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We present an effective-medium model for a subwavelength periodically patterned metallic layer, its cavities

being filled with a nonlinear dielectric material, which accounts for both the linear and second-order behavior.

The effective nonlinear susceptibility for the homogenized layer is driven by the nonlinearity of the dielectric

material and by the geometrical parameters, thus leading to much higher susceptibility than existing materials.

This leads to a huge enhancement of nonlinear processes when used together with resonances. Furthermore,

multiple resonances are taking place in the metallic cavities and we investigate the mode-matching situations for

frequency conversion processes and show how it enhances further their efficiency.

DOI: 10.1103/PhysRevA.94.033831

I. INTRODUCTION

Metamaterials are artificial materials, obtained with sub-

wavelength patterned elements, that exhibit effective electro-

magnetic properties that depend not only on the material,

but also on the geometry. They have given rise to original

and unprecedented behaviors in both linear and nonlinear

regimes, such as optical cloaking, phase-matched negative

index, or left-handed metamaterials [1–3]. Subwavelength

patterned elements can behave as nanoantennas able to funnel

the incoming light and concentrate it in a small volume,

which is extremely appealing in the context of nonlinear

optics [4–8]. Indeed, optical nanoantennas can provide huge

enhancement of the electric field and even if the volume at stake

is small compared to the whole device, nonlinear effects can

be boosted. Most of the nanoantennas reported in the literature

are metallic, as they can confine the field more easily than

dielectric antenna. So the surface nonlinearities of the metal

itself are enhanced [5,9–11], even if dielectric materials can

provide much-higher-volume nonlinearities.

To establish a nonlinear metamaterial model from a pat-

terned material, one has to exhibit the influence of its geometri-

cal parameters on the linear and nonlinear optical properties. It

can be done, for instance, with the Maxwell-Garnett formalism

[12], through field averaging [13] or by retrieving it from rig-

orous computations or experiments [14]. Once it is described

as an effective layer, multiple harmonic resonances can be

targeted and exploited to have each one of the wavelengths

involved in the frequency conversion process resonant. This

multiresonance situation is referred to as a mode-matching sit-

uation where several cavity modes are excited during the whole

nonlinear process. Recently, several metallic mode-matching

nanostructures have been suggested to further improve the

efficiency of nonlinear effects based on either plasmonic

nanoantennas [15,16] or phase-array sources [17].

In this paper we report on mode matching in a high-

susceptibility metasurface for frequency conversion. The

investigated structure consists of a patterned metallic layer,

*patrick.bouchon@onera.fr

filled with a nonlinear dielectric, that melts the high-

confinement properties of metallic nanoantennas and the high

nonlinear susceptibility of chosen dielectric materials. One

of the main differences from previously studied plasmonic

structures lies in the monitoring of the nonlinear response

by the material filling the holes in the metallic layer rather

than the metallic surface generation itself. It additionally

exhibits multiple Fabry-Pérot resonances that can be used for

mode matching. These harmonic resonances are studied in

Sec. II. Then Sec. III presents an effective-medium model that

fairly accounts for both linear and nonlinear behaviors of the

structure. The effective linear and nonlinear optical properties

are found to be mainly determined by the aperture ratio.

Section IV deals with the ways to achieve mode matching in

the case of second-harmonic generation (SHG) and difference

frequency generation (DFG), allowing us to reach resonantly

enhanced conversion efficiency. These results are scalable to

large spectral ranges and can be adapted in the context of

metasurfaces based on metal-insulator-metal antennas.

II. LINEAR RESPONSE

We aim at describing both linear and nonlinear behaviors

of a subwavelength periodic metal-dielectric layer where the

dielectric inclusions display a second-order nonlinear suscep-

tibility. Two configurations of this system are considered, as

shown in Fig. 1. In the first case, the metal-dielectric layer is

placed upon a metallic substrate, forming a grating of grooves

[Fig. 1(a)], and acts as a reflection device. In the other case, the

metal-dielectric layer is standing in air, forming a grating of

slits [Fig. 1(b)]. The permittivity of the metal ǫm is considered

identical in the layer and the substrate, while the dielectric

inclusions bear a permittivity ǫd and a nonlinear susceptibility

tensor χ
(2)
d that contains only χ

(2)
iii terms. The incoming wave

is normally incident and transverse magnetic (TM) polarized,

at the wavelength λ with a wave vector k0 = 2π/λ. The period

d is a subwavelength and the grooves or slits have a height h

and a width w.

