηCtN+1
+

‖ε2‖L2

t

]
.

G
t
+

1

tN+1
.

This concludes the proof of (5.60).

Step 5: Linear momentum terms. Let

ε̃1 =
ε−1

〈z1〉
1+α
2

, z1 =
y1
R
, (5.61)

we claim:

−1

2
(∂tζDε, ε) + (i|D|ε, ζDε + 1

2
εDζ) (5.62)

=
d

dt
{oη→0(1)G} +O

(
1

tN+1
+

1

t

[
G(t) + ‖ε̃1‖2L2

t

])
.
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We first compute:

(∂tζDε, ε) + (−i|D|ε, εDζ) = (∂tζ(Dε
+ +Dε−), ε+ + ε−) + (Dε+ −Dε−, (ε+ + ε−)∂xζ)

= ((∂tζ + ∂xζ)Dε
+, ε+) + ((∂tζ − ∂xζ)Dε

−, ε−) + ((∂tζ − ∂xζ)Dε
−, ε+) + ((∂tζ + ∂xζ)Dε

+, ε−)

= ((∂tζ + ∂xζ)Dε
+, ε+) + ((∂tζ + ∂xζ)Dε

−, ε−) + ((∂tζ + ∂xζ)Dε
−, ε+) + ((∂tζ + ∂xζ)Dε

+, ε−)

− 2(∂xζDε
−, ε−)− 2(∂xζDε

−, ε+)

and now estimate the various contributions.

Term |(∂xζDε−, ε−)|. We claim:

|(∂xζDε−, ε−)| .
1

t

[
G(t) + ‖ε̃1‖2L2

t

]
. (5.63)

Indeed, recall (5.11) and renormalize to the y1 variable to compute:

|(∂xζDε−, ε−)| . |(Dε−1 , ∂y1φ1ε−1 )|.
We then commute:

|(Dε−1 , ∂y1φ1ε−1 )| =
1

R(1− b)
|( 1

〈z1〉
1+α
2

χRDε
−
1 , ε

−
1 )|

=
1

R(1− b)

∣∣∣∣∣(
1

〈z1〉
1+α
2

[−|D| 12χR|D| 12 ε−1 + [|D| 12 , χR]|D| 12 ε−1 ], ε−1 )
∣∣∣∣∣

.
1

R

{
|(χR|D| 12 ε−1 , |D| 12 ε̃1)|+ |(|D| 12 ε−1 , [|D| 12 , χR]ε̃1)|

}

.
1

R
‖|D| 12 ε−1 ‖L2

[
‖χR〈z1〉

1+α
2 ‖L∞‖ 1

〈z1〉
1+α
2

|D| 12 ε̃1‖L2 + ‖[|D| 12 , χR]ε̃1‖L2

]
.

We estimate from (D.1):

‖[|D| 12 , χR]ε̃1‖L2 .
1√
R
‖ε̃1‖L2

and from (D.2) applied to 1

〈z1〉
1+α
2

:

‖ 1

〈z1〉
1+α
2

|D| 12 ε̃1‖L2 . ‖|D| 12 ε−1 ‖L2 + ‖ 1

〈z1〉
1+α
2

[|D| 12 , 1

〈z1〉
1+α
2

]ε−1 ‖L2

. ‖|D| 12 ε−1 ‖L2 +
1√
R
‖ε̃1‖L2 (5.64)

and hence the bound:

|(Dε−1 , ∂y1φ1ε−1 )| .
1

R

[
‖|D| 12 ε−1 ‖2L2 +

‖ε̃1‖2L2

R

]
.

1

t

[
G +

‖ε̃1‖2L2

t

]
,

this is (5.63).

Term (∂xζDε
−, ε+). This term cannot be treated directly due to the η loss in

‖ε±1 ‖L2 . G
η . We claim that

(∂xζDε
−, ε+) =

d

dt
{oη→0(G)} +O

(
1

tN+1
+

G(t)
t

)
. (5.65)

Indeed, first we renormalize to the y1 variable,

(∂xζDε
−, ε+) =

1

λ21
(Dε−1 , ∂y1φ1ε

+
1 )
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and now we need to use the equation. We rewrite (5.44) as

i∂tε− |D|ε = F̃

F̃ (t, x) = −Ψ− S − ((Φ + ε)|Φ + ε|2 − Φ|Φ|2), F̃ (t, x) = F̃1(s1, y1)

and renormalize to the y1 =
x−x1

λ1(1−β1)
variable so that

i∂s1ε1 −
|D| − β1D

1− β1
ε1

= λ
1+ 1

2
1 F̃1 + i

(λ1)s1
λ1

(
ε1
2

+ y1∂y1ε1)− i
(β1)s1
1− β1

y1∂y1ε1 + i
(x1)t − β1
1− β1

∂y1ε1 + γs1ε1

and thus after projecting with Π− and using [Π±, ∂y] = [Π±, y∂y] = 0:

i∂s1ε
−
1 +

1 + β1
1− β1

Dε−1 (5.66)

= λ
1+ 1

2
1 Π−F̃1 + i

(λ1)s1
λ1

(
ε−1
2

+ y1∂y1ε
−
1 )− i

(β1)s1
1− β1

y1∂y1ε
−
1 + i

(x1)t − β1
1− β1

∂y1ε
−
1 + (γ1)s1ε

−
1 ,

and

i∂s1ε
+
1 −Dε+1 (5.67)

= λ
1+ 1

2
1 Π+F̃1 + i

(λ1)s1
λ1

(
ε+1
2

+ y1∂y1ε
+
1 )− i

(β1)s1
1− β1

y1∂y1ε
+
1 + i

(x1)t − β1
1− β1

∂y1ε
+
1 + (γ1)s1ε

+
1 .

Using (5.66), we have

1

λ21
(Dε−1 , ∂y1φ1ε

+
1 ) =

1− β1
λ1(1 + β1)

(−i∂tε−1 , ∂y1φ1ε+1 )

+
1− β1

λ21(1 + β1)

(
λ
1+ 1

2
1 Π−F̃1 + i

(λ1)s1
λ1

(
ε−1
2

+ y1∂y1ε
−
1 )− i

(β1)s1
1− β1

y1∂y1ε
−
1

+ i
(x1)t − β1
1− β1

∂y1ε
−
1 + (γ1)s1ε

−
1 , ∂y1φ1ε

+
1

)
.

We use Supp(∂y1φ1) ⊂ { t
4 6 y1 6 t}, ‖∂y1φ1‖L∞ . 1

t and the rough bound
∣∣∣∣
(λ1)s1
λ1

∣∣∣∣+
∣∣∣∣
(β1)s1
1− β1

∣∣∣∣+
∣∣∣∣
(x1)t − β1
1− β1

∣∣∣∣ .
1

t
, |(γ1)s1 | . 1 (5.68)

to estimate

(1− β1)

∣∣∣∣
(
i
(λ1)s1
λ1

ε−1
2

+ (γ1)s1ε
−
1 , ∂y1φ1ε

+
1

)∣∣∣∣ .
1− β1
t

‖ε1‖2L2 .
G
t
,

and

(1− β1)

∣∣∣∣
(
i
(λ1)s1
λ1

y1∂y1ε
−
1 − i

(β1)s1
1− β1

y1∂y1ε
−
1 + i

(x1)t − β1
1− β1

∂y1ε
−
1 , ∂y1φ1ε

+
1

)∣∣∣∣

.
1− β1
t

‖ε1‖2L2 .
G
t
.

Indeed, in order to absorb the derivative in the second estimate, we make use of the
commutator estimate (D.9). For instance,

|(y1∂y1ε−1 , ∂y1φ1ε+1 )| = |(∂y1 [Π+, y1∂y1φ1]ε
−
1 , ε

+
1 )|+O(‖ε1‖2L2) . ‖ε1‖2L2 ,

ad the two other terms are treated similarly.
The rough L∞-bound ‖ε1‖L∞ ≤ 1, (5.32) and (5.59) ensure

‖F̃1‖L2 . ‖ε1‖L2 +
1

ηCtN+1
(5.69)
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and hence:

(1− β1)|(Π−F̃1, ∂y1φ1ε
+
1 )| .

1− β1
t

‖ε1‖2L2 +
1

tN+1
.

G
t
+

1

tN+1
.

We now integrate by parts in time:

1

λ21
(Dε−1 , ∂y1φ1ε

+
1 ) = − 1− β1

λ1(1 + β1)
(i∂tε

−
1 , ∂y1φ1ε

+
1 ) +O

(G
t
+

1

tN+1

)

= − d

dt

{
1− β1

λ1(1 + β1)
(iε−1 , ∂y1φ1ε

+
1 )

}
− 1− β1
λ1(1 + β1)

(
ε−1 , ∂y1φ1i∂tε

+
1

)
+O

(G
t
+

1

tN+1

)

where we used (5.68) and the rough bound

|∂t∂y1φ1| .
1

t

in the last step. We now inject (5.67) and conclude using a similar chain of estimates
as above:

1

λ21
(Dε−1 , ∂y1φ1ε

+
1 ) = − d

dt

{
1− β1

λ1(1 + β1)
(iε−1 , ∂y1φ1ε

+
1 )

}
+O

(G
t
+

1

tN+1

)

− 1− β1
λ1(1 + β1)

(ε−1 , ∂y1φ1Dε
+
1 ).

The last term is handled using again the commutator estimate (D.9):

|(ε−1 , ∂y1φ1Dε+1 )| = |(ε−1 , [∂y1φ1,Π+]Dε+1 )| . ‖ε+1 ‖L2‖D[∂y1φ1,Π
+]ε−1 ‖L2 .

‖ε1‖2L2

t2

and the boundary term in time is estimated using ‖∂y1φ1‖L∞ . 1
t :∣∣∣∣

1− β1
λ1(1 + β1)

(iε−1 , ∂y1φ1ε
+
1 )

∣∣∣∣ .
1− β1
t

‖ε1‖2L2 .
G
t
.

The collection of above bounds yields (5.65).

Term (−i|D|ε, ζDε). We claim similarly

(−i|D|ε, ζDε) = d

dt
{oη→0(G)} +O

(
1

tN+1
+

G(t)
t

)
. (5.70)

Indeed, we compute:

(−i|D|ε, ζDε) =
1

λ21(1− β1)
(−i(Dε+1 −Dε−1 ), ζ1(Dε

+
1 +Dε−1 ))

=
1

λ21(1− β1)

[
(−iDε+1 , ζ1Dε−1 ) + (iDε−1 , ζ1Dε

+
1 )
]

=
2

λ21(1− β1)
(iDε−1 , ζ1Dε

+
1 ) = − 2

λ21
(iDε−1 , φ1Dε

+
1 ).

We compute from (5.66):

1

λ21
(iDε−1 , φ1Dε

+
1 ) =

1− β1
λ1(1 + β1)

(i∂tε
−
1 , iφ1Dε

+
1 )

− 1− β1
λ21(1 + β1)

(
λ
1+ 1

2
1 Π−F̃1 + i

(λ1)s1
λ1

(
ε−1
2

+ y1∂y1ε
−
1 )− i

(β1)s1
1− β1

y1∂y1ε
−
1

+ i
(x1)t − β1
1− β1

∂y1ε
−
1 + γs1ε

−
1 , iφ1Dε

+
1

)
.
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We estimate from (5.69), (D.9):

(1− β1)|(Π−F̃1, iφ1Dε
+
1 )| = (1− β1)|(Π−F̃1, [Π

+, φ1]Dε
+
1 )|

. (1− β1)‖D[Π+, φ1]Π
−F̃1‖L2‖ε+1 ‖L2 .

1− β1
t

‖F̃1‖L2‖ε1‖L2 .
1− β1
t

‖ε1‖2L2 +
1

tN+1

.
G
t
+

1

tN+1
.

We integrate by parts,

|(iy1∂y1ε−1 , iφ1Dε+1 )| = |(iε−1 , ∂y1(y1φ1∂y1ε+1 )|
. |(iε−1 , (φ1 + y1∂y1φ1)∂y1ε

+
1 )|+ (iε−1 , y1φ1∂

2
y1ε

+
1 )| .

For the first term, we estimate from (D.9):

|(iε−1 , (φ1 + y1∂y1φ1)∂y1ε
+
1 )| . ‖ε+1 ‖L2‖∂y1 [Π+, φ1 + y1∂y1φ1]ε

−
1 ‖L2 .

1

t
‖ε1‖2L2 .

For the second term, we use [Π+, y1]∂y1ε1 = 0 and (D.10) to estimate

|(iε−1 , y1φ1∂2y1ε+1 )| = |(iε−1 , φ1Π+(y1∂
2
y1ε

+
1 ))| = (iε−1 , [φ1,Π

+](y1∂
2
y1ε

+
1 ))|

. ‖ε+1 ‖L2‖〈y1〉∂2y1 [Π+, φ1]ε
−
1 ‖L2 .

‖ε1‖2L2

t
.

Similarly,

|(i∂y1ε−1 , φ1Dε+1 )|+ |(ε−1 , φ1Dε+1 )| .
1

t
‖ε1‖2L2 .

