
HAL Id: hal-01403223
https://hal.science/hal-01403223

Submitted on 25 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Risk-Constrained Markov Decision Process Approach
to Scheduling Mixed-Criticality Job Sets

Bader Alahmad, Sathish Gopalakrishnan

To cite this version:
Bader Alahmad, Sathish Gopalakrishnan. A Risk-Constrained Markov Decision Process Approach to
Scheduling Mixed-Criticality Job Sets. Workshop on Mixed Criticality Systems (WMC 2016), Nov
2016, Porto, Portugal. �hal-01403223�

https://hal.science/hal-01403223
https://hal.archives-ouvertes.fr

A Risk-Constrained Markov Decision Process
Approach to Scheduling Mixed-Criticality Job

Sets
Bader Alahmad

Department of Electrical and
Computer Engineering

The University of British Columbia
Vancouver, BC, Canada V6T 1Z4

Email: bader@ece.ubc.ca

Sathish Gopalakrishnan
Department of Electrical and

Computer Engineering
The University of British Columbia
Vancouver, BC, Canada V6T 1Z4

Email: sathish@ece.ubc.ca

Abstract—We consider the problem of scheduling Mixed
Criticality (MC) job systems with an arbitrary number
of criticality levels on a single processing platform, when
job demands are probabilistic and their distributions are
known. We develop a probabilistic framework for MC
scheduling, where feasibility is defined as the risk of missing
deadlines, which we express in terms of (chance) constraints
on the probabilities that jobs of every criticality miss their
deadlines. Our goal is to identify and compute “efficiently
implementable” scheduling policies under which the given
probabilistic constraints are satisfied. We model the problem
as a Constrained Markov Decision Process (CMDP), and we
show that a feasible Markov randomized scheduling policy
exists if the given instance is feasible in a probabilistic sense.
A feasible policy can be obtained by solving a linear program.
To counter the potential state space explosion, we outline
an approximation method that might trade feasibility for
efficiency, but which performs well in practice.

I. INTRODUCTION

We consider a problem related to scheduling computa-
tional jobs in an embedded system that supports jobs of
different criticality levels. The criticality of a job refers
to its semantic importance: how crucial is it that this
job complete successfully (correctly and meet timing con-
straints) for the system to meet its safety requirements and
other objectives? This importance is captured, typically,
by safety standards (such as DO-178B, RTCA SC-167
and EUROCAE WG-12) through failure probabilities. For
example, the DO-178B avionics system standard uses five
criticality levels for tasks with the failure rate (which can
be used to derive the failure probability) varying from
10−9 per hour to best effort, depending on the criticality
level.

From a job scheduling perspective, one would like to
schedule jobs so that they meet their timing constraints or

deadlines. If a job does not meet its deadline—there is a
deadline miss—then we deem that event a failure event.
In a mixed-criticality system, the scheduling policy should
ensure that the tolerable failure rate at each criticality level
is respected. For instance, if one were to use the DO-178B
standard then jobs at Criticality Level B should only have
a failure rate of 10−7 per hour of operation.

If one needs to ensure that jobs always meet their
deadlines then one would need to schedule jobs using the
worst-case execution time estimates (WCET) of the jobs.
Assuming that all jobs will consume the time indicated
by the WCET estimate may lead to system overload but
this situation is rarely realized. It is, therefore, possible
to satisfy the failure rates at each criticality level by
considering the execution time distribution of each job.

We consider the case of n (non-recurrent) jobs, each of
which is released at time t = 0. Each of these jobs has a
deadline as well as a criticality that specifies a tolerable
failure probability. (In the case of a problem with single-
shot jobs, the failure probability represents the number
of problem instances when a job may miss its deadline
given many problem instances.) Our goal is to obtain a
scheduling policy that helps us achieve the required failure
probabilities given the execution time distribution for the
n jobs.