The nonlinear material, gallium arsenide, is described by

a Sellmeier formula, meaning it is lossless in the spectral

region of interest 2–10 μm, sufficiently far from the absorption
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FIG. 1. (a) Periodic grating (period d) of metallic grooves of

width w and height h, filled with a nonlinear dielectric acting

in reflection (permittivity ǫd and nonlinear susceptibility χ
(2)
d ).

(b) Periodic grating of metallic slits filled with a nonlinear dielectric,

with parameters similar to those for the reflecting case and acting

in transmission. The waves are normally incident and TM polarized

with wave vectors k lying in the xOz plane. (c) Reflectivity for

the reflection resonator and (d) transmissivity for the transmission

one, as functions of the wavelength. The parameters are d = 1 μm,

w = 200 nm, and h = 500 nm for the reflection case and h = 1 μm

for the transmission case.

wavelengths:

ǫd(ω) = a0 +
3

∑

l=1

al

ωl − ω
, (1)

where ω1, ω2, and ω3 correspond to λ1 = 0.443 μm, λ2 =
0.875 μm, and λ3 = 36.9 μm, respectively, and a0 = 5.373,

a1 = 27.84, a2 = 0.031, and a3 = 0.001 [18]. The metal,

which is gold, is described by a Drude model with a plasma

frequency at λp = 159 nm:

ǫm(ω) = 1 −
ω2

p

ω2 + iŴω
, (2)

where Ŵ = γωp = 0.0048ωp [19]. The losses are induced by

the two metallic surfaces and become higher as the width gets

smaller.

Numerical studies show that the optical response of the

resonator is a consequence of the guiding of the light inside

the slits forming a subwavelength cavity. To determine its

resonant wavelengths, the normalized propagation constant of

the fundamental mode
√

ǫTM of the plane waveguide set by

the two metallic surfaces is deduced from the equation [20]

tanh

(

k0

√
ǫTM − ǫd

w

2

)

= −
ǫd

ǫm

√

ǫTM − ǫm

ǫTM − ǫd

. (3)

After some tedious calculations, this equation can be solved at

the first order since |ǫd| ≪ |ǫm|, and ǫTM is written as

ǫTM = ǫd

(

1 +
2δ

w
−

ǫd

ǫm

)

, (4)

where δ = iλ/2π
√

ǫm is the metal skin depth. The incoming

light on the structure is either reflected or funneled into the slit

[21,22], so the energy in the metal-dielectric layer is contained

in the dielectric inclusions.

As a consequence, the linear response of both structures

shows Fabry-Pérot resonances leading to reflectivity dips and

transmissivity peaks [see Figs. 1(c) and 1(d)], at wavelengths

determined by solving the phase condition inside the cavity

λm =
2
√

ǫTMh∗

m − φ/2π
, (5)

where mǫN
∗ and φ is the phase of the bottom reflection

coefficient. It is equal to zero for the transmission situation

and to π for the reflection case. To take into account the

penetration of the propagating mode in the bottom metal

in the asymmetric case, an equivalent height h∗ = h + δ is

introduced in the reflection case and h∗ = h in the transmission

one. At resonance, the electric-field distributions inside the

slits correspond to the establishment of stationary waves

inside the guiding slits (see Fig. 2). They are given in

the incidence plane at wavelengths corresponding to the

normalized harmonic resonances. Exaltation is observed in

both reflection and transmission, promising interesting results

for nonlinear purposes. The position of the amplitude nodes

is predicted by the order of the considered harmonics as in a

classical Fabry-Pérot interferometer. Such a description of the

system is sustained by the subwavelength feature that implies

the funneling effect. Plus, the refractive index of the dielectric

filling the cavity is high enough to induce an optical path that

allows the presence of stationary waves in spite of the thinness

of the component compared to the wavelength.