We therefore integrate by parts and using (5.68)

1

λ21
(iDε−1 , φ1Dε

+
1 ) =

1− β1
λ1(1 + β1)

(i∂tε
−
1 , iφ1Dε

+
1 ) +O

(G
t
+

1

tN+1

)

=
d

dt

{
1− β1

λ1(1 + β1)
(ε−1 , φ1Dε

+
1 )

}
− 1− β1
λ21(1 + β1)

(iφ1ε
−
1 ,Di∂s1ε

+
1 ) +O

(G
t
+

1

tN+1

)
.

We now reinject (5.67) and estimate all terms similarly as above using (D.9), (D.10),
and (5.70) follows through a completely similar chain of estimates.

(∂t + ∂x)ζ terms. These terms gain an extra 1 − β1 which is essential to treat the

degeneracy of the kinetic energy and the L2 mass for ε+1 in the lower bound (5.16),
and we claim:

|((∂tζ + ∂xζ)Dε
+, ε+)|+ |((∂tζ + ∂xζ)Dε

−, ε−)|+ |((∂tζ + ∂xζ)Dε
−, ε+)|

+ |((∂tζ + ∂xζ)Dε
+, ε−)| . G

t
. (5.71)

Indeed, let

ψ(t, x) =
∂tζ + ∂xζ√

φ
, ψ(x) = ψ1(y1). (5.72)
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We estimate, after renormalization to the y1 variable, using (5.11), (E.3), (E.12),
(E.14), (E.15),

|(Dε+, (∂tζ + ∂xζ)ε
±)| .

∣∣∣(
√
φ1Dε

+
1 , ψ1ε

±
1 )
∣∣∣

.
∣∣∣(D(

√
φ1ε

+
1 ), ψ1ε

±
1 )
∣∣∣+
∫ |∂y1φ1|√

φ1
|ψ1||ε1|2dy1

. ‖|D| 12 (
√
φ1ε

+
1 )‖L2

[
‖[|D| 12 , ψ1]ε

±
1 ‖L2 + ‖ψ1|D| 12 ε±1 ‖L2

]
+

1− β1
R2

‖ε1‖2L2

.

[
‖
√
φ1|D| 12 ε+1 ‖L2 +

1√
R
‖ε1‖L2

]
×
[
1− β1

t
3
2

‖ε1‖L2 +
1− β1
t

‖
√
φ1|D| 12 ε±1 ‖L2

]

+
1− β1
R2

∫
|ε1|2dy1 .

1

t
G(t) .

Finally, we infer

|((∂tζ + ∂xζ)Dε
−, ε±)| = |(ψ

√
φDε−, ε±)| = |(

√
φ1Dε

−
1 , ψ1ε

±
1 )|

=
∣∣∣([
√
φ1, |D| 12 ]ε−1 + |D| 12

√
φ1|D| 12 ε−1 , ψ1ε

±
1 )
∣∣∣

. ‖[
√
φ1, |D| 12 ]ε−1 ‖L2‖ψ1ε

±
1 ‖L2 + ‖

√
φ1|D| 12 ε−1 ‖L2

(
‖ψ1|D| 12 ε±1 ‖L2 + ‖[|D| 12 , ψ1]ε1‖L2

)
,

and hence, using (E.14), (E.15), (E.12),

|((∂tζ + ∂xζ)Dε
−, ε±)| . 1√

t

1− β1
t

‖ε1‖2L2

+ ‖|D| 12 ε−1 ‖L2

(
1− β1
t

‖
√
φ1|D| 12 ε±1 ‖L2 +

1− β1

t
3
2

‖ε1‖L2

)
.

G
t
,

and (5.71) is proved.

Step 6: Control of mass terms. We claim:

1

2
((∂tθ)ε, ε) + (−i|D|ε, θε) = d

dt
{oη→0(G)} (5.73)

+ O

(
1

tN+1
+

1

t

[
G(t) + ‖ε̃1‖2L2

t

])
.

Indeed, we split ε = ε+ + ε− and compute:

1

2
((∂tθ)ε, ε) + (−i|D|ε, θε) = 1

2
((∂tθ)(ε

+ + ε−), ε+ + ε−) + (−i(Dε+ −Dε−), θ(ε+ + ε−))

=
1

2
((∂tθ)(ε

+ + ε−), ε+ + ε−)− (∂xε
+ − ∂xε

−, θ(ε+ + ε−))

=
1

2
((∂tθ + ∂xθ)ε

+, ε+) +
1

2
((∂tθ − ∂xθ)ε

−, ε−) + (∂tθε
+, ε−) + (∂xε

−, θε+)− (∂xε
+, θε−)

=
1

2
((∂tθ + ∂xθ)ε

+, ε+) +
1

2
((∂tθ − ∂xθ)ε

−, ε−) + ((∂tθ + ∂xθ)ε
+, ε−)

− (∂xθε
+, ε−) + (∂xε

−, θε+) + (ε+, ∂xθε
− + θ∂xε

−)

=
1

2
((∂tθ + ∂xθ)ε

+, ε+) +
1

2
((∂tθ − ∂xθ)ε

−, ε−) + ((∂tθ + ∂xθ)ε
+, ε−)

+ 2(θε+, ∂xε
−) ,

and estimate all terms.
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(∂t + ∂x)θ terms. We estimate from (E.19),

|((∂xθ + ∂tθ)ε
±, ε±)| . ‖ε‖2L2

t
.

G
t
.

Term ((∂t − ∂x)θε
−, ε−). For t > T−, we use

|λ2 − λ1| . η

and (E.17):

|((∂xθ)ε−, ε−)| .
|λ2 − λ1|
(1− β1)R

‖ε‖2L2 .
G(t)
t
.

For t 6 T−, we use the bound

|λ2 − λ1| .
1

t

and the space localization of ∂y1θ1 to estimate from (E.16):

|((∂xθ)ε−, ε−)| . |((〈z1〉1+α∂y1θ1)ε̃1, ε̃1)| .
|λ2 − λ1|

t
‖ε̃1‖2L2 .

‖ε̃1‖2L2

t2
.

Term (θε+, ∂xε
−). For the last term, we renormalize to the y1 variable

(∂xε
−, θε+) =

1

λ1
(Dε−1 ,−iθ1ε+1 )

and hence, using (5.66),

(∂xε
−, θε+) =

1− β1
1 + β1

(i∂tε
−
1 , iθ1ε

+
1 )

+
1− β1

λ1(1 + β1)

(
λ
1+ 1

2
1 Π−F̃1 + i

(λ1)s1
λ1

(
ε−1
2

+ y1∂y1ε
−
1 )

− i
(β1)s1
1− β1

y1∂y1ε
−
1 + i

(x1)t − β1
1− β1

∂y1ε
−
1 + (γ1)s1ε

−
1 , θ1ε

+
1

)

=
1− β1
1 + β1

(i∂tε
−
1 , iθ1ε

+
1 ) +O

(
1− β1
t

‖ε1‖2L2

)

and hence, integrating by parts in time and using (5.67), (5.68), (5.69),

(∂xε
−, θε+) =

d

dt

{
1− β1
1 + β1

(ε−1 , θ1ε
+
1 )

}

− 1− β1
λ1(1 + β1)

(ε−1 , θ1Dε
+
1 ) +O

(
1− β1
t

‖ε1‖2L2 +
1

tN+1
.

)
.

We estimate from (D.9),

|(ε−1 , θ1Dε+1 )| = |(D[Π+, θ1]ε
−
1 , ε

+
1 )| .

1

t
‖ε1‖2L2

and, for the boundary term in time, we use

θ1 =
1

λ2
[µΨ1 + 1−Ψ1] ,

to compute

1− β1
1 + β1

(ε−1 , θ1ε
+
1 ) =

1− β1
λ2(1 + β1)

(ε−1 , (µΨ1+1−Ψ1)ε
+
1 ) =

1− β1
λ2(1 + β1)

(µ−1)(ε−1 ,Ψ1ε
+
1 ) .

Hence

|1− β1
1 + β1

(ε−1 , θ1ε
+
1 )| . |λ2 − λ1|(1− β1)‖ε1‖2L2 . ηδG
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which concludes the proof of (5.73).

Step 7: Small time improved bound for ‖ε̃1‖L2 . The collection of above estimates
yields the differential control:

∣∣∣∣
d

dt
{G(t)(1 + oη→0(1))}

∣∣∣∣ .
1

t

[
G(t) + ‖ε̃1‖2L2

t

]
+

1

tN+1
. (5.74)

We now estimate the ε̃1 term first through the following space time bound:
∫ Tn

t

‖ε̃1(τ)‖2L2

τ
dτ .

∫ Tn

t

[
G(τ) + 1

τN+1

]
dτ. (5.75)

which improves on the trivial bound ‖ε̃1(t)‖2L2 . ‖ε−1 ‖2L2 .
G(t)
η for t 6 T−. Indeed,

let

h(s1, y1) = H

(
y1
s1

)
, H(z1) =

∫ +∞

z1

dz

1 + 〈z〉1+α
.

We estimate from (5.66):

1

2

d

ds1

∫
h|ε−1 |2 =

1

2

∫ (
∂s1 −

1 + β1
1− β1

∂y1

)
h|ε−1 |2

+

(
ihε−1 , λ

1+ 1
2

1 Π−F̃ + i
(λ1)s1
λ1

(
ε−1
2

+ y1∂y1ε
−
1 )− i

(β1)s1
1− β1

y1∂y1ε
−
1 + i

(x1)t − β1
1− β1

∂y1ε
−
1 + (γ1)s1ε

−
1

)

=
1

2

∫ (
∂s1 −

1 + β1
1− β1

∂y1

)
h|ε−1 |2 +O

(
‖ε1‖2L2 +

1

tN+1

)

where we integrated by parts and use (5.68), (5.69) in the last step. Moreover,

(
∂s1 −

1 + β1
1− β1

∂y1

)
h =

1

s1

(
−z1 −

1 + β1
1− β1

)
∂z1H =

1

s1

(
z1 +

1 + β1
1− β1

)
1

1 + 〈z1〉1+α

and hence the bound using |z1|
〈z1〉1+α 6 1:

1

s1

∫ (
1 + β1
1− β1

) |ε−1 |2
1 + 〈z1〉1+α

6 C
G

1− β1
+

1

tN+1
+

1

2

d

ds1

∫
h|ε−1 |2.

We integrate this on [s1(t), s1(Tn)] with ε1(s1(Tn)) = 0 and (5.75) follows from
s1 ∼ t ∼ R, η

2 6 1− β1 6 2η.

Step 8: Conclusion. We integrate (5.74) in time on [t, Tn] using ε(Tn) = 0 so that

G(t) .
∫ Tn

t

G(τ)
τ

dτ +

∫ Tn

t

‖ε̃1‖2L2

τ2
dτ +

1

tN
.

The first term is estimated using the bootstrap bound (5.20):
∫ Tn

t

G(τ)
τ

dτ .

∫ Tn

t

1

τ1+
N
2

dτ .
1

N

1

t
N
2

.

For the second term, we estimate from (5.75):
∫ Tn

t

‖ε̃1‖2L2

τ2
dτ .

1

t

∫ Tn

t

‖ε̃1‖2L2

τ
dτ .

1

t

∫ Tn

t

[
G(τ) + 1

τN+1

]
dτ

.
1

tN+1
+

1

t

∫ Tn

t

dτ

τ
N
2

.
1

N

1

t
N
2

which concludes the proof of (5.43). �
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5.7. Proof of the bootstrap Proposition 5.2. We are now in position to con-
clude the control of the geometrical parameters and the H1 bound.

Proof of Proposition 5.2. First observe that (5.43) yields the improved H
1
2 bound

in (5.23). Moreover, the bounds (5.21) at T− and (5.34), (5.16) (5.43) allow us
to apply the perturbative Lemma 4.13 and conclude that P satisfies (4.77). We
therefore need to prove (5.24) and the improved H1 bound in (5.23).

Step 1: Proof of (5.24). Recall (5.17) so that

(1− βj)∂βj
= ∂β̃j

.

Since RMj , RBj are L∞-admissible, we have

2∑

j,k=1

∣∣∂λj
Mk

∣∣+ |∂β̃k
Mk|+

2∑

j=1

|R∂RMj |+ |∂ΓMj| .
1

t
(5.76)

2∑

j,k=1

∣∣∂λj
Bk

∣∣+ |∂β̃k
Bk|+

2∑

j=1

|R∂RBj |+ |∂ΓBj | .
1

t
. (5.77)

For t ≥ T−, the same chain of estimates like for the proof of Proposition 4.12 using

|1− µ| . η for t ≥ T−

ensures the more precise control:

2∑

j=1

|∂ΓMj |+ |R∂RMj|+
2∑

j,k=1

|∂β̃k
Mj | .

1

t2
. (5.78)

Indeed, if j = 1, we know that b−1R(1 + (1− β1)R)M1 is L∞-admissible, so that

|∂ΓM1|+ |R∂RM1|+
2∑

k=1

|∂β̃k
M1| .

b

R(1 + (1− β1)R)
.

