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Hyperspectral pansharpening: a review
Laetitia Loncan, Luis B. Almeida, José M. Bioucas-Dias, Xavier Briottet, Jocelyn Chanussot, Nicolas Dobigeon,
Sophie Fabre, Wenzhi Liao, Giorgio A. Licciardi, Miguel Simões, Jean-Yves Tourneret, Miguel A. Veganzones,

Gemine Vivone, Qi Wei and Naoto Yokoya

Abstract—Pansharpening aims at fusing a panchromatic image
with a multispectral one, to generate an image with the high
spatial resolution of the former and the high spectral resolution
of the latter. In the last decade, many algorithms have been
presented in the literature for pansharpening using multispectral
data. With the increasing availability of hyperspectral systems,
these methods are now being adapted to hyperspectral images. In
this work, we compare new pansharpening techniques designed
for hyperspectral data with some of the state of the art methods
for multispectral pansharpening, which have been adapted for
hyperspectral data. Eleven methods from different classes (com-
ponent substitution, multiresolution analysis, hybrid, Bayesian
and matrix factorization) are analyzed. These methods are ap-
plied to three datasets and their effectiveness and robustness are
evaluated with widely used performance indicators. In addition,
all the pansharpening techniques considered in this paper have
been implemented in a MATLAB toolbox that is made available
to the community.

Index Terms—Pansharpening, hyperspectral image, image fu-
sion

I. INTRODUCTION

IN the design of optical remote sensing systems, owing to
the limited amount of incident energy, there are critical

tradeoffs between the spatial resolution, the spectral resolution,
and signal-to-noise ratio (SNR). For this reason, optical sys-
tems can provide data with a high spatial resolution but with
a small number of spectral bands (for example, panchromatic
data with decimetric spatial resolution or multispectral data
with three to four bands and metric spatial resolution, like
PLEIADES [1]) or with a high spectral resolution but with
reduced spatial resolution (for example, hyperspectral data,
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subsequently referred to as HS data, with more than one hun-
dred of bands and decametric spatial resolution like HYPXIM
[2]). To enhance the spatial resolution of multispectral data,
several methods have been proposed in the literature under the
name of pansharpening, which is a form of superresolution.
Fundamentally, these methods solve an inverse problem which
consists of obtaining an enhanced image with both high
spatial and high spectral resolutions from a panchromatic
image and a multispectral image. The huge interest of the
community on this topic is evidenced by the existence of
sessions dedicated to this topic in the most important remote
sensing and Earth observation conferences as well as by the
launch of public contests, of which the one sponsored by the
data fusion committee of the IEEE Geoscience and Remote
Sensing society [3] is an example.

A taxonomy of pansharpening methods can be found in the
literature [4], [5], [6]. They can be broadly divided into four
classes: component substitution (CS), multiresolution analysis
(MRA), Bayesian, and variational. The CS approach relies on
the substitution of a component (obtained, e.g., by a spectral
transformation of the data) of the multispectral (subsequently
denoted as MS) image by the panchromatic (subsequently
denoted as PAN) image. The CS class contains algorithms
such as intensity-hue-saturation (IHS) [7], [8], [9], principal
component analysis (PCA) [10], [11], [12] and Gram-Schmidt
(GS) spectral sharpening [13]. The MRA approach is based on
the injection of spatial details, which are obtained through a
multiscale decomposition of the PAN image into the MS data.
The spatial details can be extracted according to several modal-
ities of MRA: decimated wavelet transform (DWT) [14], un-
decimated wavelet transform (UDWT) [15], ”à-trous” wavelet
transform (ATWT) [16], Laplacian pyramid [17], nonseparable
transforms, either based on wavelets (e.g., contourlets [18]) or
not (e.g., curvelets [19]). Hybrid methods have been also pro-
posed, which use both component substitution and multiscale
decomposition, such as guided filter PCA (GFPCA), described
in Section II-C. The Bayesian approach relies on the used of
posterior distribution of the full resolution target image given
the observed MS and PAN images. This posterior, which is the
Bayesian inference engine, has two factors: a) the likelihood
function, which is the probability density of the observed MS
and PAN images given the target image, and b) the prior
probability density of the target image, which promotes target
images with desired properties, such as being segmentally
smooth. The selection of a suitable prior allows us to cope
with the usual ill-posedness of the pansharpening inverse
problems. The variational class is interpretable as particular
case of the Bayesian one, where the target image is estimated
by maximizing the posterior probability density of the full
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resolution image. The works [20], [21], [22] are representative
of the Bayesian and variational classes. As indicated in Table
I, the CS, MRA, and Hybrid classes of methods are detailed
in Sections II-A, II-B, and II-C, respectively. Herein, the
Bayesian class is not addressed in the MS+PAN context. It
is addressed in detail, however, in Section II-D in the context
of HS+PAN fusion.