III. EFFECTIVE-MEDIUM MODEL

The classical effective-medium theory [23] cannot be

applied here because the electromagnetic fields are nearly zero

inside the metallic region. Energy-conservation considerations

are rather used in our case as it was previously suggested for

033831-2
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FIG. 2. Electric-field maps inside the slits filled with GaAs for (a) and (b) reflection and (c)–(f) transmission resonators. The maps show

the absolute value of the electric field in the incident plane xOz normalized to the incoming one (normally incident TM-polarized plane wave).

They are computed at resonant normalized wavelengths λ/λ1, with λ1 being the highest resonant wavelength. The parameters are w = 200 nm,

d = 1 μm, and (a) and (b) h = 500 nm and (c)–(f) h = 1 μm.

the transmission device [see Fig. 3(b)]. It has been described

as a metamaterial for perfect metals and involved an effective

thickness [24,25]. Here we aim at taking a real lossy metal into

account without considering any influence of the thickness h

FIG. 3. (a) Reflection case of periodic grating (period d) of

metallic grooves of width w and height h, filled with a nonlinear

dielectric (permittivity ǫd and nonlinear susceptibility χ
(2)
d ). The

waves are normally incident and TM polarized with wave vectors

k lying in the xOz plane. Shown on the bottom is the equivalent

effective medium, which consists of a homogeneous layer with

effective permittivity, permeability, and nonlinear susceptibility.

(b) Transmission case of periodic grating of metallic slits filled with

a nonlinear dielectric, with parameters similar to the those in the

reflecting case.

on the constitutive parameters of the effective medium, namely

ǭ, μ̄, and χ̄ (2). The detailed analytical model treats the grating

as a metasurface: It consists of a homogeneous layer of the

effective medium of the same height h presenting the same

optical properties (see Fig. 3). No effective thickness h̄ is

used and no prior assumption about this parameter is needed

to establish the model. It is shown that varying this value

even permits the monitoring of the resonant properties of the

structure as these stem from the Fabry-Pérot cavity formed

within the slits or grooves.

A. Dispersive approach

We seek the effective permittivity ǭ and permeability μ̄ of

a homogenized layer bearing the same optical response of the

structure illuminated by TM-polarized light. The stored energy

is the same in the effective layer as in the dielectric part of the

resonators. In addition, as the waves are mainly propagating in

the dielectric part, the losses of the effective layer are assumed

infinitesimal, thus allowing the use of the Landau formula for

the internal electromagnetic energy in this dispersive medium

[26], here expressed in one subwavelength grating period d,

U =
∫∫

x,z

[∂ω(ωǫ(x,z))E(x,z)2

+ ∂ω(ωμ(x,z))H (x,z)2]dx dz. (6)

Stating that the resonator and the effective layer must contain

the same amount of energy leads to (with nonmagnetic

materials μ = 1)

∫∫

x,z

∂ω(ωǫ)E2 + H 2 =
∫∫

x,z

∂ω(ωǭ)Ē2 + ∂ω(ωμ̄)H̄ 2. (7)
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In the slits, the TM-polarized light is vertically guided and

behaves as a plane wave experiencing an effective permittivity

denoted by ǫTM. This feature is justified by both the funneling

effect [21] and numerical field maps that are given at resonance

in Fig. 2. We can then make use of the link between the various

electromagnetic fields of the plane wave propagating inside the

slits, ǫE2 = μH 2 and ǭĒ2 = μ̄H̄ 2 (even valid for dispersive

media),
∫∫

x,z

[∂ω(ωǫ) + ǫ]E2 =
∫∫

x,z

[

∂ω(ωǭ) +
∂ω(ωμ̄)ǭ

μ̄

]

Ē2.

(8)

The bounds of integration along x are limited to the dielectric

since the energy stored in the metallic sidewalls is negligible.