1

t2

since, for t ≥ T−, b ≃ η2, 1− β1 ∼ η and R ∼ t. If j = 2, Corollary 4.8 leads to

|∂ΓM2|+ |R∂RM2|+
2∑

k=1

(1− βk)|∂βk
M2| .

|1− µ|+ (1− β2)| log(1− β2)|+R−1

R(1 + (1− β1)R)
.

Since, for t ≥ T−, |1− µ| . η, 1− β2 ≃ η3, 1− β1 ∼ η,R ∼ t, we infer (5.78).
Recalling (5.18), (5.19), then (5.76), (5.77), (5.78) ensure:

|Bj −B∞
j | . 1

t




2∑

j=1

(|∆λj |+ |∆β̃j |) + |∆Γ|


+

1

t2
|∆R| . 1

t
N
8
+1

|Mj −M∞
j | . 1

t

2∑

j=1

|∆λj|+
1

t2


∑

j=1,2

|∆β̃j |+ |∆Γ|


+

|∆R|
t3

.
1

t
N
8
+2
.

Moreover, from (4.72), (5.34), (5.43):

|(λj)t − (λ∞j )t| =
∣∣∣∣∣
(λj)sj
λj

−
(λ∞j )s∞j
λ∞j

∣∣∣∣∣ . |Mj −M∞
j |+Modj .

1

t
N
8
+2

which time integration using (5.82) ensures:

|∆λj | .
1

Nt
N
8
+1
.
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We now compute similarly:

|(β̃j)t−(β̃∞j )t| =
∣∣∣∣∣
1

λj
[Bj +O(Modj)]−

1

λ∞j
B∞

j

∣∣∣∣∣ .
1

t
N
4

+|Bj−B∞
j |+|B∞

j ||λj−λ∞j | . 1

t
N
8
+1

and hence by integration in time:

|∆β̃j | .
1

Nt
N
8

.

We now compute the phase shift:

|Γt − Γ∞
t | =

∣∣∣∣
1

λ2
− 1

λ∞2
−
(

1

λ2
− 1

λ∞2

)
+O(Mod1 +Mod2)

∣∣∣∣ .
1

Nt
N
8
+1

and hence

|∆Γ| . 1

N2t
N
8

.

We now estimate from (5.27):

|Rt −R∞
t | .

∑

j=1,2

|∆β̃j |+ |∆λj |+Modj + |∆Γ|+ 1

t
|∆R| . 1

t
N
8

which time integration concludes the proof of (5.24).

Step 2: Proof of the H1 bound in (5.23). Since we have closed the H
1
2 bound at the

linear level, closing the H1 bound or any higher Sobolev norm is now elementary.
Recall (5.45)

i∂tε− |D|ε+ 2|Φ|2ε+Φ2ε = G.

Let

z = |D| 12 ε,
then: {

i∂tz − |D|z + 2|Φ|2z +Φ2z = G̃

G̃ = |D| 12G− 2[|D| 12 , |Φ|2]ε− [|D| 12 ,Φ2]ε
. (5.79)

We now run an energy identity on (5.79). We consider

G0(z) :=
1

2

[
(|D|z, z) + (z, z) − (2|Φ|2z +Φ2z, z)

]

then from (5.20):

‖z‖2
H

1
2
. G0(z) + ‖z‖2L2 . G0(z) +

1

t
N
2

. (5.80)

We compute the associated energy identity:

d

dt
G0 = (∂tz, |D|z + z − 2|Φ|2z −Φ2z)− (∂t(|Φ|2)z +

1

2
∂tΦ

2z, z)

= (−iG̃, |D|z + z − 2|Φ|2z − Φ2z) + (z2, iΦ2)− (∂tΦ, 2Φ|z|2 + Φ̄z2)

= (z2, iΦ2) + (i|D| 12 (Ψ + S), |D|z + z − 2|Φ|2z − Φ2z)

+
(
i
[
2[|D| 12 , |Φ|2]ε− [|D| 12 ,Φ2]ε

]
, |D|z + z − 2|Φ|2z − Φ2z

)

+
(
i|D| 12N(ε), |D|z + z − 2|Φ|2z − Φ2z

)

− (∂tΦ, 2Φ|z|2 + Φ̄z2)

= I + II + III + IV + V. (5.81)
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We now estimate all terms in (5.81). From (5.20) and ‖Φ‖L∞ . 1:

|I| = |(z2, iΦ2)| . ‖ε‖2
H

1
2
6

1

t
N
4

.

For II, we use (5.32) and an integration by parts and (5.20) to estimate:

|(i|D| 12Ψ, |D|z + z − 2|Φ|2z − Φ2z)| . ‖Ψ‖
H

3
2
‖z‖L2 .

1

ηCtN+1

1

t
N
4

6
1

t
N
4

.

For the modulation equation term, we estimate in brute force using the admissibility
of Vj , (5.34) and (5.20):

‖S‖
H

3
2
.

1

ηC
(Mod1 +Mod2) .

1

ηC
1

t
N
4

and hence:

|(i|D| 12S, |D|z + z − 2|Φ|2z − Φ2z)| . ‖S‖
H

3
2
‖z‖L2 .

1

ηCt
N
4

1

t
N
4

6
1

t
N
4

.

For III, we use that for any function χ:

|D| 12 [|D| 12 , χ] = [|D|, χ] − [|D| 12 , χ]|D| 12
and hence using (5.20), (D.1) with R = 1 and the admissibility of Vj :∣∣∣

(
2i[|D| 12 , |Φ|2]ε, |D|z

)∣∣∣ . ‖|D| 12 [|D| 12 , |Φ|2]ε‖L2‖z‖
H

1
2

.
(
‖[|D|, |Φ|2]ε‖L2 + ‖[|D| 12 , |Φ|2]|D| 12 ε‖L2

)
‖z‖

H
1
2
.

1

ηC
‖ε‖

H
1
2
‖z‖

H
1
2

.
1

ηCt
N
4

‖z‖
H

1
2
.

1

t
N
4
+1
.

The term (2i[|D| 12 , |Φ|2]ε, z − 2|Φ|2z − Φ2z) being easier to handle and proceeding

analogously for the terms containing i[|D| 12 ,Φ2]ε̄, we conclude that

|III| . 1

t
N
4
+1

For IV, we develop the cubic non linear term. The most dangerous nonlinear term
is the following which we estimate in brute force by Sobolev and (5.20):

∣∣∣
(
i|D| 12 (ε|ε|2), |D|z

)∣∣∣ =
∣∣∣
(
i|D|(|ε|2ε), |D| 12 z

)∣∣∣ . ‖D(|ε|2ε)‖L2‖z‖
H

1
2

. ‖Dε‖L2‖ε‖2L∞‖z‖
H

1
2
. (‖ε‖2L2 + ‖Dε‖2L2)‖z‖2

H
1
2

.
1

t
N
4
+1
.

Then, by the fractional Leibniz rule and (5.20), we also have
∣∣∣
(
i|D| 12 (ε|ε|2), z − 2|Φ|2z − Φ2z

)∣∣∣ . ‖|D| 12 ε‖L4‖ε2‖L4‖z‖L2 . ‖z‖
H

1
2
‖ε‖2

H
1
2
‖z‖L2

.
1

t
N
4
+1
.

We argue similarly for the quadratic terms and obtain:
∣∣∣
(
i|D| 12 (2|ε|2Φ+ ε2Φ), |D|z + z − 2|Φ|2z − Φ2z

)∣∣∣ . 1

η
1+4δ

2

(‖ε‖2L2 + ‖ε‖2
Ḣ1)‖z‖H 1

2

.
1

t
N
4
+1
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Finally, to estimate V, we use from (5.52) the rough bound ‖∂tΦ‖L∞ . 1
ηC

to

estimate:

|V | = |(∂tΦ, 2Φ|z|2 + Φ̄z2)| . ‖∂tΦ‖L∞‖Φ‖L∞‖z‖2L2 .
1

ηCt
N
2

.
1

t
N
4
+1
.

The collection of above bounds yields
∣∣∣∣
d

dt
G0

∣∣∣∣ .
1

t
N
4
+1

which time integration using ε(Tn) = z(Tn) = 0 with (5.80) yields

‖z‖2
H

1
2
.

1

Nt
N
4

.

This concludes the proof of (5.23) and of Proposition 5.2. �

5.8. Proof of Theorem 1.2. We are now in position to conclude the proof of
Theorem 1.2 as a simple consequence of Proposition 5.2. The argument is now
classical [31], we recall it for the convenience of the reader.

Proof of Theorem 1.2. First observe that Proposition 5.2 implies that un(t) solution
to (5.1) satisfies:

∀n > 1, ∀t ∈ [Tin, Tn], ‖un(t)− ΦP̃∞(t)‖H1 6
1

t
N
10

. (5.82)

We now let n → +∞ and extract a non trivial limit to produce the dynamics de-
scribed by Theorem 1.2.

Step 1: H
1
2 -compactness. We claim that that the sequence un(Tin) is up to a

subsequence H
1
2 compact. Indeed it is H1 bounded from (5.82). We now claim

that it is H
1
2 tight: ∀ε0 > 0, ∃R(ε0) such that:

∫

|x|>R(ε0)
|un(Tin)|2 +

∫

|x|>R(ε0)
||D| 12un(Tin)|2 < ε0. (5.83)

Indeed, pick ε0 > 0, then from (5.82), we may find a time T (ε0) such that

‖un(T (ε0))− ΦP̃∞(T (ε0))‖H1 < ε0

and then by construction of ΦP̃∞ , we may find R = R(ε0) such that

∀R > R(ε0),

∫
(1− χR)|ΦP̃∞(T (ε0))|2 +

∫
(1− χR)|||D| 12ΦP̃∞(T (ε0))|2 < ε0

from which ∫
(1− χR)|un(T (ε0))|2 +

∫
(1− χR)||D| 12un(T (ε0))|2 . ε0.

We now propagate this information backwards at Tin by localizing the mass and
energy conservation laws. Indeed, a brute force computation and (D.4) ensure

∣∣∣∣
d

dt

∫
(1− χR)|un|2

∣∣∣∣ .
‖un‖2L2

R
.

1

R

and hence ∫
(1− χR)|un(Tin)|2 . ε0 +

T (ε0)− Tin
R(ε0)

. ε0
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by possibly raising the value of R(ε0). We similarly localize the conservation of
energy with ζR = 1− χR and estimate using (D.3):

∣∣∣∣
d

dt

{
1

2

∫
ζR||D| 12un|2 +

1

4

∫
ζR|un|4

}∣∣∣∣ =
∣∣∣(∂tun, [|D| 12 , ζR]|D| 12un)

∣∣∣

.
‖un‖2H1 + ‖un‖4H1√

R
.

1

ηC
√
R

from which ∫
(1− χR)||D| 12un(Tin)|2 . ε0 +

T (ε0)− Tin
ηCR(ε0)

. ε0

by possibly raising the value of R(ε0), and (5.83) is proved.

Step 2: Conclusion. The H1 global bound and the tightness (5.83) ensure using

the compactness of the Sobolev embedding H1 →֒ H
1
2
loc the strong convergence up

to a subsequence

un(Tin) → u(Tin) in H
1
2 as n→ +∞.

Let u be the solution to (1.1) with data u(Tin) , then the continuity of the flow in

H
1
2 now yield the convergence of the whole sequence

∀t ≥ Tin, un(t) → u(t) in H
1
2 as n→ +∞

and hence from (5.82) and lower semi continuity of the norm:

∀t ≥ Tin, ‖u(t)− ΦP̃∞(t)‖H1 6
1

t
N
10

.

Moreover, since the modulation equation are computed from local in space scalar
products, we have7

∀t ≥ Tin, P̃un(t) → P̃u(t) as n→ +∞,

and hence passing to the limit in the estimates (5.24), (4.77) ensures that u satisfies
the expected dynamics of Theorem 1.2. �

Appendix A. Algebra for the Szegő profile

Lemma A.1 (Algebraic relations). There holds:
∫

|Q+|2 = 2π,

∫
∂yQ

+Q+ = 2iπ, (A.1)

∫
|Q+|2∂yQ+ = 2π,

∫
(Q+)2∂yQ+ = −4π, (A.2)

∫
|Q+|2Q+ = 2iπ,

∫
(Q+)2Q+ = −2iπ. (A.3)

(y∂yQ
+, iQ+) = 0 (A.4)

(y∂yQ
+, ∂yQ

+) = 0. (A.5)

Proof. Since

Q+(y) =
1

y + i
2

,

these formulas are for instance easy consequences of the residue theorem. �

7see for example [33] for a detailed proof in a similar functional setting.
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Appendix B. The resonant two-soliton Szegő dynamics

This appendix revisits the result of Pocovnicu [43] about two-soliton solutions for
the cubic Szegő equation on the line, by putting emphasis on the ODE system on
modulation parameters. For ease of notation, in this appendix we set

Q(x) := Q+(x) =
1

x+ i
2

,

and we look for a solution u = u(t, x) of the cubic Szegő equation on the line

i∂tu−Du+Π(u2u) = 0

of the form

u(t, x) = α1(t)Q

(
x− x1(t)

κ1(t)

)
+ α2(t)Q

(
x− x2(t)

κ2(t)

)
=: α1Q1 + α2Q2 .