Contributions

We propose an approach to deriving scheduling policies
for mixed-criticality job systems that uses the probabil-
ity distributions of job execution times. We model MC-
job systems as a chance-Constrained Markov Decision
Process (CMDP) that then allows us to provide guar-
antees around jobs meeting their timing constraints with

high probability. The chance constraints are sample path
constraints on the trajectories of the MDP induced by
executing a scheduling policy, and they represent the risk
of missing deadlines at the various criticality levels. We
are then able to formulate an optimization problem whose
solution is a scheduling policy that guarantees the failure
probabilities at each criticality level. We also briefly dis-
cuss an effective approximation scheme to handle the state
space explosion, which is based on LP approximations and
factored MDP representations.

To the best of our knowledge, there is no work that
aims at identifying feasible scheduling policies for MC job
systems where job execution times are random. Alahmad
et al. [1] were the first to propose the consideration of
probabilistic execution times for MC systems. The authors
of [2] carried out schedulability analysis of EDF applied
to recurrent MC task systems, wherein lower priority tasks
are given guarantees against failure. The latter is the
closest work we are aware of to our efforts in this article.
However, our problem is substantially harder, because it
is concerned with synthesizing MC scheduling policies, as
opposed to analyzing existing (fixed) scheduling policies.

Our goal is to improve on the Vestal-Baruah job-
dropping model and develop a model and analysis frame-
work that corresponds more closely to the MC standards.

II. SYSTEM MODEL

The system we consider is that of n jobs J1, . . . ,Jn
executing upon a single processor, and all jobs are ready
to execute at time 0.

Some Notation: We define N = {1,2, . . .} ⊂
{0,1,2, . . .} = Z+, and R+ = [0,∞). For integer m ∈ N,
we let [m] denote the set {1, . . . ,m}. For a function ϕ , we
use ϕ(dx) ≡ dϕ(x) to denote a differential (infinitesimal
rate of change of ϕ). If P is a probability measure
on a measurable space (Ω,M) and ϕ is a random
variable on the same space, we denote ϕ’s distribution as
Pϕ ≡ P◦ϕ−1.

In our problem there are L ≥ 2 criticality levels, and
each job Ji has the following parameters associated with
it: (1) χi ∈ [L] is job Ji’s criticality; (2) ci ∈ N is job
Ji’s worst-case execution time (WCET) estimate; and
(3) di > 0 is job Ji’s deadline.

The execution time demanded by every job Ji, i∈ [n], is
described by an integer-valued1 random variable Zi : Ω→
[ci], defined on a common probability space (Ω,M,P).
Since job demands are integers, we consider scheduling

1One may equally well work with rational times by regarding time
as being divided into integer multiples of some fixed rational quantum
q > 0, and using scaling arguments to convert to integers.

at integer boundaries. Also we assume that job demands
are independent, and that we are given the distribution of
Zi, PZi ≡ P◦Z−1

i , for every i ∈ [n].
The actual execution time that a job consumes at run-

time upon completion is a job demand realization;
the latter is not known prior to job completion. A job
completes execution when it announces, or signals, that
it has finished execution. This happens when the job has
been allocated enough execution time to produce its output
entirely. In the probabilistic setting, every ω ∈ Ω is a
scenario of execution, and if we let Z = (Z1, . . . ,Zn) : Ω→
∏

n
i=1[ci] be the (random) demand vector, then Z(ω) is the

corresponding system demand realization.
A scheduling policy is a rule that at every time instant

decides which job, from the set of available jobs (those
that have not finished execution), is assigned the proces-
sor. At every time instant, a scheduling policy may use
the characterizing parameters of all the jobs, as well as
its previous decisions, in making its next job allocation
decision.

III. PROBLEM DEFINITION

We are given L error parameters p1, . . . , pL where, for
` ∈ [L], p` ∈ [0,1] is a lower bound on the probability that
all jobs whose criticality is ` finish before their deadlines.