Indeed, at the metal-dielectric interface, the x component of

the electric field is discontinuous and the normal electric fields

on each side are linked by
∣

∣

∣

∣

Ex(x = w−)

Ex(x = w+)

∣

∣

∣

∣

=
∣

∣

∣

∣

ǫm

ǫd

∣

∣

∣

∣

≫ 1, (9)

leading to an amplitude of the electric fields inside the

dielectric inclusion that is far greater than that inside the

metal. Plus, the fundamental guided mode presents phase

and amplitude invariance along the x direction, simplifying

the lateral integration. Eventually both the slit resonator and

the effective layer have to present Fabry-Pérot resonances

(see Fig. 2). Thus, electromagnetic fields have known vertical

distributions analogous to stationary-wave amplitudes. Under

these circumstances, we obtain at any frequency

w[∂ω(ωǫd) + ǫd]E2 = d

[

∂ω(ωǭ) +
∂ω(ωμ̄)ǭ

μ̄

]

Ē2. (10)

In addition, equivalent guiding of the waves means that ǭμ̄ =
ǫTM, which can be written as a derivative

∂ω(ωμ̄)ǭ =
∂ω(ω2ǫTM)

ω
− ∂ω(ωǭ)μ̄, (11)

further simplifying Eq. (10),

d

w
[∂ω(ωǫd) + ǫd] =

1

μ̄

∂ω(ω2ǫTM)

ω
, (12)

where the confinement property E/Ē = d/w has been used.

Indeed, the potential difference inside one period has to be

equal between the original configuration and the effective one,

so Ēd = Ew. The effective permeability is eventually written

as

μ̄ =
w

d

∂ω(ω2ǫTM)

ω[ǫd + ∂ω(ωǫd)]
, (13)

with ǭ being obtained from ǭμ̄ = ǫTM. In addition, by assum-

ing negligible dispersion at the first order for the derivatives

of the permittivities ǫd and ǫTM, we retrieve the following

expression:

μ̄1 =
w

d

ǫTM

ǫd

, ǭ1 =
d

w
ǫd. (14)

The absence of an imaginary part in ǭ1 means that electric

losses are negligible, which is consistent with the fact that

the electric energy is strictly confined in the dielectric region

described by a Sellmeier model. The losses are essentially

magnetic as the induction field penetrates the metallic side-

walls of the slit.

B. Nondispersive approach

Further calculations show that the nondispersive approach

for the expression of the internal electromagnetic energy

suffices to retrieve expressions of Eq. (14). In this case, the

energy conservation between the gratings and the effective

layer gives

∫ z=h

z=0

∫ x=d

x=0

Ē · D̄ =
∫ z=h

z=0

∫ x=w

x=0

E · D, (15)

where D is the electric displacement field and Ē and D̄ stand for

the field values in the effective layer. The fundamental guided

mode is phase and amplitude invariant along the x direction,

so Eq. (15) is expressed as

d

∫ z=h

z=0

ǭĒ2 = w

∫ z=h

z=0

ǫdE
2. (16)

In addition, this equation is valid for all h and is further

simplified to Ē2dǭ = E2wǫTM. The property E/Ē = d/w is

then used to obtain the effective permittivity

ǭ = ǫd

d

w
. (17)

Eventually, the phase accumulated by a wave during its

propagation through the structure is the same in both cases,

kh = k̄h. It is written as ǭμ̄ = ǫTM, where the effective layer

is chosen to be magnetic. Its effective permeability can then

be expressed due to Eq. (17):

μ̄ =
ǫTM

ǫd

w

d
. (18)

In the reflection case [see Fig. 3(a)], the equivalent layer

has to be deposited on a mirror, which displays an effective

permittivity ǭm. It is expressed by matching the reflection

coefficients at the bottom of the slit:
√

ǭ/μ̄ −
√

ǭm√
ǭ/μ̄ +

√
ǭm

=
√

ǫTM − √
ǫm√

ǫTM + √
ǫm

. (19)

The effective permittivity of the metallic substrate is given by

ǭm = ǫm/μ̄2.

We now consider the calculation of the effective non-

linear susceptibility χ̄ (2), which can also be deduced from

energy conservation. The original susceptibility χ (2) is here

considered as nondispersive as we are far from the material

resonances, so the nonlinear part of the electric energy is

simply given by E · P(2). Its effective counterpart is therefore

also considered as nondispersive, allowing us to obtain the

expression

χ̄ (2) =
(

d

w

)2

χ (2). (20)

The nondispersive expression for the constitutive parameters

of the effective medium are used in the following to analyze

the linear and nonlinear behaviors of the structures.
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FIG. 4. (a) Reflectivity map as a function of the wavelength λ

and the thickness h for the reflection. (b) Reflectivity as a function of

the wavelength at a selected h = 500 nm. The dashed line represents

the result obtained with the effective-medium model and the solid

line shows the full computation with the original resonator. The

parameters are w = 200 nm and d = 1 μm. The dielectric is gallium

arsenide and the metal is gold.