B.1. Derivation of the system. Notice that

Q′ = −Q2 , xQ′(x) = −Q(x) +
i

2
Q(x)2 ,

so that

Du− i∂tu = i
α1

κ1
Q2

1 −
(
iα̇1 + iα1

κ̇1
κ1

)
Q1 − α1

(
i
ẋ1
κ1

+
1

2

κ̇1
κ1

)
Q2

1 +

i
α2

κ2
Q2

2 −
(
iα̇2 + iα2

κ̇2
κ2

)
Q2 − α2

(
i
ẋ2
κ2

+
1

2

κ̇2
κ2

)
Q2

2

On the other hand, using partial fraction decompositions, it is easy to check the
following identities, for j, k = 1, 2,

Π(Q2
jQk) = − κjκk(

xj − xk − i
κj+κk

2

)2 Qj +
κk

xj − xk − i
κj+κk

2

Q2
j ,

Π(Q1Q2Qj) =
κ2κj Q1(

x1 − x2 + iκ2−κ1
2

) (
x1 − xj − i

κ1+κj

2

) +
κ1κj Q2(

x2 − x1 + iκ1−κ2
2

)(
x2 − xj − i

κ2+κj

2

) .

This leads to

Π(u2u) = Π(Q2
1Q1) + Π(Q2

1Q2) + 2Π(Q1Q2Q1) + 2Π(Q1Q2Q2) + Π(Q2
2Q1) + Π(Q2

2Q2)

= β1Q
2
1 + γ1Q1 + β2Q

2
2 + γ2Q2 ,

with

β1 = iα2
1α1 +

κ2(
x1 − x2 − iκ1+κ2

2

)α2
1α2

γ1 = α2
1α1 −

κ1κ2α
2
1α2(

x1 − x2 − iκ1+κ2
2

)2 +
2iκ2α1α2α1

x1 − x2 + iκ2−κ1
2

+
2κ22α1α2α2(

x1 − x2 + iκ2−κ1
2

) (
x1 − x2 − iκ1+κ2

2

)

β2 = iα2
2α2 +

κ1(
x2 − x1 − iκ2+κ1

2

)α2
2α1

γ2 = α2
2α2 −

κ2κ1α
2
2α1(

x2 − x1 − iκ2+κ1
2

)2 +
2iκ1α2α1α2

x2 − x1 + iκ1−κ2
2

+
2κ21α2α1α1(

x2 − x1 + iκ1−κ2
2

) (
x2 − x1 − iκ2+κ1

2

)
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Identifying i∂tu and Π(u2u), we obtain the following system,

i
1− ẋ1
κ1

− 1

2

κ̇1
κ1

= i|α1|2 +
κ2(

x1 − x2 − iκ1+κ2
2

)α1α2

−i
(
α̇1

α1
+
κ̇1
κ1

)
= |α1|2 −

κ1κ2α1α2(
x1 − x2 − iκ1+κ2

2

)2 +
2iκ2α2α1

x1 − x2 + iκ2−κ1
2

+
2κ22|α2|2

(
x1 − x2 − iκ1+κ2

2

)−1

(
x1 − x2 + iκ2−κ1

2

)

i
1− ẋ2
κ2

− 1

2

κ̇2
κ2

= i|α2|2 +
κ1(

x2 − x1 − iκ2+κ1
2

)α2α1

−i
(
α̇2

α2
+
κ̇2
κ2

)
= |α2|2 −

κ2κ1α2α1(
x2 − x1 − iκ2+κ1

2

)2 +
2iκ1α1α2

x2 − x1 + iκ1−κ2
2

+
2κ21|α1|2

(
x2 − x1 − iκ2+κ1

2

)−1

(
x2 − x1 + iκ1−κ2

2

)

B.2. Conservation laws. Taking the real part of the combination of the first and
of the third equation with coefficients κ1 and κ2, we derive the first conservation
law,

κ1 + κ2
2

= K . (B.1)

The other conservation laws are not so easy to figure out. The first one corresponds
to the mass conservation,

‖u‖2L2 = |α1|2‖Q1‖2L2 + |α2|2‖Q2‖2L2 + 2Re[α1α2(Q1|Q2)] .

An elementary computation leads to

(2π)−1‖u‖2L2 = |α1|2κ1 + |α2|2κ2 + 2κ1κ2Im

(
α1α2

x1 − x2 − iκ1+κ2
2

)
=: C . (B.2)

For the other conservation laws, we use the Lax pair property for the Hankel oper-
ators Hu, ensuring that the eigenvalues of H2

u are conservation laws. Recalling that
Hu(h) := Π(uh), the matrix of Hu in the basis (Q1, Q2) is

M =




iα1
α1κ2

x1−x2−i
κ1+κ2

2
α2κ1

x2−x1−i
κ1+κ2

2

iα2


 .

Since Hu is antilinear the trace of H2
u is

tr
(
MM

)
= |α1|2 + |α2|2 − 2κ1κ2Re

(
α1α2(

x1 − x2 − iκ1+κ2
2

)2

)
=M , (B.3)

which is also the momentum of u, divided by 2π. The determinant of H2
u is

|detM |2 = |α1|2|α2|2
(
1− κ1κ2

(x1 − x2)2 +
(
κ1+κ2

2

)2

)2

= D . (B.4)

Let us specify the link of D with the conservation laws K,M and

H :=
1

2π
‖u‖4L4 .

We claim that

4KD = 2MC −H .
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Proof. Let us check this identity by calculating H. We set X := x1 − x2.

H = |α1|4
‖Q1‖4L2

2π
+ |α2|4

‖Q2‖4L2

2π
+ 4|α1|2|α2|2

‖Q1Q2‖2L2

2π

+ 2Re

(
α2
1α

2
2

(Q2
1|Q2

2)

2π

)
+ 4Re

(
α2
1α1α2

(Q2
1|Q1Q2)

2π

)
+ 4Re

(
α1α2α

2
2

(Q1Q2|Q2
2)

2π

)
.

Using

‖Q1‖4L2

2π
= 2κ1 ,

‖Q2‖4L2

2π
= 2κ2 ,

‖Q1Q2‖2L2

2π
=

2Kκ1κ2
X2 +K2

,
(Q2

1|Q2
2)

2π
=

2iκ21κ
2
2

(X − iK)3
,

(Q2
1|Q1Q2)

2π
=

−iκ1κ2
X − iK

− κ21κ2
(X − iK)2

,
(Q1Q2|Q2

2)

2π
=

−iκ1κ2
X − iK

− κ1κ
2
2

(X − iK)2
,

we infer

H = 2κ1|α1|4 + 2κ2|α2|4 + |α1|2|α2|2
8Kκ1κ2
X2 +K2

+ 4Re

(
α2
1α

2
2

iκ21κ
2
2

(X − iK)3

)

+ 4Re

(
α2
1α1α2

(−iκ1κ2
X − iK

− κ21κ2
(X − iK)2

))
+ 4Re

(
α1α2α

2
2

(−iκ1κ2
X − iK

− κ1κ
2
2

(X − iK)2

))

= 2κ1|α1|4 + 2κ2|α2|4 + |α1|2|α2|2
8Kκ1κ2
X2 +K2

+ 4Re

(
α2
1α

2
2

iκ21κ
2
2

(X − iK)3

)

+ 4κ1κ2(|α1|2 + |α2|2)Im
(

α1α2

X − iK

)
− 4(κ1|α1|2 + κ2|α2|2)κ1κ2KRe

(
α1α2

(X − iK)2

)
.

On the other hand,

M = |α1|2 + |α2|2 − 2κ1κ2Re

(
α1α2

(X − iK)2

)
,

C = κ1|α1|2 + κ2|α2|2 + 2κ1κ2Im

(
α1α2

X − iK

)
,

hence

2MC = 2κ1|α1|4 + 2κ2|α2|4 + 4K|α1|2|α2|2 − 4(κ1|α1|2 + κ2|α2|2)κ1κ2Re
(

α1α2

(X − iK)2

)

+ 4(|α1|2 + |α2|2)κ1κ2Im
(

α1α2

X − iK

)
− 8κ21κ

2
2Re

(
α1α2

(X − iK)2

)
Im

(
α1α2

X − iK

)
,

and

2MC −H = 4K|α1|2|α2|2
(
1− 2κ1κ2

X2 +K2

)

− 8κ21κ
2
2Re

(
α1α2

(X − iK)2

)
Im

(
α1α2

X − iK

)
− 4Re

(
α2
1α

2
2

iκ21κ
2
2

(X − iK)3

)
.

Now just observe that, for every complex numbers a, b,

−8Re(a)Im(b) + 4Im(ab) = 4Im(a)Re(b)− 4Im(b)Re(a) = 4Im(ab) .

Applying this identity to

a =
α1α2

(X − iK)2
, b =

α1α2

X − iK
,

we infer

−8Re

(
α1α2

(X − iK)2

)
Im

(
α1α2

X − iK

)
− 4Re

(
iα2

1α
2
2

(X − iK)3

)
=

4K

(X2 +K2)2
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and finally

2MC −H = 4K|α1|2|α2|2
(
1− 2κ1κ2

X2 +K2
+

κ21κ
2
2

(X2 +K2)2

)
= 4KD .

�

B.3. The reduced variables. Notice that

ẋ1 + ẋ2 = 2− C . (B.5)

Therefore, it is natural to introduce

X := x1 − x2 , ν :=
κ1 − κ2

2
.

Setting

ζ1 :=
α1

X − iK
, ζ2 :=

α2

X + iK
,

the system reads

Ẋ = (X2 +K2)[(K − ν)|ζ2|2 − (K + ν)|ζ1|2] ,
ν̇ = −2(K2 − ν2)Re[ζ1ζ2(X − iK)] .

Furthermore, the last three conservation laws read

C = (X2 +K2)[(K + ν)|ζ1|2 + (K − ν)|ζ2|2] + 2(K2 − ν2)Im[ζ1ζ2(X − iK)]

M = (X2 +K2)(|ζ1|2 + |ζ2|2)− 2(K2 − ν2)Re(ζ1ζ2)

= (K2 − ν2)|ζ1 − ζ2|2 + (X2 + ν2)(|ζ1|2 + |ζ2|2)
D = |ζ1|2|ζ2|2(X2 + ν2)2

B.4. The resonance condition. Notice that

M2 − 4D = (K2 − ν2)2|ζ1 − ζ2|4 + 2(K2 − ν2)(X2 + ν2)|ζ1 − ζ2|2(|ζ1|2 + |ζ2|2)
+ (X2 + ν2)2(|ζ1|2 − |ζ2|2)2 .

Therefore, this conservation law cancels if and only if

ζ1 = ζ2 =: ζ .

In this case, the above three conservation laws degenerate as

|ζ|2(X2 + ν2) =
M

2
=

√
D , C = KM .

Using the laws M,C,H,K and the identity

2MC −H = 4KD ,

we observe that the condition M2 = 4D is therefore equivalent to the set of two
conditions,

MC = H and C = KM .

Indeed, on the one hand, M2 = 4D implies C = KM as we have already observed,
and therefore,

4KD = 2M2K −H = 8KD −H

so that H = 4KD = 2MC −H, hence H = MC. On the other hand, if MC = H
and C = KM , then MC = 4KD and C = KM , hence KM2 = 4KD, so M2 = 4D.
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Under the resonance condition, the system in the reduced variables can be written

Ẋ = −M ν
X2 +K2

X2 + ν2
,

ν̇ = −M X
K2 − ν2

X2 + ν2
.

In particular,

d

dt
(Xν) = −M K2 .

This means that Xν cancels exactly once, so either X cancels and ν keeps the same
sign, or ν cancels and X keeps the same sign. In both cases, |X(t)| tends to infinity
like KM |t|, and |ν| tends to K. Furthermore, in this case, we have

|α1| = |α2|,

and the phase shift is given by

α1

α2
= eiΓ =

X − iK

X + iK
,

so the phase shift cancels at infinity. More precisely,

iΓ̇ =
Ẋ

X − iK
− Ẋ

X + iK
= −M ν

X2 + ν2
[X + iK − (X − iK)] =

−2iKM ν

X2 + ν2
.

Since |X(t)| tends to infinity like KM |t|, we conclude that |Γ̇(t)| cancels as fast as
t−2.

Appendix C. Proof of the non degeneracy (5.8)

The non degeneracy (5.8) follows from an explicit computation on the limiting
Szegő profile Q+. However, before proceeding with the limiting process, we need
more precise information on iρβ and (1− β)∂βQβ.