We consider an execution model where the scheduler
is invoked at every t ∈ Z+, and must then, and only
then, make a decision as to which job to occupy the
processor in the interval [t, t + 1]. Markov Decision Pro-
cesses (MDPs) [3] provide a framework for modeling such
sequential decision making processes, and they facilitate
identifying policies for planning under uncertainty. Our
execution model lends itself naturally to the MDP frame-
work, and we shall set up our scheduling problem as
one. To accommodate the chance constraints—specified by
the given probabilities p1, . . . , pL—we impose constraints
on the sample paths induced by executing policies. An
online policy is favorable if it satisfies the sample path
constraints, and our aim is to compute such policy. To
incorporate the constraints into the MDP, we shall resort
to the framework of Constrained MDPs (CMDP) [4].
Whereas unconstrained MDPs can be solved via dynamic
programming (i.e., Bellman’s optimality equations) and
greedy decisions extracted using algorithms such as policy
and value iteration, CMDPs do not admit such solution
methods, and they are best solved via Linear Programming
(LP) formulations. We shall take this route.

A. MDP Setup

First, we describe the variables that together represent
the system state. Let Y = {0 : finished,1 : not finished}n.
For yt ∈ Y, yi

t = 1 iff job Ji still requires execution at time

t, and yi
t = 0 iff Ji has finished execution. That is, yi

t is the
finish signal of job i. We shall assume that y0 = 1, the
vector of all 1s.

Let A be the set of control actions (jobs) available to the
scheduler. We will let A = {e1, . . . ,en}∪{0}, where 0 is
the vector of all 0s, and {e1, . . . ,en} is the standard basis
for Rn; ei is the unit vector that is 1 at the ith coordinate
and 0 elsewhere. If the action taken at time t ∈ Z+ is at ∈
A, then at = ei means that job Ji occupies the processor
during [t, t+1]. If at = 0, then no job is scheduled and the
processor is kept idle.

Let xt = (x1
t , . . . ,x

n
t) encode the amount of execution

time that every job has been allocated up to time t just
before acting at time t: x0 = 0, and xt =∑

t−1
m=0 am for t ∈N,

where the sum is vector addition component-wise. Then
for every t ∈ Z+ and i ∈ [n], xi

t ∈ {0, . . . ,ci}. We will let
X= ∏

n
i=1{0, . . . ,ci}.

We utilize a variable rt ∈ {no error,error,error′}L ≡ R
to “mark” the state as “error”; r`t = error iff an `-criticality
job has missed its deadline at time t. If an `-criticality job
misses its deadline at time t, the `th error flag will make
a transition into an absorbing error state error’, and it will
stay there forever.

We will restrict our attention to work-conserving
scheduling policies. A non-work-conserving scheduling
policy will only delay job completions and may cause jobs
to miss their deadlines. Accordingly, the epoch N =∑

n
i=1 ci

is an upper bound on the planning, or scheduling, horizon.
The state of the scheduling system at time t ∈ Z+ is
st = (t,yt ,xt ,rt) ∈ S, where S⊂ {0, . . . ,N}×Y×X×R.

Define the set of admissible histories up to time t as
H0 = S, and Ht = (S×A)t×S for t ∈N. Every element of
Ht is called a ttt-history, and is of the form

ht = (s0,a0, . . . ,st−1,at−1,st).

t-histories are the information available to the scheduler
before making its job selection decision at time t.

Let A(st)⊂ A be the set of actions that the scheduler is
allowed to apply at time t when the scheduling system is in
state st . We shall call A(st) the set of admissible actions
in state st . A scheduling policy is a sequence π = {πt :
t ∈ Z+}, where πt ≡ πt(dat |ht) : 2A(st)×Ht → [0,1].

The state st summarizes all allocation decisions and
remaining demands up to time t, and it can be readily
verified that πt(at |ht) = πt(at |st) for every policy π . That
is, every policy is Markov, and we will be concerned ex-
clusively with Markov scheduling policies ([5] Definition
2.3.2 a).

We implement the requirement that the scheduling pol-
icy be work-conserving by specifying that A(st) includes

only vectors ei for which Ji has not finished execution.
That is,

A(st) =

{
{ei : yi

t = 1} if ∃i ∈ [n] such that yi
t = 1

{0} otherwise.