C. Comparative results

In the following, the asymmetric resonator has a period

d = 1 μm, a width w = 0.2 μm, and a height h = 0.5 μm.

As previously stated, the metal is gold, described by a Drude

model [19], and the dielectric is gallium arsenide, described

by a Sellmeier model [18]. All the parameters are identical for

the transmission case apart from the height h = 1 μm. The

computations are performed with the B-spline modal method,

which makes a fast and exact resolution of Maxwell equations

and determines the nonlinear behavior under the undepleted

pump approximation [27,28].

Reflection spectra for the reflection structure are shown

for wavelengths ranging from 2 μm to 10 μm in Fig. 4(a)

with varying thickness h. The Fabry-Pérot resonances are

visible on this reflectivity map at the harmonic wavelengths.

This behavior holds for growing values of thickness and no

assumption about the value of h compared to the wavelength

λ is needed to establish the effective-medium model. Shown

below the reflectivity map is a comparison between this model

(dashed lines) and the full numerical computation for the

structured resonator [see Fig. 4(b)], where the results are found

to be in very good agreement. The streamlines of the Poynting

vector are shown in the insets at resonance for better clarity. All

the energy is funneled into the groove, where it is absorbed for

this reflection resonator. The transmission case also displays a

very good comparison between the effective medium and the

original structure for both its reflectivity and transmissivity

(data not shown). The sole difference lies in the fact that

the light is funneled through the slit for this transmission

resonator and the streamlines below the structure only convey

the transmitted energy (nearly 30% of the incoming energy,

while the rest is either reflected or absorbed by the metallic

sidewalls).

This analytical model renders very well metal-dielectric

slits structures in TM illumination far from material resonances

where losses are negligible and in the spectral range where

the metal follows a Drude model. Moreover, in this spectral

range, the studied resonators bring geometrical dispersion to

the effective parameters, which makes frequency dispersion

appear negligible. Indeed, superimposition of Fabry-Pérot

resonances at the involved wavelengths of a given frequency

conversion scheme respect the Rayleigh criterion, suggesting

promising situations of mode matching. Following this idea,

it has been shown that a first-order nondispersive approach

correctly fits the solution that is obtained through the Landau

formula for the electromagnetic energy.

IV. NONLINEAR ENHANCEMENT

AND MODE MATCHING

We recall the expression for the effective nonlinear suscep-

tibility χ̄ (2)/χ
(2)
d = (d/w)2, illustrating the great enhancement

of the quantity of nonlinear sources inside the cavity of such

structures. However, the nonlinear susceptibility is not the only

parameter involved in the efficiency of frequency conversion

processes. Due to the high value of the effective permittivity,

for most of the wavelengths there is no impedance matching for

the Fabry-Pérot cavity, which might result in a poor efficiency

of the nonlinear processes. For a better understanding, the

efficiency of the second-harmonic generation is computed for

both structures in Fig. 5, using analytic expressions [29]. For

the sake of comparison, the plotted efficiency is normalized by

the intensity of a nonpatterned gallium arsenide layer, whose

thickness is chosen so as to display Fabry-Pérot resonances

at the same wavelengths. Following Eqs. (4) and (5), the

equivalent gallium arsenide layer is a bit thicker than the

patterned layer. The relative conversion efficiency is defined

in reflection as

ηR =
IR

out

IR
out,ref

, (21)

where IR
out is the output reflected nonlinear intensity from the

metal-dielectric structure computed with the analytical model

and IR
out,ref is the reflected nonlinear intensity for a homo-

geneous layer of gallium arsenide exhibiting a fundamental

Fabry-Pérot resonance at the same wavelength as the effective-

medium layer [see Eq. (5)]. Due to Eq. (4), the gallium arsenide

layer is slightly thicker than the effective-medium layer.
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FIG. 5. The SHG relative conversion efficiencies of the structure

in (a) reflection ηR and (b) transmission ηT , as functions of the pump

wavelength. Solid lines represent the full computation and dashed

lines show the analytical model. The parameters are d = 1 μm,

w = 0,2 μm, and h = 0.5 μm for reflection case and h = 1 μm for

transmission case.