By (3.10) and Lemma 3.8, we have

ρ = −iQβ +
1

2
∂yQβ + oβ→1(1), Σ = y∂yQβ + oβ→1(1).

which together with Lemma A.1 ensures:

detAj = det




(ΛQβj
, Qβj

) (ΛQβj
, i∂yjQβj

) (ΛQβj
, iΛQβj

) (ΛQβj
, ρj)

(iQβj
, Qβj

) (iQβj
, i∂yjQβj

) (iQβj
, iΛQβj

) (iQβj
, ρj)

(∂yjQβj
, Qβj

) (∂yjQβj
, i∂yjQβj

) (∂yjQβj
, iΛQβj

) (∂yjQβj
, ρj)

(Σj, Qβj
) (Σj, i∂yjQβj

) (Σj , iΛQβj
) (Σj , ρj)




→




0 −π 0 0
0 0 0 −π
0 0 π 0
−π 0 0 0


 = −π4 as βj ↑ 1

and (5.8) is proved.
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Appendix D. Commutator estimates

This Appendix is devoted to the derivation of commutator estimates used all along
Section 5. All proofs are more or less standard but the involved norms and associated
decay are critical for the proof of Proposition 5.4, so we display all estimates in
detail.
We let in this section χ denote a bounded Lipschitz continuous function and let

χR(x) = χ
( x
R

)
, R > 1.

Lemma D.1 (|D| 12 commutator). There holds the global bound

‖[|D| 12 , χR]g‖L2 .
‖χ‖W 1,∞√

R
‖g‖L2 , (D.1)

and the weighted bound for 0 < α < 1:

‖ 1

〈z〉 1+α
2

[|D| 12 , χR]g‖L2 .
‖χ‖W 1,∞√

R
‖ g

〈z〉 1+α
2

‖L2 with z =
x

R
. (D.2)

Proof. Step 1: Kernel representation. First we provide a description of the operator

|D| 12 in the space variables. This operator is the convolution operator with the
tempered distribution

k := F−1(|ξ| 12 ) .
From the properties of the Fourier transform we know that k is homogeneous of
degree −3/2, and is even. As a consequence, it is characterized up to a multiplicative
constant. For every function ϕ in the Schwartz space, we therefore have

〈k, ϕ〉 = c

∫

R

ϕ(x)− ϕ(0)

|x| 32
dx , c := (2π)−

1
2

∫
R
|ξ| 12 e− ξ2

2 dξ

∫
R

e−
x2
2 −1

|x|
3
2

dx

,

and

k ∗ ϕ(x) = c

∫

R

ϕ(y)− ϕ(x)

|x− y| 32
dy .

Consequently, we can write

[|D| 12 , χR] g(x) = c

∫

R

χR(y)− χR(x)

|x− y| 32
g(y) dy .

Step 2: Proof of (D.1). We split the kernel in two parts,

[|D| 12 , χR] g(x) = c(Tmedg(x) + T offg(x)) ,

Tmedg(x) :=

∫

|x−y|≤5R

χR(y)− χR(x)

|x− y| 32
g(y) dy ,

T offg(x) :=

∫

|x−y|>5R

χR(y)− χR(x)

|x− y| 32
g(y) dy .

We have
|χR(x)− χR(y)|

|x− y| 32
.

‖χ′
R‖L∞

|x− y| 12
.

1

R|x− y| 12
and hence, by Young’s inequality,

‖Tmed‖L2 .
‖χ‖W 1,∞

R
‖1|x|65R

|x| 12
⋆g‖L2 .

‖χ‖W 1,∞

R
‖1|x|65R

|x| 12
‖L1‖g‖L2 .

‖χ‖W 1,∞√
R

‖g‖L2 .
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Similarly,

‖T off‖L2 . ‖χ‖L∞‖
1|x|>5R

|x| 32
⋆ g‖L2 . ‖χ‖W 1,∞‖

1|x|>5R

|x| 32
‖L1‖g‖L2 .

‖χ‖W 1,∞√
R

‖g‖L2

and (D.1) is proved.

Step 3: Proof of (D.2). For |x− y| 6 5R, we have 〈 y
R 〉 . 〈 xR 〉 and we infer

| 1

〈 xR 〉
1+α
2

Tmedg| . ‖χ‖W 1,∞

R

1|x|65R

|x| 12
⋆

|g|
〈 x
R 〉

1+α
2

from which, as above, from Young’s inequality,

‖ 1

〈 xR 〉
1+α
2

Tmedg‖L2 .
‖χ‖W 1,∞√

R
‖ |g|
〈 xR 〉

1+α
2

‖L2 .

For |x− y| > 5R, we distinguish

T off
1 =

∫

|x−y|>5R, |y|62|x|

χR(y)− χR(x)

|x− y| 32
g(y) dy

T off
2 =

∫

|x−y|>5R, |y|>2|x|

χR(y)− χR(x)

|x− y| 32
g(y) dy

For the first kernel, 〈 y
R〉 . 〈 xR 〉 and thus

| 1

〈 x
R 〉

1+α
2

T off
1 g| . ‖χ‖L∞

1|x|>5R

|x| 32
⋆

|g|
〈 xR 〉

1+α
2

from which, as above,

‖ 1

〈 x
R 〉

1+α
2

T off
1 g‖L2 . ‖χ‖L∞‖

1|x|>5R

|x| 32
‖L1‖ g

〈 xR 〉
1+α
2

‖L2 .
‖χ‖W 1,∞√

R
‖ g

〈 x
R 〉

1+α
2

‖L2 .

For the second kernel, |y| > 2|x| and |x−y| > 5R, we have |y| & R and |x−y| & |y|.
Therefore, from Cauchy–Schwarz’ inequality,

|T off
2 g| . ‖χ‖L∞

∫

|y|&R

|g(y)|
〈 y
R 〉

1+α
2

( |y|
R

) 1+α
2 dy

|y| 32

.
‖χ‖L∞

R
1+α
2

‖ g

〈 x
R 〉

1+α
2

‖L2

(∫

|y|&R

dy

|y|2−α

) 1
2

.
‖χ‖L∞

R
‖ g

〈 x
R 〉

1+α
2

‖L2

where we used α < 1, from which

‖ T
offg

〈 x
R 〉

1+α
2

‖L2 .
‖χ‖L∞

R
‖ g

〈 xR 〉
1+α
2

‖L2‖ 1

〈 x
R 〉

1+α
2

‖L2 .
‖χ‖W 1,∞√

R
‖ g

〈 x
R 〉

1+α
2

‖L2

where we simply changed variables and used α > 0 in the last step. This concludes
the proof of (D.2). �

We shall also use the following slightly different version.
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Lemma D.2 (Commutator estimate in L2). For a general function χ such that
∂xχ ∈ L1, there holds the following bounds.

‖[|D| 12 , χ]g‖L2 . ‖|ξ| 12 χ̂‖L1‖g‖L2 . (‖∂xχ‖L1‖∂xxχ‖L1)
1
2 ‖g‖L2 , (D.3)

‖[|D|, χ]g‖L2 + ‖[Π+|D|, χ]‖L2 .
(
‖∂xχ‖L1‖∂3xχ‖L1

) 1
2 ‖g‖L2 , (D.4)

‖|D| 12 [|D| 12 , χ]g‖L2 (D.5)

. (‖∂xχ‖L1‖∂xxχ‖L1)
1
2 ‖|D| 12 g‖L2 +

(
‖∂xχ‖L1‖∂3xχ‖L1

) 1
2 ‖g‖L2 ,

Proof. Step 1: Proof of (D.3). Since ∂xχ ∈ L1, χ̂(ξ) is discontinuous only at ξ = 0,
with a mild singularity justifying the calculations below for every g in the Schwartz
space. We have

̂
[|D| 12 , χ]g =

̂|D| 12 (χg)(ξ)− ̂
χ(|D| 12 g)(ξ) =

∫

R

(|ξ| 12 − |η| 12 )χ̂(ξ − η)ĝ(η) dη.

We use ∣∣|ξ| 12 − |η| 12
∣∣ 6 |ξ − η| 12 . (D.6)

to estimate pointwise
∣∣∣∣

̂
[|D| 12 , χ]g(ξ)

∣∣∣∣ .
∫

R

|ξ − η| 12 |χ̂|(ξ − η)|ĝ|(η) dη = |ξ| 12 |χ̂| ⋆ |ĝ|.

We conclude, from Young’s inequality and the Plancherel formula,

‖[|D| 12 , χ]g‖L2 . ‖(|ξ| 12 |χ̂|) ⋆ |ĝ|‖L2 . ‖|ξ| 12 χ̂‖L1‖g‖L2 .

Finally, we estimate
∫

|ξ| 12 |χ̂|dξ 6

∫

|ξ|6A

‖∂̂xχ‖L∞

|ξ| 12
dξ +

∫

|ξ|>A

‖∂̂xxχ‖L∞

|ξ| 32
dξ .

√
A‖∂xχ‖L1 +

‖∂xxχ‖L1√
A

. (‖∂xχ‖L1‖∂xxχ‖L1)
1
2 . (D.7)

by optimizing in A.

Step 2: Proof of (D.4). We compute

| ̂[|D|, χ]g(ξ)| =
∣∣∣ ̂|D|(χg)(ξ)− χ̂(|D|g)(ξ)

∣∣∣ =
∣∣∣∣
∫

R

(|ξ| − |η|)χ̂(ξ − η)ĝ(η) dη

∣∣∣∣

.

∫

R

|ξ − η||χ̂|(ξ − η)|ĝ|(η) dη = (|ξ||χ̂|) ⋆ |ĝ|

and hence

‖[|D|, χ]g‖L2 . ‖(|ξ||χ̂|) ⋆ |ĝ|‖L2 . ‖|ξ|χ̂‖L1‖g‖L2 .

We now estimate
∫

|ξ||χ̂| .
∫

|ξ|6A
‖∂xχ‖L1dξ +

∫

|ξ|>A

‖∂3xχ‖L1

|ξ|2 dξ .
(
‖∂xχ‖L1‖∂3xχ‖L1

) 1
2 (D.8)

and the first commutator estimate in (D.4) is proved. Similarly,

| ̂[Π+|D|, χ]g| =

∣∣∣∣
∫

R

(|η|1η>0 − |ξ|1ξ>0)χ̂(ξ − η)ĝ(η) dη

∣∣∣∣

.

∫

R

|ξ − η||χ̂|(ξ − η)|ĝ|(η) dη = (|ξ||χ̂|) ⋆ |ĝ|



106 PATRICK GÉRARD, ENNO LENZMANN, OANA POCOVNICU, AND PIERRE RAPHAËL

and the conclusion follows as above.

Step 3: Proof of (D.5). We compute, using (D.6),

||D| 12 ̂
[|D| 12 , χ]g(ξ)| .

∫

R

|ξ| 12
∣∣∣|ξ| 12 − |η| 12

∣∣∣ |χ̂(ξ − η)ĝ(η)| dη

.

∫

R

|ξ − η||χ̂(ξ − η)||ĝ(η)|dη +
∫

R

|ξ − η| 12 |χ̂|(ξ − η)|η| 12 |ĝ|(η) dη

. |ξχ| ⋆ |ĝ|+ |ξ| 12 |χ̂| ⋆ |η 1
2 ĝ|

and the conclusion follows as in the previous two steps. �

We similarly estimate Π± commutators.

Lemma D.3 (Π± commutator). Assume that the derivative χ′ is supported in [1, 2].
Then there holds

∥∥∥Dk[Π±, χR]g
∥∥∥
L2

.
‖χ‖W k+1,∞

Rk
‖g‖L2 , k = 1, 2, (D.9)

and
∥∥〈x〉D2[Π±, χR]g

∥∥
L2 .

‖χ‖W 3,∞

R
‖g‖L2 . (D.10)

Proof. We recall the standard representation formula

[Π+, χR]g(x) = c

∫
χR(x)− χR(y)

x− y
g(y)dy.

Step 1: Case k = 1. We take a derivative,

∂x[Π
+, χR]g(x) = −c

∫
χR(x)− χR(y)− (x− y)χ′

R(x)

(x− y)2
g(y)dy.

We now split the kernel as

∂x[Π
+, χR]g(x) = −c(Tmed

R g(x) + T offg(x)) ,

Tmed
R g(x) :=

∫

|x−y|<R

χR(x)− χR(y)− (x− y)χ′
R(x)

(x− y)2
g(y) dy ,

T off
R g(x) :=

∫

|x−y|>R

χR(x)− χR(y)− (x− y)χ′
R(x)

(x− y)2
g(y) dy .

We estimate∣∣∣∣
χR(x)− χR(y)− (x− y)χ′

R(x)

(x− y)2

∣∣∣∣ . ‖χ′′
R‖L∞ .

‖χ‖W 2,∞

R2
. (D.11)

Hence, by (D.11) and Young’s inequality,

‖Tmed
R g‖L2 .

‖χ‖W 2,∞

R2
‖1|x−y|<R ⋆ g‖L2 .

1

R2
‖1|x−y|<R‖L1‖g‖L2 .

‖χ‖W 2,∞

R
‖g‖L2 .

Off the diagonal, we use the special structure of χR. Firstly, we have

|T offg| . ‖χ‖L∞

∫

|x−y|>R

|g(y)|
|x− y|2dy +

∫

|x−y|>R

|χ′
R(x)− χ′

R(y)|
|x− y| |g(y)|dy

+

∫

|x−y|>R

1

|x− y| |χ
′
R(y)g(y)|dy := I + II + III.
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The first term is estimated by Young’s inequality,

‖I‖L2 . ‖χ‖L∞‖ 1

|x|21|x|>R ⋆ |g|‖L2 . ‖χ‖L∞‖ 1

|x|21|x|>R‖L1‖g‖L2

.
‖χ‖W 2,∞

R
‖g‖L2 .