Control Model: Scheduling decisions are made at every
t ∈ {0, . . . ,N− 1} exclusively. If a certain job is chosen
to execute at some t, then this job occupies the processor
for the duration [t, t + 1], without interruption, until the
scheduler is invoked again at t + 1. We call [t, t + 1] the
tth control interval. At any t > 0, if job Ji was chosen
to occupy the processor during [t − 1, t] (i.e., at−1 = ei),
then the scheduler knows at time t whether or not job
Ji requires more execution by observing the value of yi

t ,
which will be set to finished if job Ji signals that it has
finished execution at time t. The information available to
the scheduler at the beginning of the tth control interval
is at−1, yt , xt , and rt . Let I` =

{
i ∈ [n] : χi = `

}
, ` ∈ [L].

In summary,
1. At t = 0, all jobs are ready to execute and they all

demand execution, and the scheduler needs to pick a
job to schedule for exactly one time unit before it is
invoked again at t = 1 (i.e., a0 needs to be set). Then
y0 = 1, x0 = 0, and r`0 = no error ∀` ∈ [L];

2. At the beginning of the tth control interval:
2.1 Update the cumulative system allocation by setting

xt ← xt−1 +at−1;
2.2 Observe (acquire) yt ;
2.3 Set Error: For every ` ∈ [L]

i) If r`t−1 = no error and there is i ∈ I` such that
both t ≥ di and yi

t = 1, set r`t ← error;
ii) If r`t−1 = error, set r`t ← error′;

2.4 Act: Set at to one of the vectors in A(st).
A transition (s,a, ŝ) is valid iff it can be generated by the
control model.

The Transition Probabilities

We describe the evolution of the system state by a
transition kernel (transition matrix) Q(dŝ|s,a) : 2S× (S×
A)→ [0,1]. We shall abuse notation and write Q(ŝ|s,a)
for Q({ŝ}|s,a).

Let (s,a, ŝ) be a valid transition. If s = (t,y,x,r), then
t̂ = t + 1, and we shall use the more time-suggestive
notation ŝ ≡ st+1, where ŷ ≡ yt+1, x̂ ≡ xt+1 and r̂ ≡ rt+1;
we similarly denote s as st . If (s,a, ŝ) is not valid, then
Q(ŝ|s,a) = 0. Fix an action at = ei. Then for transition
(st ,ei,st+1) to be valid, we must have yi

t = 1 (not finished)
and xi

t+1 = xi
t +1. Also, scheduling Ji does not affect the

execution time demands of the other jobs, so st+1 must
satisfy y j

t = y j
t+1 for every j 6= i. For our fixed state-action

pair (st ,ei), we know at time t that Zi > xi
t , and for j 6= i,

all we know is that Z j ∈Z j for some Z j ⊂ [c j] that depends
on x j

t and y j
t . The following is a complete list of all the

possible next states st+1 and the corresponding transition
probabilities for the fixed action-state pair (st ,at = ei),
and it is here where we fully utilize the assumption of
independent job demands:

• yi
t+1 = 1 (not finished): This says that the scenario

ω is such that Zi(ω) > xi
t+1 = xi

t + 1; moreover, for
every j 6= i, our knowledge about Z j does not change
at time t +1, because neither x j

t nor y j
t has changed

as a result of scheduling Ji. Then,

Q(st+1|st ,ei) =
P(Zi > xi

t +1)
P(Zi > xi

t)
(1)

if xi
t < ci− 1, and Q(st+1|st ,ei) = 0 otherwise. This

equation follows by independence of job demands.
• yi

t+1 = 0 (finished): Using reasoning similar to the
previous case

Q(st+1|st ,ei) =

{P(Zi=xi
t+1)

P(Zi>xi
t)

if xi
t < ci−1,

0 otherwise.
(2)

B. Problem Statement

Let H∞ denote the canonical trajectory space induced
by all work-conserving scheduling policies. Every h ∈H∞

is a realization of a schedule, and is of the form h =
(s0,a0,s1,a1, . . .). For initial state s0, fixed policy π and
transition kernel Q, there is a unique probability measure
Pπ —that depends on the initial state s0—on H∞ such that

Pπ
(
St ∈U | ht−1,at−1

)
= Q

(
U |st−1,at−1

)
(U ⊂ S).