With the increasing availability of HS systems, the pan-
sharpening methods are now extending to the fusion of HS
and panchromatic images [23], [24], [25], [26]. Pansharp-
ening of HS images is still an open issue, and very few
methods are presented in the literature to address it. The
main advantage of HS image with respect to MS one is the
more accurate spectral information they provide, which clearly
benefits many applications such as unmixing [27], change
detection [28], object recognition [29], scene interpretation
[30] and classification [31]. Several of the methods designed
for HS pansharpening were originally designed for the fusion
of MS and HS data[32]–[36], the MS data constituting the high
spatial resolution image. In this case, HS pansharpening can be
seen as a particular case, where the MS image is composed of
a single band, and thus reduces to a PAN image. In this paper,
we divide these methods into two classes: Bayesian methods
and matrix factorization based methods. In Section II-D, we
briefly present the algorithms of [33], [36], and [35] of the
former class and in Section II-E the algorithm of [32] of the
latter class.

As one may expect, performing pansharpening with HS
data is more complex than performing it with MS data.
Whereas PAN and MS data are usually acquired almost in
the same spectral range, the spectral range of an HS image
normally is much wider than the one of the corresponding
PAN image. Usually, the PAN spectral range is close to
the visible spectral range of 0.4 − 0.8µm (for example, the
advanced land imager–ALI–instrument acquires PAN data in
the range 0.48 − 0.69µm). The HS range often covers the
visible to the shortwave infrared (SWIR) range (for example,
Hyperion acquires HS data in the range 0.4−2.5µm, the range
0.8−2.5µm being not covered by the PAN data). The difficulty
that arises, consists in defining a fusion model that yields good
results in the part of the HS spectral range that is not covered
by PAN data,in which the high resolution spatial information
is missing. This difficulty already existed, to some extent, in
MS+PAN pansharpening, but it is much more severe in the
HS+PAN case.

To the best of the authors’ knowledge, there is currently
no study comparing different fusion methods for HS data,
particularly on datasets where the spectral domain of the HS
image is larger than the one of the PAN image. This work
aims at addressing this specific issue. The remainder of the
paper is organized as follows. Section II reviews the methods
under study, i.e., CS, MRA, hybrid, Bayesian, and matrix
decomposition approaches. Section III summarizes the quality
assessment measures that will be used to assess the image
fusion results. Experimental results are presented in Section
IV. Conclusions are drawn in Section V.

TABLE I
SUMMARY OF THE DIFFERENT CLASSES OF METHODS CONSIDERED IN
THIS PAPER. WITHIN PARENTHESES, WE INDICATE THE ACRONYM OF

EACH METHOD, FOLLOWED BY THE NUMBER OF THE SECTION IN WHICH
THAT METHOD IS DESCRIBED.

METHODS ORIGINALLY DESIGNED FOR MS PANSHARPENING

Component substitution (CS,
II-A)
Principal Component Analysis
(PCA, II-A1)
Gram Schmidt (GS, II-A2)

Multiresolution analysis (MRA,
II-B)
Smoothing filter-based intensity
modulation (SFIM, II-B1)
Laplacian pyramid (II-B2)

Hybrid methods (II-C)
Guided Filter PCA (GFPCA)

Bayesian methods
Not discussed in this paper

METHODS ORIGINALLY DESIGNED FOR HS PANSHARPENING

Bayesian Methods (II-D)
Naive Gaussian prior (II-D1)
Sparsity promoting prior (II-D2)
HySure (II-D3)

Matrix Factorization (II-E)
Coupled Non-negative Matrix Fac-
torization (CNMF)

II. HYPERSPECTRAL PANSHARPENING TECHNIQUES

This section presents some of the most relevant methods
for HS pansharpening. First, we focus on the adaptation of
the popular CS and MRA MS pansharpening methods for HS
pansharpening. Later, we consider more recent methods based
on Bayesian and matrix factorization approaches. A toolbox
containing MATLAB implementations of these algorithms can
be found online1.

Before presenting the different methods, we introduce no-
tation used along the paper. Bold-face capital letters refer to
matrices and bold-face lower-case letters refer to vectors. The
notation Xk refers to the kth row of X. The operator ()T

denotes the transposition operation. Images are represented by
matrices, in which each row corresponds to a spectral band,
containing all the pixels of that band arranged in lexicographic
order. We use the following specific matrices:
• X = [x1, . . . ,xn] ∈ Rmλ×n represents the full resolution

target image with mλ bands and n pixels; X̂ represents
an estimate of that image.