For the second term, we use Young’s inequality and the fact that χ′
R(x) is supported

in R 6 |x| 6 2R. We obtain

‖II‖L2 . ‖χ
′
R

|x| 1|x|>R ⋆ g‖L2 . ‖χ
′
R

|x| 1|x|>R‖L1‖g‖L2 .
‖χ′‖L∞

R
‖g‖L2

∫

R
6
|x|62R

dx

〈x〉

.
‖χ‖W 2,∞

R
‖g‖L2 .

The last term is treated with Young’s and Cauchy Schwarz’s inequalities,

‖III‖L2 . ‖ 1

|x|1|x|>R ⋆ (χ
′
Rg)‖L2 | . ‖ 1

|x|1|x|>R‖L2‖χ′
Rg‖L1 .

‖χ′‖L∞√
R

1

R
‖g‖L1(R6|x|62R)

.
‖χ‖W 2,∞

R
‖g‖L2 .

The collection of above bounds yields (D.9)for k = 1.

Step 2: Case k = 2. The proof is similar. We take two derivatives,

∂2x[Π
+, χR]g(x) = 2c

∫
χR(x)− χR(y)− (x− y)χ′

R(x) +
1
2 (x− y)2χ′′

R(x)

(x− y)3
g(y)dy

= c(Tmed
R g(x) + T offg(x)).

We estimate∣∣∣∣∣
χR(x)− χR(y)− (x− y)χ′

R(x) +
1
2(x− y)2χ′′

R(x)

(x− y)3

∣∣∣∣∣ . ‖χ′′′
R‖L∞ .

‖χ‖W 3,∞

R3

from which

‖Tmed
R g‖L2 .

‖χ‖W 3,∞

R3
‖1|x−y|<R ⋆ g‖L2 .

1

R3
‖1|x−y|<R‖L1‖g‖L2 .

‖χ‖W 3,∞

R2
‖g‖L2 .

Off the diagonal, we split

|T offg| . ‖χ‖L∞

∫

|x−y|>R

|g(y)|
|x− y|3dy

+

∫

|x−y|>R

|χ′
R(x)− χ′

R(y)|
|x− y|2 |g(y)|dy +

∫

|x−y|>R

|χ′
R(y)|

|x− y|2 |g(y)|dy

+

∫

|x−y|>R

|χ′′
R(x)− χ′′

R(y)|
|x− y| |g(y)|dy +

∫

|x−y|>R

1

|x− y| |χ
′′
R(y)g(y)|dy

:= I + II + III.

The first term is estimated by Young’s inequality,

‖I‖L2 . ‖χ‖L∞‖ 1

|x|31|x|>R ⋆ |g|‖L2 . ‖χ‖L∞‖ 1

|x|31|x|>R‖L1‖g‖L2

.
‖χ‖W 3,∞

R2
‖g‖L2 .
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For the second term, we use Young’s inequality and the fact that χ′
R(x) is supported

in R 6 |x| 6 2R. We obtain

‖ χ
′
R

|x|21|x|>R ⋆ g‖L2 . ‖ χ
′
R

|x|21|x|>R‖L1‖g‖L2 .
‖χ′‖L∞

R
‖g‖L2

∫

R6|x|62R

dx

〈x〉2

.
‖χ‖W 3,∞

R2
‖g‖L2

and

‖ 1

|x|21|x|>R ⋆ (χ
′
Rg)‖L2 | . ‖ 1

|x|21|x|>R‖L2‖χ′
Rg‖L1 .

‖χ‖W 3,∞

R
3
2

1

R
‖g‖L1(R6|x|62R)

.
‖χ‖W 3,∞

R2
‖g‖L2

and hence

II .
‖χ‖W 3,∞

R2
‖g‖L2 .

For the last term, we have

‖χ
′′
R

|x| 1|x|>R ⋆ g‖L2 . ‖χ
′′
R

|x| 1|x|>R‖L1‖g‖L2 .
‖χ‖W 3,∞

R2
‖g‖L2

∫

R6|x|62R

dx

〈x〉

.
‖χ‖W 3,∞

R2
‖g‖L2

and

‖ 1

|x|1|x|>R ⋆ (χ
′′
Rg)‖L2 | . ‖ 1

|x|1|x|>R‖L2‖χ′′
Rg‖L1 .

‖χ‖W 3,∞√
R

1

R2
‖g‖L1(R6|x|62R)

.
‖χ‖W 3,∞

R2
‖g‖L2 .

The collection of above bounds yields (D.9) for k = 2.

Step 3: Proof of (D.10). We revisit the estimates of step 2 in the presence of the
additional 〈x〉 weight. For |x| 6 10R, we estimate directly from (D.9),

∥∥∥〈x〉Dk[Π±, χR]g
∥∥∥
L2(|x|610R)

.
‖χ‖W 2,∞

R
‖g‖L2 .

We therefore assume |x| > 10R. Since χ′ = 0 outside [1, 2], |x − y| < R implies
χR(x) − χR(y) = 0 and χ′

R(x) = 0. For |x − y| > R, we have |x − y| > |x| if x, y
do not have the same sign, and if x, y have the same sign, necessarily |y| 6 R, for
otherwise χR(x)− χR(y) = 0 again. In both cases, |x− y| & |x|, and hence

‖T offg‖L∞(|x|>10R) .

∫

|x−y|&|x|

1

|x− y|3 |g(y)|dy . ‖g‖L2‖
1|z|&|x|
|z|3 ‖L2 .

1

|x| 52
‖g‖L2 ,

therefore

‖〈x〉T offg‖L2(|x|>10R) . ‖g‖L2‖ 1

〈x〉 3
2

‖L2(|x|>10R) .
‖g‖L2

R
,

and (D.10) is proved. �

We will need a standard localization formula for the kinetic energy.
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Lemma D.4 (Localization of the kinetic energy). There holds for given functions
Z, f ,∫

|Z|2||D| 12 f |2 =

∫
||D| 12 (Zf)|2 (D.12)

+ O
(
‖[|D| 12 , Z]f‖L2

[
‖|D| 12 (Zf)‖L2 + ‖Z|D| 12 f‖L2

])
.

In particular, for χR(y) := χ( y
R ) with χ a smooth function satisfying

χ(y) =

{
1, if |y| < 1

4

0, if |y| > 1
2 ,

we have
∫
χ2
R||D| 12 f |2 =

∫
||D| 12 (χRf)|2 +O

(
‖f‖2L2 + ‖|D| 12 (χRf)‖2L2√

R

)
. (D.13)

Proof. We expand and estimate∫
||D| 12 (Zf)|2 = (|D| 12 (Zf), |D| 12 (Zf)) = ([|D| 12 , Z]f + Z|D| 12 f, |D| 12 (Zf))

= O
(
‖[|D| 12 , Z]f‖L2‖|D| 12 (Zf)‖L2

)
+ (Z|D| 12 f, [|D| 12 , Z]f + Z|D| 12 f)

=

∫
Z2||D| 12 f |2 +O

(
‖[|D| 12 , Z]f‖L2

[
‖|D| 12 (Zf)‖L2 + ‖Z|D| 12 f‖L2

])

and (D.12) follows. We then estimate from (D.1),

‖[|D| 12 , χR]‖L2→L2 .
1√
R

and (D.13) follows. �

Finally, for establishing the coercivity of our energy functional, we need the fol-
lowing — non sharp — estimate.

Lemma D.5. Let χ be a smooth function satisfying

χ(y) =

{
1, if |y| < 1

4

0, if |y| > 1
2 ,

There holds: ∥∥∥∥
(χRu

+)−

〈y〉

∥∥∥∥
L2

.
1

R
1
3

‖u+‖L2 . (D.14)

Proof. Using a standard duality argument, it suffices to show that
∣∣((χRu

+)−, v)
∣∣ . 1

R
1
3

‖u+‖L2‖〈y〉v‖L2 (D.15)

for any v ∈ L2(R) such that 〈y〉v ∈ L2(R). Let 0 < η < 1 and consider a cut off
function

ζη(ξ) = ζ

(
ξ

η

)
, ζ(ξ) =

{
1 for |ξ| 6 1,
0 for |ξ| > 2

and let
v̂(ξ) = ζηv̂(ξ) + (1− ζη)v̂(ξ) =: v̂1(ξ) + v̂2(ξ).

For the high frequency part, we compute, using Plancherel’s identity, and the fact
that |y| > R

4 on the support of 1− χR:

|((χRu
+)−, v2)| = |(χRu

+, v−2 )| = |((1 − χR)u
+, v−2 )| .

1

R
‖u+‖L2‖〈y〉v−2 ‖L2
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and, by construction and Plancherel’s identity,

‖〈y〉v−2 ‖2L2 .

∫
|v̂−2 |2 + |∂ξ v̂−2 |2 .

1

η2

[∫
|v̂|2 + |∂ξ v̂|2

]
.

‖〈y〉v‖2L2

η2
.

We estimate, for the low frequency part,

|((χRu
+)−, v1)| = ‖u+‖L2‖v1‖L2 . ‖u+‖L2‖v̂1‖L2

and

‖v̂1‖2L2 .

∫

|ξ|62η
|v̂|2 . η‖v̂‖2L∞ . η‖v‖2L1 . η‖〈y〉v‖2L2 .

The collection of above bounds and the choice η = 1

R
2
3

yield

∣∣((χRu
+)−, v)

∣∣ .
[

1

ηR
+

√
η

]
‖u+‖L2‖〈y〉v‖L2 .

1

R
1
3

‖u+‖L2‖〈y〉v‖L2 ,

which proves (D.15). �

Appendix E. Estimates on the cut-off functions

This Appendix is devoted to the derivation of various estimates related to the
localization of mass and kinetic energy which are used throughout Section 5. Recall
(5.9), (5.10).

ζ estimates. We recall the definition of the cut-off functions, see (5.10), (5.13). The
function Ψ1 is smooth enough, non increasing, with

Ψ1(z1) =

∣∣∣∣∣∣

1 for z1 6
1
4

(1− z1)
10 for 1

2 6 z1 6 1
0 for z1 > 1.

.

Furthermore, Φ1 = Ψ1 + b(1−Ψ1), and

φ1(y1) = Φ1

(
y1

R(1− b)

)
, φ(x) = φ1

(
x− x1

λ1(1− β1)

)
.

Then, by construction, b∂bΦ1 = Φ1 −Ψ1 ≤ Φ1, and there holds the global control

|(1 − z1)∂z1Φ1| . Φ1. (E.1)

Then, since, by (5.11), ζ = β1 + (1− β1)(1 − φ), we have

|∂xζ| . (1− β1)|∂xφ| .
1

R
, |b∂z1Φ1| . b . Φ1. (E.2)

We estimate

|∂y1φ1| .
1

R
, (E.3)

and

‖∂2y1φ1‖L1 .
1

R
, ‖∂3y1φ1‖L1 .

1

R2

from which, using (D.3),

‖[|D 1
2 , ∂y1φ1]‖L2→L2 .

1

R
3
2

. (E.4)

More generally,

‖Φ1‖W k,∞
z1

. 1, k = 2, 3 (E.5)
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and hence, from φ1 = Φ1

(
y1

R(1−b)

)
and (D.9),

‖Dk[Π±, φ1]g‖L2 .
‖g‖L2

Rk
, k = 1, 2 (E.6)

‖D[Π±, ∂y1φ1]g‖L2 .
1

R2
‖g‖L2 (E.7)

Next we compute

∂tζ + ∂xζ = (β1)tφ1 − (1− β1)(∂tφ1 + ∂xφ1) = (1− β1)W

(
t,

y1
R(1− b)

)
, (E.8)

with

W (t, z1) =
(β1)t
1− β1

Φ1 −
bt
b
(Φ1 −Ψ1)−

1− (x1)t
λ1(1− β1)(1− b)R

∂z1Φ1

−
(
−(λ1)t

λ1
+

(β1)t
1− β1

+
bt

1− b
− Rt

R

)
z1∂z1Φ1

=
(β1)t
1− β1

Φ1 −
bt
b
(Φ1 −Ψ1) +

λ1Rtz1 − 1

λ1R
∂z1Φ1 +

b

λ1(1− b)R
∂z1Φ1

+
(x1)t − β1

λ1(1− β1)(1− b)R
∂z1Φ1 −

(
−(λ1)t

λ1
+

(β1)t
1− β1

+
bt

1− b

)
z1∂z1Φ1 . (E.9)

We now use the bounds (5.25), (5.34), (5.20) and b . φ1 to derive∣∣∣∣
(β1)t
1− β1

∣∣∣∣+
∣∣∣∣
(λ1)t
λ1

∣∣∣∣+
∣∣∣∣
(x1)t − β1
1− β1

∣∣∣∣+ |bt| .
b

t
.
φ1
t

and hence, we obtain

|∂tζ + ∂xζ| .
1− β1
t

φ1 + (1− β1) |1− λ1Rtz1|
|∂z1Φ1|
R

. (E.10)

Then we compute

Rt =
(x2)t − (x1)t
λ1(1− β1)

+R

[
−(λ1)t

λ1
+

(β1)t
1− β1

]

=
β2 − β1
λ1(1− β1)

+O(b)

and hence

1− λ1Rtz1 = 1−
[
β2 − β1
1− β1

+O(b)

]
z1 = 1− z1 +O(bz1).