We denote expectation with respect to Pπ as Eπ . Because
every policy is Markov, it follows that the induced state
process {St : t ∈ Z+} is a Markov chain for every policy
π .

The finish time of job Ji with respect to policy π is the
earliest time instant at which Ji signals that it has finished
execution. Formally, it is a stopping time Fi ≡ Fπ

i : H∞→
N, where Fi = min

{
t ∈ N : Y i

t = 0 (finished)
}

.
A probabilistic MC (pMC) instance is described by a

tuple I =
(
{J1, . . . ,Jn},(p1, . . . , pL)

)
, where every job Ji is

characterized by (χi,ci,di,PZi).

Problem: Identify a scheduling policy π such that the
following L constraints are satisfied:

Pπ
(⋂

i∈I`{Fi ≤ di}
)
≥ p` ∀` ∈ [L]. (3)

Now that we have formalized the problem in the CMDP
framework, we are able to give precise definitions of what
it means for an instance with probabilistic information to
be feasible in the MC setting.
Definition 1 (Probabilistic MC-feasibility). A pMC in-
stance I is probabilistically MC-feasible (pMC-feasible)
if there is a policy π such that the constraints (3) are
satisfied.

A scheduling policy under which a pMC instance I is
pMC-feasible is said to correctly pMC-schedule I.

IV. SOLUTION APPROACH: RISK-CONSTRAINED MDP

A. The Risk Constraints

Here we transform the deadline miss probabilities into
“risk” constraints that take the form of expectations of
immediate costs [6].

We may write the `th constraint in (3) as

Pπ(Fi > di for some i ∈ I`)≤ 1− p`. (4)

Let {Rt : t ∈ Z+} denote the induced error process, where
Rt(h) = rt for h ∈H∞. We may write the LHS of inequal-
ity (4) as

Pπ
(
∃t ∈ N such that R`

t = error
)
. (5)

The probability (5) defines the risk across `-criticality jobs
associated with executing policy π [6]. The trajectories{

h ∈ Hπ
∞ : ∃t ∈ N such that r`t = error for some ` ∈ [L]

}
are the error trajectories that we want to avoid with high
probabilities.

Next we write each risk constraint (5) as an expectation
under Eπ of immediate costs. We define the per-stage
constraint cost functions κ`, ` ∈ [L], as κ`(s,a)≡ κ`(s) =
1
{

r` = error
}

, where 1{·} is the indicator function that
evaluates to 1 if the enclosed condition is true, and to
0 otherwise. We note that if r`t = error for some t ∈ N,
then r`t ′ = error′ for all t ′ > t. Thus, if the MDP is moving
along an error trajectory, say h = (s0,a0,s1,a1, . . .), then
the constraint cost sequence κ`(s0), . . . ,κ`(sN) is such that
there is t ∈ {0, . . . ,N} such that κ`(s0) = 0, . . . ,κ`(st−1) =
0,κ`(st) = 1︸ ︷︷ ︸,κ`(st+1) = 0, . . . ,κ`(sN) = 0.

If the trajectory is not error, then κ`(st) = 0 for
all t ∈ {0, . . . ,N}. Then for every ` ∈ [L] and h ∈
Hπ

∞ , ∑
N
t=0 κ`(st) ∈ {0,1}. If we let C` = ∑

N
t=0 κ`(St) =

∑
N
t=01

{
R`

t = error
}

, then C` is a Bernoulli random variable
on Hπ

∞ with probability of success Pπ
(
C` = 1

)
. Success of

the underlying Bernoulli trial happens if there is t ∈N such
that R`

t = error. That is, {C` = 1}=
{
∃t : R`

t = error
}

, from
which it follows that Pπ

(
C` = 1

)
= Pπ

(
∃t : R`

t = error
)
.