In Fig. 5, two noticeable behaviors corresponding to

resonant and nonresonant cases appear. First, at resonance,

the maximum of the second-harmonic efficiency is indeed one

order of magnitude greater, leading to interesting resonant

values of the enhancement. The efficiency peaks are visible at

the harmonic wavelengths. Second, the ratio can drop below

1, meaning that nonresonant behavior gives worse results for

the structured resonators. This stems from the absence of

impedance matching between the one of the cavity Z =
√

μ̄/ǭ

and the one of the outer medium. The second-harmonic

light is hardly driven to the outer medium compared to the

homogeneous layer case, leading to poor values of efficiency

away from the resonance. Interestingly, the symmetric case

leads to a better conversion efficiency in both reflection (data

not shown) and transmission. This is a direct consequence of

the presence of harmonics resonance at wavelengths given by

Eq. (5), which may result in mode-matching situations where

both the pump wavelength and the second-harmonic signal

are at resonance. To fully understand these observations, the

various scenarios of resonant behaviors in both structures for

SHG (or DFG) are investigated in more detail below.

Figure 6 shows the three resonant situations that happen in

the case of SHG with the respective conversion efficiency

spectra. The relative conversion efficiency in transmission

ηT is defined in a way similar to the reflection case. On

the one hand, the incoming pump wave at wavelength λpump

can be resonant to increase the quantity of created nonlinear

polarization [Fig. 6(a)]. On the other hand, the outgoing signal

wave at λSHG can be resonant to enhance the coupling from

the slit to the outer medium [Fig. 6(b)]. When both conditions

are fulfilled, it is a mode-matching situation [Fig. 6(c)] where

the nonlinear intensity ratio reaches its highest value for a

selected period. In the asymmetric resonator, only the cases

of Figs. 6(a) and 6(b) can happen, thus limiting the value

of η to the one obtained when the pump is solely resonant.

Using a resonance at the second-harmonic wavelength is

typically one order of magnitude less efficient, since the energy

generated at the second harmonic depends only linearly on the

FIG. 6. Three scenarios of resonant behaviors for SHG in the metal-dielectric layer: (a) resonant pump (h = 0.5 μm and hGaAs = 0.55 μm)

or (b) resonant signal (h = 0.73 μm and hGaAs = 0.82 μm) in a reflection resonator and (c) both resonant pump and signal (h = 1 μm and

hGaAs = 1.15 μm) in a transmission resonator creating a mode-matching configuration. Shown on the bottom are the corresponding SHG

relative conversion efficiencies in (a) and (b) reflection ηR and (c) transmission ηT as functions of the pump wavelength. In the three cases,

d = 1 μm and w = 0,2 μm.
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FIG. 7. Two scenarios of modes matching for DFG: (a) two

modes matching with one resonant pump and a resonance at the DFG

signal in a reflection resonator (h = 0.5 μm and hGaAs = 0.55 μm)

and (b) three modes matching (both resonant pumps and resonant

DFG signal) in a transmission resonator (h = 1 μm and hGaAs =
1.15 μm). Shown on the bottom are the corresponding DFG relative

conversion efficiencies in (a) reflection ηR and (b) transmission ηT as

functions of the DFG wavelength. The other parameters are the same

in both structures (d = 1 μm and w = 0.2 μm).

second-harmonic electric field. In the case of the symmetric

resonator, there is always a mode-matching situation for SHG

between the fundamental resonance at λ and the first order of

resonance at λ/2. The low-quality factors of both resonances

can compensate for the natural dispersion of the material.