Injecting this into (E.10) with (E.1) and b . φ1, R ∼ t, finally yields the fundamen-
tal estimate,

|∂tζ + ∂xζ| .
1− β1
t

φ1 . (E.11)

Next we estimate the first three derivatives of
√
φ1 with respect to y1. Since Φ1 =

b+ (1− b)Ψ1, with Ψ1 non increasing, we have

Φ1(z1) ≥
1

211
, z1 ≤

1

2
,

hence ∂kz1
√
Φ1(z1) are bounded for k = 1, 2, 3 and z1 ≤ 1

2 . As for 1
2 ≤ z1 ≤ 1,

√
Φ1(z1) =

(
b+ (1− b)(1− z1)

10
) 1

2 ,

hence again ∂kz1
√
Φ1(z1) are bounded for k = 1, 2, 3. Consequently,

‖∂ky1
√
φ1‖L1 .

∫
(1−b)R

4
6|y1|6(1−b)R

1
Rk dy1 .

1
Rk−1 , k = 1, 2, 3 ,



112 PATRICK GÉRARD, ENNO LENZMANN, OANA POCOVNICU, AND PIERRE RAPHAËL

and thus, from (D.3), (D.5),

‖[|D| 12 ,
√
φ1]f‖L2 .

1√
R
‖f‖L2 , ‖[|D|,

√
φ1]f‖L2 .

1

R
‖f‖L2 (E.12)

‖|D| 12 [|D| 12 ,
√
φ1]f‖L2 .

1√
R
‖|D| 12 f‖L2 +

1

R
‖f‖L2 . (E.13)

According to (5.72), consider now

ψ =
∂tζ + ∂xζ√

φ
, ψ(x) = ψ1(y1)

then from (E.11):

|ψ| . (1− β1)

t

√
φ. (E.14)

In order to estimate the first two derivatives of ψ1 with respect to y1, we use (E.8),
(E.9). We already noticed that the first three derivatives of

√
Φ1(z1) are bounded.

By a similar argument, the first two derivatives of Ψ1/
√
Φ1 are bounded. Conse-

quently, using again R ∼ t,

∂y1ψ1 = O

(
1− β1
t2

1R(1−b)
4

6y16R(1−b)

)
, ∂2y1ψ1 = O

(
1− β1
t3

1R(1−b)
4

6y16R(1−b)

)
.

Hence

‖∂y1ψ1‖L1 .
1− β1
t

, ‖∂2y1ψ1‖L1 .
1− β1
t2

.

We conclude, from (D.3), that

‖[|D| 12 , ψ1]‖L2→L2 .
1− β1

t
3
2

. (E.15)

θ estimates. Recall from (5.13), (5.14):

θ(t, x) = θ(t, y1) =
1

λ1
Ψ1(z1) +

1

λ2
(1−Ψ1)(z1).

Hence

|∂y1θ1| .
|λ2 − λ1|

R
111 (1−b)R

2
6y16(1−b)R

, (E.16)

and therefore

|∂xθ| .
|λ1 − λ2|
(1− β1)R

. (E.17)

Next

[Π±, θ1] = [Π±,
1

λ1
Ψ1 +

1

λ2
(1−Ψ1)] =

λ2 − λ1
λ1λ2

[[Π±,Ψ1]

and hence from (D.9):

∥∥∂y1 [Π±, θ1]g
∥∥
L2 .

|λ2 − λ1|
R

‖g‖L2 . (E.18)

We now estimate more carefully:

(∂t + ∂x)θ = −(λ1)t
λ21

Ψ1 −
(λ2)t
λ22

(1−Ψ1)

+

(
1

λ1
− 1

λ2

)[
β1 − (x1)t

(1− β1)λ1R(1− b)
+

1

λ1R(1− b)

]
∂z1Ψ1

+

(
1

λ1
− 1

λ2

)[
−(λ1)t

λ1
+

(β1)t
1− β1

− Rt

R
+

bt
1− b

]
z1∂z1Ψ1
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and hence

(∂t + ∂x)θ = O

(
1

t

)
. (E.19)

Appendix F. Proof of Proposition 5.1

This Appendix is devoted to the proof of Proposition 5.1. We recall the coercivity
of the linearized Szegő operator which we will use in the following form: there exists

a universal constant 0 < c0 < 1 such that for u ∈ H
1
2
+,

(L+u, u) > c0‖u‖2
H

1
2
+

− 1

c0

[
(u, ∂yQ

+)2 + (u, iQ+)2
]
. (F.1)

Proof of Proposition 5.1. We define the following functionals:

G1(ε) =

∫
||D| 12 ε+1 |2dy1 +

1

1− β1

∫
||D| 12 ε−1 |2dy1 + λ1‖ε1‖2L2 − (2|Φ(1)|2ε1 + (Φ(1))2ε1, ε1)

G0(ε) = β1

∫
||D| 12 ε+1 |2dy1 + (1− β1)G1(ε)

where

Φ(1)(y1) = V1(P, y1) +
1

µ
1
2

V2(P, y2)eiΓ.

Then the full functional G is exactly given by:

G(ε) =
1

2

[
1

λ1
G0(ε, ε) − (ζDε, ε) + ((θ − 1)ε, ε)

]
(F.2)

− 1

4

[∫
(|ε+Φ|4 − |Φ|4)− 4(ε,Φ|Φ|2)− 2(2|Φ|2ε+Φ2ε, ε)

]

The heart of the proof is the derivation of a suitable coercivity for G0.

Step 1: Splitting and coercivity for the first bubble. Let χℓ(y1) = χ(0)(y1R ), where

χ(0) is a smooth cut off function satisfying:

χ(0)(y1) =

{
1 for y1 6

1
10

0 for y1 >
1
5

.

We now split the L2 norm:

∫
|ε1|2dy1 =

∫
|ε+1 |dy1 +

∫
|ε−1 |2dy1 =

∫
|χlε

+
1 |2dy1 +

∫
(1− χ2

l )|ε+1 |2dy1 +
∫

|ε−1 |2dy1

=

∫
|(χlε

+
1 )

+|2dy1 +
∫

|(χlε
+
1 )

−|2dy1 +
∫

(1− χ2
l )|ε+1 |2dy1 +

∫
|ε−1 |2dy1.
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We now split the kinetic energy according to (D.13):
∫

||D| 12 ε+1 |2dy1 =

∫
χ2
l ||D| 12 ε+1 |2dy1 +

∫
(1− χ2

l )||D| 12 ε+1 |2dy1

=

∫ ∣∣∣∣
[
|D| 12 (χlε

+
1 )
]+∣∣∣∣

2

dy1 +

∫ ∣∣∣∣
[
|D| 12 (χlε

+
1 )
]−∣∣∣∣

2

dy1

+

∫
(1− χ2

l )||D| 12 ε+1 |2dy1

+ O

(
‖ε1‖2L2 + ‖|D| 12 (χlε

+
1 )‖2L2√

R

)

We now decompose the potential energy. We first estimate:

(2|Φ(1)|2ε1+(Φ(1))2ε1, ε1) = (2|Φ(1)|2ε+1 +(Φ(1))2ε+1 , ε
+
1 )+O

(
‖(Φ(1))2ε−1 ‖L2‖ε1‖L2

)
.

We now estimate from |Vj| . 1
〈yj〉 and Sobolev:

∫
|V1|4|ε−1 |2dy1 .

∫ |ε−1 |2
〈y1〉2

dy1 . ‖ε−1 ‖2L4 . ‖ε−1 ‖L2‖ε−1 ‖Ḣ 1
2
. ‖ε1‖L2‖ε−1 ‖Ḣ 1

2

∫
|V2|4|ε−1 |2dy1 .

∫ |ε−1 |2
〈y2〉4

dy1 .
√
b‖ε1‖L2‖ε−1 ‖Ḣ 1

2

We now develop the potential term:
∫

|Φ(1)|2|ε+1 |2dy1 =

∫
|Φ(1)|2

[
χ2
l |ε+1 |2 + (1− χ2

l )|ε+1 |2
]
dy1

=

∫
|Qβ1 |2|χlε

+
1 |2dy1 +O

( | log η|4‖ε1‖2L2

R

)

+

∫
|Φ(1)|2(1− χ2

l )|ε+1 |2dy1

=

∫
|Q+|2|χlε

+
1 |2dy1 +O

([ | log η|4
R

+ (1− β1)
1
2 | log(1− β1)|

1
2

]
‖ε1‖2L2

)

+

∫
|Φ(1)|2(1− χ2

l )|ε+1 |2dy1

by construction of V1, the support properties of χl and the rough bound

‖Qβ1 −Q+‖L∞ . ‖Qβ1 −Q+‖H1 . (1− β1)
1
2 | log(1− β1)|

1
2 .

We now use (D.14) and |Q+| . 1
〈y1〉 which ensure

∫ |(χlε
+
1 )

−|2
〈y1〉2

dy1 .
1

R
2
3

‖ε1‖2L2 (F.3)

to conclude:
∫

|Φ(1)|2|ε+1 |2dy1 =
∫

|Q+|2
∣∣∣
[
(χlε

+
1 )
]+∣∣∣

2
dy1 +O

([
1

R
2
3

+ (1− β1)
1
2 | log(1− β1)|

1
2

]
‖ε1‖2L2

)

+

∫
|Φ(1)|2(1− χ2

l )|ε+1 |2dy1.
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We argue similarly for the second potential term and obtain the first decomposition:

G1(ε) = (L+(χlε
+
1 )

+, (χlε
+
1 )

+) + (λ1 − 1)

∫
|(χℓε

+
1 )

+|2dy1 (F.4)

+
1

1− β1

∫
||D| 12 ε−1 |2dy1 +

∫
||D| 12 (χlε

+
1 )

−|2dy1 + λ1

∫
|(χlε

+
1 )

−|2dy1 + λ1

∫
|ε−1 |2dy1

+

∫
(1− χ2

l )||D| 12 ε+1 |2dy1 + λ1

∫
(1− χ2

l )|ε+1 |2dy1

− 2

∫
|Φ(1)|2(1− χ2

l )|ε+1 |2 − Re

∫
(Φ(1))2(1− χ2

l )(ε
+
1 )

2

+ O

([
1√
R

+ (1− β1)
1
2 | log(1− β1)|

1
2

]
‖ε1‖2L2 + ‖ε1‖

3
2

L2‖|D| 12 ε−1 ‖
1
2

L2 +
1√
R
‖|D| 12 (χlε

+
1 )‖2L2

)
.

From the choice of orthogonality conditions (5.6) we have:

0 = (ε1, Qβ1)
2 = (ε+1 , Q

+)2 +O((1 − β1)
1
2 | log(1− β1)|

1
2 ‖ε1‖2L2)

= (χlε
+
1 , Q

+)2 +O

([
(1− β1)

1
2 | log(1− β1)|

1
2 +

1

R

]
‖ε1‖2L2

)

= ((χlε
+
1 )

+, Q+)2 +O

([
(1− β1)

1
2 | log(1− β1)|

1
2 +

1

R

]
‖ε1‖2L2

)
,

and similarly:

0 = (ε1, i∂y1Qβ1)
2 = ((χlε

+
1 )

+, i∂y1Q
+)2+O

([
(1− β1)

1
2 | log(1− β1)|

1
2 +

1

R

]
‖ε1‖2L2

)
.