Since C` is Bernoulli, EπC` = Pπ
(
C` = 1

)
, so we may

write the `th risk constraint as EπC` = Eπ
∑

N
t=0 κ`(St) ≤

1 − p`. Since we are only seeking a feasible policy,
all feasible policies for the given instance are equally
favorable, and we are free to choose any reasonable
objective. Because the system is deadline-driven, we will
choose to favor policies that minimize the sum of expected
tardiness [7]. In our probabilistic framework, the tardi-
ness of job Ji is the (policy-dependent) random variable
Ti ≡ T π

i : Hπ
∞ → Z+ defined as Ti = max(0,Fi− di). Our

objective is to minimize ∑
n
i=1Eπ Ti. Toward this end, we

define the immediate objective cost as a function on S such
that if job Ji has not finished execution at its deadline, it
incurs a unit cost for every time instant past its deadline
until it finishes execution. That is, for s = (t,x,y,r) and
i ∈ [n], we define the local objective cost for job Ji as the
function

κi(s) = 1{t ≥ di and yi = 1 (not finished)}. (6)

For trajectory h = (s0,a0,s1, . . .), if job Ji finishes at
some m > di > 1, then yi

t = 1 (not finished) for all
t ∈ {di, . . . ,m − 1}, so by (6), the objective cost se-
quence relating to job Ji is κi(s0) = 0, . . . ,κi(sdi−1) =
0,κi(sdi) = 1, . . . ,κi(sm−1) = 1︸ ︷︷ ︸,κi(sm) = 0, . . . ,κi(sN) = 0,

and this sequence sums to m− di, the tardiness of job
Ji with respect to trajectory h. Thus, if we let κ(s) =
∑

n
i=1 κi(s), then ∑

N
t=0 κ(st) is the total tardiness for tra-

jectory h.
If we let ε` = 1− p`, ` ∈ [L], then we may write our

problem as

CMDP : minimize
π∈Π

[
Eπ

N

∑
t=0

κ(St) = Eπ
N

∑
t=0

n

∑
i=1

κi(St)

]

subject to Eπ
N

∑
t=0

κ`(St)≤ ε`, ∀` ∈ [L].

B. The Linear Programming (LP) Approach

Recall that the schedule concludes when all jobs finish
execution. Moreover, costs (both objective and constraint)
can be incurred only until all jobs finish execution. That
is, from the costs’ perspective, we are concerned with the
state process of the MDP while it is in the set

S′ =
{

s ∈ S : yi = 1 (not finished) for some i ∈ [n]
}
.

Costs keep (possibly) accruing until the state process hits
S \ S′. Moreover, the set M≡ S \ S′ is always reached
under any work-conserving policy in time that is finite
and bounded above by the makespan (length) of the
schedule, which is defined as the (policy-independent)
time maxi{Fi} on Hπ

∞ (or ∑
n
i=1 Zi on Ω.) Since we are

concerned exclusively with work-conserving policies, it
follows that the makespan of any schedule is finite and

bounded above by N. Once the state process hits M, it
stays there forever; that is; M is absorbing under any
work-conserving policy. In this case, our MDP is called
S′-transient [8]. In fact, our MDP is in a more restricted
class that is a subset of S′-transient MDPs. If we let TM be
the hitting time of set M; i.e., TM = inf{t ∈N : St ∈M},
then Eπ TM ≤ Eπ maxi∈[n]{Fi} ≤ N < ∞ for any work-
conserving policy π , and our MDP is said to be S′-
absorbing, or absorbing to M.

By [4] equations (8.18) and (8.2), we may obtain an
optimal policy by solving the following linear program:

DLP : minimize ∑
s∈S

κ(s) ∑
a∈A(s)

ρ(s,a), subject to

∑
s∈S

κ`(s) ∑
a∈A(s)

ρ(s,a)≤ ε`, ` ∈ [L]

∑
s′∈S

∑
a∈A(s′)

ρ(s′,a)
(
δs(s′)−Q(s|s′,a)1S′(s

′)
)
= δs0(s),s ∈ S

ρ(s,a)≥ 0,s ∈ S,a ∈ A(s).