There are various configurations of mode matching in

both structures for DFG. Two of them are illustrated in the

case of the asymmetric (symmetric) resonator in Fig. 7(a)

[Fig. 7(b)]. In both resonators, there is a degree of freedom to

choose the wavelengths in order to be in a two-mode-matching

situation. For instance, the signal wavelength λDFG determines

the geometry of the resonator and one pump wavelength

is chosen so as to match one of the harmonics of the

resonator while the last one is determined by the energy-

conservation condition. The conversion efficiency shown in

Fig. 7(a) is comparable to the one obtained for SHG in

Fig. 6(a), because the pump is degenerate so it could be

considered as a degenerate two-mode-matching configuration.

Three modes matching can be straightforwardly obtained in

the symmetric resonator. Indeed, Eq. (5) quantifies the energy

of each harmonic wavelength as a multiple of the fundamental

wavelength energy. So, if two of the wavelengths involved in

the DFG process have been chosen at resonance wavelengths,

the third one is also at another resonance wavelength due

to the energy-conservation condition (and neglecting the

dispersivity). In Fig. 7(b), the fundamental wavelength and the

two first-harmonic wavelengths are used (λ1
pump = λDFG/3 and

λ2
pump = λDFG/2). As expected, it leads to a higher efficiency

conversion ratio than in the two-mode-matching situation for

both transmission and reflection (data not shown). However,

this enhancement is lower than for the SHG, since the natural

dispersion of the material must be managed for three different

wavelengths.

In the optimal mode-matching situation for SHG, the metal-

dielectric structure acts, at one particular pump wavelength, as

a metasurface, which is described by the effective-medium

model. Such a configuration is obtained here with the

parameters λpump = 7.8 μm, w = 200 nm, h = 500 nm, and

d = 1 μm as shown in Fig. 5(a). To compare our structure

with a previously reported metasurface from the literature, we

compute the absolute value of our SHG conversion efficiency

for an impinging pump plane wave carrying an intensity

of 10 kW cm2, with the nonlinear susceptibility of gallium

arsenide χ (2) = (2/
√

3)150 pm/V according to Ref. [30]. The

absolute SHG conversion efficiency is then found to be equal

to 5 × 10−4 with an effective nonlinear susceptibility of χ̄ (2) =
4.3 nm/V, which is of the same order as the reported value

2 × 10−4 under a Gaussian focused beam [7]. Such a metal-

dielectric component is thus able to greatly enhance nonlinear

generation through lateral field confinement within a volume

of semiconductor displaying a second-order susceptibility.

V. CONCLUSION

To conclude, nonlinear phenomena in subwavelength

metallic slits or grooves filled with a nonlinear material

can be fairly described by this homogenization model. This

metasurface exhibits an unusually high nonlinear effective

susceptibility that leads to higher efficiency of the frequency

conversion processes and is further enhanced by exploiting

mode matching between resonances. The effective-medium

properties can be spatially tuned, by simply changing the in-

plane geometrical parameters, making it possible, for instance,

to address various wavelength ranges. These results can be

directly applied to various metals and nonlinear dielectric

materials. In the midinfrared range, the efficiency for a thick

layer of the effective medium is plagued by the Ohmic metallic

losses, but it is no longer the case for higher-wavelength ranges.
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Nature (London) 511, 65 (2014).

[8] A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V.

Murzina, D. N. Neshev, and Y. S. Kivshar, Laser Photon. Rev.

9, 195 (2015).

[9] F. X. Wang, F. J. Rodrı́guez, W. M. Albers, R. Ahorinta, J. E.

Sipe, and M. Kauranen, Phys. Rev. B 80, 233402 (2009).

[10] P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A.

Kats, M. O. Scully, and F. Capasso, Nano Lett. 10, 4880 (2010).

[11] K. Thyagarajan, J. Butet, and O. J. Martin, Nano Lett. 13, 1847

(2013).

[12] J. E. Sipe and R. W. Boyd, Phys. Rev. A 46, 1614 (1992).

[13] D. R. Smith and J. B. Pendry, J. Opt. Soc. Am. B 23, 391 (2006).

[14] S. Larouche and D. R. Smith, Opt. Commun. 283, 1621 (2010).

[15] S. Park, J. W. Hahn, and J. Y. Lee, Opt. Express 20, 4856 (2012).

[16] M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni,

A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht,
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