We now apply the coercivity estimate (F.1) to (χlε
+
1 )

+ and obtain from (F.4) the
control:

G1(ε) > c0

[
‖|D| 12 (χlε

+
1 )‖2L2 + ‖χlε

+
1 ‖2L2

]
+

1

(1− β1)

∫
||D| 12 ε−1 |2 (F.5)

+ (λ1 − 1)

∫
|(χℓε

+
1 )

+|2dy1 + λ1

∫
|ε−1 |2 +O

([
(1− β1)

1
2 | log(1− β1)|

1
2 +

1√
R

]
‖ε1‖2L2

)

+

∫
(1− χ2

l )||D| 12 ε+1 |2 + λ1

∫
(1− χ2

l )|ε+1 |2

− 2

∫
|Φ(1)|2(1− χ2

l )|ε+1 |2 − Re

∫
(Φ(1))2(1− χ2

l )(ε
+
1 )

2

+ O
(
‖ε1‖

3
2

L2‖|D| 12 ε−1 ‖
1
2

L2 +
1√
R
‖|D|1/2(χℓε

+
1 )‖2L2

)

Step 2: Coercivity for the second bubble. We now consider χR(y2) = χ(1)(y2R ),

where χ(1) is a smooth cut off function satisfying

χ(1)(y2) =

{
0 for y2 6 −3
1 for y2 > −2,

and let

G2(ε) : = b

∫
χ2
r||D| 12 ε+1 |2dy1 + λ1

∫
|χrε

+
1 |2 − 2

∫
|Φ(1)|2χ2

r |ε+1 |2dy1

−Re

∫
(Φ(1))2χ2

r(ε
+
1 )

2dy1.
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G2 will be useful in finding a lower bound for G1. We observe from the support
property of χl, χr and by construction of Vj the bounds:
∣∣∣∣2
∫

|Φ(1)|2(1− χ2
l − χ2

r)|ε+1 |2dy1 − Re

∫
(Φ(1))2(1− χ2

l − χ2
r)(ε

+
1 )

2dy1

∣∣∣∣ .
1

R2

∫
|ε1|2

and therefore rewrite (F.5):

G1(ε) > G2(ε) + c0

[
‖|D| 12 (χlε

+
1 )‖2L2 + ‖χlε

+
1 ‖2L2

]
+

1

(1− β1)

∫
||D| 12 ε−1 |2dy1 (F.6)

+ (λ1 − 1)

∫
|(χℓε

+
1 )

+|2dy1 + λ1

∫
|ε−1 |2dy1 +

∫
(1− χ2

l − bχ2
r)||D| 12 ε+1 |2dy1

+ λ1

∫
(1− χ2

l − χ2
r)|ε+1 |2dy1

+ O

([
(1− β1)

1
2 | log(1− β1)|

1
2 +

1√
R

]
‖ε1‖2L2 + ‖ε1‖

3
2

L2‖|D| 12 ε−1 ‖2L2 +
‖|D| 12 (χℓε

+
1 )‖2L2√

R

)
.

We renormalize to the y2 variable using the formula

ε1(y1) =
eiΓ√
µ
ε2

(
y1 −R

bµ

)
=
eiΓ√
µ
ε2(y2)

and compute:

µG2(ε) = b
[ ∫

χ2
r||D| 12 ε+2 |2dy2 + λ2

∫
|χrε

+
2 |2dy2 − 2

∫
|Φ(2)|2χ2

r|ε+2 |2dy2

− Re

∫
(Φ(2))2χ2

r(ε
+
2 )

2dy2

]
.

where

Φ(2)(y2) = µ
1
2V1(P, y1)e−iΓ + V2(P, y2).

We estimate using (D.13):
∫

(1− χ2
l )||D| 12 ε+2 |2dy2 =

∫
(1− χ2

l − χ2
r)||D| 12 ε+2 |2dy2 +

∫
||D| 12 (χrε

+
2 )|2dy2

+O

(
‖ε+2 ‖2L2 + ‖|D| 12 (χrε

+
2 )‖2L2√

R

)

and estimate as for the first bubble the potential energy to obtain:

µG2(ε) = b

[
(L+(χrε

+
2 )

+, (χrε
+
2 )

+) +

∫
||D| 12 (χrε

+
2 )

−|2dy2 + λ2

∫
|(χrε

+
2 )

−|2dy2
]

+ b(λ2 − 1)

∫
|(χrε

+
2 )

+|2dy2

+ bO

([
1√
R

+ (1− β2)
1
2 | log(1− β2)|

1
2

]
‖ε2‖2L2 +

‖|D| 12 (χrε
+
2 )‖2L2√

R

)
.

We estimate using the orthogonality conditions (5.6):

((χrε
+
2 )

+, Q+)2 + ((χrε
+
2 )

+, i∂yQ
+)2 .

[
(1− β2)

1
2 | log(1− β2)|

1
2 +

1

R

]
‖ε2‖2L2
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and hence conclude using the coercivity (F.1):

G2(ε) >
bc0
µ

[
‖|D| 12 (χrε

+
2 )‖2L2 +

∫
χ2
r |ε+2 |2dy2

]
+
b(λ2 − 1)

µ

∫
|(χrε

+
2 )

+|2dy2

+
b

µ
O

([
1√
R

+ (1− β2)
1
2 | log(1− β2)|

1
2

]
‖ε2‖2L2 +

‖|D| 12 (χrε
+
2 )‖2L2√

R

)
.(F.7)

Step 3: Coercivity of G0. We sum (F.6) and (F.7) and conclude:

G1(ε) > c0

[
‖|D| 12 (χlε

+
1 )‖2L2 + ‖χlε1‖2L2

]
+

1

(1− β1)

∫
||D| 12 ε−1 |2dy1

+ (λ1 − 1)

∫
|(χℓε

+
1 )

+|2dy1 + λ1

∫
|ε−1 |2dy1

+

∫
(1− χ2

l − bχ2
r)||D| 12 ε+1 |2dy1 +

∫
(1− χ2

l − χ2
r)|ε+1 |2dy1

+ O

([
(1− β1)

1
2 | log(1− β1)|

1
2 +

1√
R

]
‖ε1‖2L2 + ‖ε1‖

3
2

L2‖|D| 12 ε−1 ‖
1
2

L2 +
‖|D| 12 (χℓε

+
1 )‖2L2√

R

)

+ bc0

[
‖|D| 12 (χrε

+
2 )‖2L2 +

∫
χ2
r|ε+2 |2dy2

]
+ b(λ2 − 1)

∫
|(χrε

+
2 )

+|2dy2

+ bO

([
1√
R

+ (1− β2)
1
2 | log(1− β2)|

1
2

]
‖ε2‖2L2 +

‖|D| 12 (χrε
+
2 )‖2L2√

R

)
.

which after renormalization to the y1 variable implies:

G1(ε) > c0

[∫
(χ2

l + bχ2
r)||D| 12 ε+1 |2dy1 + ‖ε1‖2L2

]
+

1

1− β1

∫
||D| 12 ε−1 |2dy1(F.8)

+

∫
(1− χ2

l − bχ2
r)||D| 12 ε+1 |2dy1 + Err(ε),

where

Err(ε) = c0

( 1
µ
− 1
)
‖χrε

+
1 ‖2L2 + c0(λ1 − 1)‖(χℓε

+
1 )

+‖2L2 +
λ2 − 1

µ
‖(χrε

+
1 )

+‖2L2

+ (λ1 − 1)‖ε−1 ‖2L2 +O
(
(1− β1)

1
2 | log(1− β1)|

1
2 + (1− β2)

1
2 | log(1− β2)|

1
2 +

1√
R
)‖ε1‖2L2

+O

(
‖|D| 12 (χℓε

+
1 )‖2L2 + b‖|D| 12 (χrε

+
1 )‖2L2√

R

)

+O
(
‖ε1‖

3
2

L2‖|D| 12 ε−1 ‖
1
2

L2

)
. (F.9)

Equivalently, this yields the lower bound:

G0(ε) = β1

∫
||D| 12 ε+1 |2dy1 + (1− β1)G1

> c0(1− β1)‖ε1‖2L2 +

∫ [
β1 + (1− β1)(1− φ0 + c0φ0)

]
||D| 12 ε+1 |2dy1

+

∫
||D| 12 ε−1 |2dy1 + (1− β1)Err(ε),

with

φ0 = χ2
l + bχ2

r. (F.10)
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We now observe from the support property of χr, χl, φ1 that φ1 > φ0 and since
c0 < 1 and 1− β1 > 0, we have

β1 + (1− β1)(1 − φ0 + c0φ0) > β1 + (1− β1)(1− φ1 + c0φ1).

We therefore have obtained the coercivity:

G0(ε) > c0(1− β1)

∫
|ε1|2 (F.11)

+

∫ [
β1 + (1− β1)(1 − φ1 + c0φ1)

]
||D| 12 ε+1 |2

+

∫
||D| 12 ε−1 |2 + (1− β1)Err(ε).

Step 4: Control of the kinetic momentum and coercivity of G. We now consider
the full functional given by (F.2):

G(ε) = 1

2

[
1

λ1
G0(ε, ε) − (ζDε, ε) + ((θ − 1)ε, ε)

]
+N (ε)

N (ε) =
1

4

[∫
(|ε+Φ|4 − |Φ|4)− 4(ε,Φ|Φ|2)− 2(2|Φ|2ε+Φ2ε, ε)

]
.

The cubic and higher order terms are easily estimated using the rough bound
‖ε‖H1 ≪ 1:

N (ε) .

∫
|ε|4 + C|ε3||Φ|dx . ‖ε‖L∞(‖ε‖L∞ + ‖Φ‖L∞)‖ε‖2L2 . ‖ε‖H1(‖ε‖H1 + 1)‖ε‖2L2

6
c0
10

‖ε‖2L2 =
c0
10

(1− β1)‖ε1‖2L2 .

The L2 error is estimated from |µ| ≪ 1:

|((θ − 1)ε, ε)| . |µ|‖ε‖2L2 6
c0
10

(1− β1)‖ε1‖2L2 .

We therefore conclude from (F.11):

2G(ε) >
c0(1− β1)

λ1

[∫
|ε1|2dy1 +

∫
φ1||D| 12 ε+1 |2dy1

]
+

1− β1
λ1

Err(ε)

+
1

λ1

[∫
ζ1||D| 12 ε+1 |2 +

1

λ1

∫
||D| 12 ε−1 |2dy1 − (ζ1Dε1, ε1)

]
.

We now estimate the kinetic momentum term. We first compute from (5.12):
∫
ζ1||D| 12 ε+1 |2 − (ζ1Dε

+
1 , ε

+
1 )

=

∫
(1− (1− β1)φ1)||D| 12 ε+1 |2 − ((1− (1− β1)φ1)Dε

+
1 , ε

+
1 )

= −(1− β1)

[∫
φ1||D| 12 ε+1 |2 − (φ1Dε

+
1 , ε

+
1 )

]

We then estimate using (E.12) and (D.12):

(φ1Dε
+
1 , ε

+
1 ) = (φ1|D|ε+1 , ε+1 ) = (

√
φ1|D|ε+1 ,

√
φ1ε

+
1 )

= ([
√
φ1, |D|]ε+1 + |D|(

√
φ1ε

+
1 ),
√
φ1ε

+
1 ) =

∫
||D| 12

√
φ1ε

+
1 |2 +O

(
1

R
‖ε1‖2L2

)

=

∫
φ1||D| 12 ε+1 |2 +O

(
1

R
‖ε1‖2L2 +

1√
R

[
‖ε1‖2L2 + ‖

√
φ1|D| 12 ε+1 ‖2L2

])
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which yield thanks to the smallness of 1√
R

:
∫
ζ1||D| 12 ε+1 |2dy1 − (ζ1Dε

+
1 , ε

+
1 ) > −c0(1− β1)

10

[ ∫
φ1||D| 12 ε+1 |2dy1 +

∫
|ε1|2dy1

]
.

similarly using (D.1):

−(ζ1Dε
−
1 , ε

−
1 ) = (β1 + (1− β1)φ1|D|ε−1 , ε−1 )

= β1‖|D| 12 ε−1 ‖2L2 + (1− β1)O

(
‖|D| 12 ε−1 ‖2L2 +

‖ε1‖2L2

R

)

>
1

2
‖|D| 12 ε−1 ‖2L2 − c0

10
(1− β1)‖ε1‖2L2 .

For the crossed terms, we estimate from (D.9):

|(ζ1Dε−1 , ε+1 )|+ |(ζ1,Dε+1 , ε−1 )| = (1− β1)|(φ1Dε−1 , ε+1 )|+ |(φ1,Dε+1 , ε−1 )|

. (1− β1)
[
|(ε−1 ,D[Π+, φ1]ε

+
1 )|+ |(ε+1 ,D[Π−, φ1]ε

−
1 )|
]
.

1− β1
R2

‖ε1‖2L2

The collection of above estimates yields the lower bound:

G(ε) > c0(1− β1)

2λ1

[∫
|ε1|2 +

∫
φ1||D| 12 ε+1 |2

]
+

∫
||D| 12 ε−1 |2 +

1− β1
λ1

Err(ε).
(F.12)

Finally, we need to treat the error Err(ε) defined in (F.9). Most of the terms can
be bounded using the hypothesis

|λ1 − 1|+ |λ2 − 1|+ |µ− 1|+ |1− β1|+ |1− β2|+
1

R
≪ 1.

We turn to the last term in (F.9) and by Young’s inequality obtain that

C‖ε1‖
3
2

L2‖|D| 12 ε−1 ‖
1
2

L2 = C
(√ c0

3λ1C
‖ε1‖L2

) 3
2
(√3λ1C

c0
‖|D| 12 ε−1 ‖L2

) 1
2

6
c0
4λ1

‖ε1‖2L2 +
C(3λ1C)3

4c30
‖|D| 12 ε−1 ‖2L2 .

Thus, the last term in 1−β1

λ1
Err(ε) has a lower bound:

−c0(1− β1)

4λ1
‖ε1‖2L2 −

C(3λ1C)3(1− β1)

4c30
‖|D| 12 ε−1 ‖2L2 ,

Since 0 < 1− β1 ≪ 1, it can be absorbed by the main terms in (F.12) to obtain:

G(ε) >
c0(1− β1)

5λ1

[∫
|ε1|2 +

∫
φ1||D| 12 ε+1 |2

]
+

1

λ1

∫
||D| 12 ε−1 |2

which concludes the proof of Proposition 5.1. �
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