If we let M = ∑s∈S |A(s)| ≤ n|S|, then the decision
variables in DLP are

(
ρ(s,a) : s ∈ S,a ∈ A(s)

)
∈RM

+ . The
functions ρ in DLP are nonnegative finite measures on the
set K =

{
(s,a) : s ∈ S,a ∈ A(s)

}
. We point out that here

ρ(s,a) = Pπ(Sm = s,Am = a), the probability under policy
π that state s is occupied and action a is taken at the time
instant corresponding to s.

Altman [4] showed in Theorem 8.5 (iii) that SCMDP
is feasible if and only if DLP is feasible. By Theorems
8.2 and 8.5 (iii) of Altman [4], if ρ is a vector in K
that is feasible and optimal for DLP, then a feasible (and
minimum total expected tardiness) policy is the following:
When the state is s, if ρ

(
s,A(s)

)
> 0, then π chooses

action a ∈ A(s) with probability

ρ(s,a)
ρ
(
s,A(s)

) = ρ(s,a)
∑a′∈A(s) ρ(s,a′)

, (7)

and otherwise chooses a arbitrarily from A(s).
According to the previous discussion, we have

Theorem 1. A pMC instance is pMC-feasible if and only
if the corresponding linear program DLP is feasible. If
a pMC instance is pMC-feasible, then the policy given
by (7) is feasible and minimizes the sum of expected
tardiness.

Computational Complexity: A satisfying assignment
for the variables

{
ρ(s,a) : s ∈ S,a ∈ A(s)

}
can be found

by solving the linear program DLP using any variant
of the simplex algorithm, which, in practice, is efficient
in the number of decision variables and the number of
constraints. DLP, however, requires explicit enumeration
of the state space S, and therein lies the trouble. The

size of S is exponential in both n and L, so it is not
computationally practical to solve DLP directly, no matter
how efficient the LP solver is. DLP can have as many as
n|S| decision variables and L+ |S| constraints. If we let
c = maxi∈[n]{ci}, then a “very” crude estimate of the size
of S is 2n3L(c+ 1)n. Note that the latter bound does not
take the time variable into account; although we embedded
time in the state to leverage results for computing station-
ary policies, the fact that all jobs are ready to execute at
time 0 and that we are considering only work-conserving
policies imply that the state without explicit time, i.e.,
s = (x,y,r), encodes the time in the schedule already: It
is ∑

n
i=1 xi. An MC instance might look like the following:

n = 10 jobs, c = 100, and L = 2 criticality levels (dual-
criticality systems); for this instance, |S| might be as large
as 210×32×10110 ≈ 1023, which is astronomical.

V. AN APPROXIMATION METHOD

Despite the potentially enormous state space—that
would render DLP hopelessly intractable for all but the
modest pMC instances—there exist approximation tech-
niques that can be utilized to represent the state space
compactly and to significantly reduce the number of
decision variables and constraints of DLP.

We may utilize the factored MDP representation to
represent the state space and the transition kernel com-
pactly [9]. Instead of enumerating Q(st+1|st ,at) explicitly
for every transition (st ,at ,st+1) (DLP requires that Q be
given as a |S||A|×|S| matrix), we identify the features—a
subset of the variables making up st+1—on which every
component of st+1 depends probabilistically, and we write
the transition probabilities for these components only. This
representation can then be effectively used to approximate
the feasible regions of both DLP and its dual program
simultaneously [10]. The simultaneous approximation of
both the primal and the dual LPs is necessary so that both
the number of the decision variables and the number of
constraints of DLP are reduced, since the latter is at least
as big as the former. The LP approximation is based on
identifying basis functions defined on the state space or on
subsets thereof, which can then be used to represent the LP
variables as linear combinations of these basis functions.
To wit, with judicious choices of KD� |S| basis functions
on K to represent ρ and KB � |S||A| basis functions on
subsets of S to represent the decision variables of the
dual of DLP, we obtain an approximate LP that has KD
decision variables and KB + L constraints. The factored
MDP representation is then the key tool to efficiently
compute the coefficients of the resulting approximate LP.

In a fuller version of the paper, we discuss how to use
the factored MDPs to represent Q compactly, and show

how to efficiently compute the objective as well as the
constraint coefficients of the approximate LP. We point
out that a possible heuristic for basis function selection is
to solve DLP and its dual exactly for the subMDP induced
by pairs of jobs for every pair of jobs, and use the exact
solutions of the two-job subMDPs as basis functions.

VI. CONCLUSIONS

We developed a probabilistic framework for reason-
ing about mixed-criticality jobs systems when job de-
mand distributions are given. We transformed the problem
of constructing feasible scheduling policies into a risk-
constrained MDP, where risk is the probability, taken over
the trajectories induced by the MDP, of missing deadlines
at every criticality level. We solved the constrained MDP
using a Linear Programming formulation, and we showed
how to construct a feasible Markov randomized policy
from a solution to the Linear Program. We assumed com-
plete knowledge of job demand distributions. It is natural,
however, to consider a variant of our problem where only
samples of the demand distributions are available instead
of full fledged distributions. Lastly, further study is needed
to reason equivalently about recurring tasks under the
periodic or sporadic task model.

REFERENCES
[1] B. Alahmad, S. Gopalakrishnan, L. Santinelli, and L. Cucu-

Grosjean, “Probabilities for Mixed-Criticality Problems: Bridging
the Uncertainty Gap,” in The Work in Progress session of the 32nd
IEEE Real-time Systems Symposium - RTSS 2011, Wien, Austria,
Nov. 2011. [Online]. Available: https://hal.inria.fr/hal-00646586

[2] Z. Guo, L. Santinelli, and K. Yang, “Edf schedulability analysis
on mixed-criticality systems with permitted failure probability,” in
2015 IEEE 21st International Conference on Embedded and Real-
Time Computing Systems and Applications, Aug 2015, pp. 187–196.

[3] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming, 5th ed. New York: John Wiley and Sons,
2005.

[4] E. Altman, Constrained Markov Decision Processes. Chapman
and Hall/CRC, 1999.

[5] O. Hernández-Lerma and J. B. Lasserre, Discrete-Time Markov
Control Processes: Basic Optimality Criteria, ser. Stochastic Mod-
elling and Applied Probability. New York: Springer-Verlag, 1996.

[6] P. Geibel and F. Wysotzki, “Risk-sensitive reinforcement learning
applied to control under constraints.” J. Artif. Intell. Res. (JAIR),
vol. 24, pp. 81–108, 2005.

[7] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 3rd ed.
Springer, July 24, 2008.

[8] E. Altman, “Constrained markov decision processes with total
cost criteria: Lagrangian approach and dual linear program,”
Mathematical Methods of Operations Research, vol. 48, no. 3,
pp. 387–417, 1998. [Online]. Available: http://dx.doi.org/10.1007/
s001860050035

[9] C. Boutilier, R. Dearden, and M. Goldszmidt, “Stochastic dynamic
programming with factored representations,” Artif. Intell., vol. 121,
no. 1-2, pp. 49–107, Aug. 2000.

[10] D. A. Dolgov and E. H. Durfee, “Symmetric approximate linear
programming for factored mdps with application to constrained
problems,” Annals of Mathematics and Artificial Intelligence, pp.
273–293, 2006.

https://hal.inria.fr/hal-00646586
http://dx.doi.org/10.1007/s001860050035
http://dx.doi.org/10.1007/s001860050035

	I Introduction
	II System Model
	III Problem Definition
	III-A MDP Setup
	III-B Problem Statement

	IV Solution Approach: Risk-Constrained MDP
	IV-A The Risk Constraints
	IV-B The Linear Programming (LP) Approach

	V An Approximation Method
	VI Conclusions