• YH ∈ Rmλ×m, YM ∈ Rnλ×n, and P ∈ R1×n

represents, respectively, the observed HS, MS, and PAN
images, nλ denoting the number of bands of the MS
image and m the total number of pixel in the YH image.

• ỸH ∈ Rmλ×n represents the HS image YH interpolated
at the scale of the PAN image.

We denote by d =
√
m/n the down-sampling factor,

assumed to be the same in both spatial dimensions.

A. Component Substitution

CS approaches rely upon the projection of the higher
spectral resolution image into another space, in order to
separate spatial and spectral information [6]. Subsequently, the
transformed data are sharpened by substituting the component
that contains the spatial information with the PAN image (or
part of it). The greater the correlation between the PAN image

1http://openremotesensing.net

http://openremotesensing.net
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and the replaced component, the less spectral distortion will
be introduced by the fusion approach [6]. As a consequence,
a histogram-matching procedure is often performed before
replacing the PAN image. Finally, the CS-based fusion process
is completed by applying the inverse spectral transformation
to obtain the fused image.

The main advantages of the CS-based fusion techniques are
the following: i) high fidelity in rendering the spatial details
in the final image [37], ii) fast and easy implementation [8],
and iii) robustness to misregistration errors and aliasing [38].
On the negative side, the main shortcoming of this class of
techniques is the generation of a significant spectral distortion,
cause by the spectral mismatch between the PAN and the HS
spectral ranges [6].

Following [4], [39], a formulation of the CS fusion scheme
is given by

X̂k = Ỹk
H + gk (P−OL) , (1)

for k = 1, . . . ,mλ, where X̂k denotes the kth band of the
estimated full resolution target image, g = [g1, . . ., gmλ ]T is
a vector containing the injection gains, and OL is defined as

OL =

mλ∑
i=1

wiỸ
i
H, (2)

where the weights w = [w1, . . . , wi, . . . , wmλ ]T measure
the spectral overlap among the spectral bands and the PAN
image [6], [40].

The CS family includes many popular pansharpening ap-
proaches. In [26], three approaches based on principal compo-
nent analysis (PCA) [9] and Gram-Schmidt [13], [37] transfor-
mations have been compared for sharpening HS data. A brief
description of these techniques follows.

1) Principal Component Analysis: PCA is a spectral
transformation widely employed for pansharpening applica-
tions [9]. It is achieved through a rotation of the original data
(i.e., a linear transformation) that yields the so-called principal
components (PCs). The hypothesis underlying its application
to pansharpening is that the spatial information (shared by all
the channels) is concentrated in the first PC, while the spectral
information (specific to each single band) is accounted for
the other PCs. The whole fusion process can be described by
the general formulation stated by Eqs. (1) and (2), where the
vectors w and g of coefficient vectors are derived by the PCA
procedure applied to the HS image.

2) Gram-Schmidt: The Gram-Schmidt transformation, of-
ten exploited in pansharpening approaches, was initially pro-
posed in a patent by Kodak [13]. The fusion process starts by
using, as the component, a synthetic low resolution PAN image
IL at the same spatial resolution as the HS image2. A complete
orthogonal decomposition is then performed, starting with that
component. The pansharpening procedure is completed by
substituting that component with the PAN image, and inverting
the decomposition. This process is expressed by (1) using the

2GS is a more general method than PCA. PCA can be obtained, in GS, by
using the first PC as the low resolution panchromatic image [41].

gains [37]

gk =
cov(Ỹk

H,OL)

var(OL)
(3)

for k = 1, . . . ,mλ, where cov (·, ·) and var (·) denote the
covariance and variance operations. Different algorithms are
obtained by changing the definition of the weights in (2).
The simplest way to obtain this low-resolution PAN image
simply consists of averaging the HS bands (i.e., by setting
wi = 1/mλ, for i = 1, . . . ,mλ). In [37], the authors proposed
an enhanced version, called GS Adaptive (GSA), in which IL
is generated by the linear model in (2) with weights estimated
by the minimization of the mean square error between the
estimated component and a filtered and downsampled version
of the PAN image.

B. Multiresolution Analysis

Pansharpening methods based on MRA apply a spatial
filter to the PAN image for generating details to be injected
into the HS data. The main advantages of the MRA-based
fusion techniques are the following: i) temporal coherence [5]
(see Sect.27.4.4), ii) spectral consistency, and iii) robustness
to aliasing, under proper conditions [38]. On the negative
side, the main shortcomings are i) the implementation is
more complicated due to the design of spatial filters, ii) the
computational burden is usually larger when compared to CS
approaches. The fusion step is summarized as [4], [39]

X̂k = Ỹk
H + Gk ⊗ (P−PL) , (4)

for k = 1, . . . ,mλ, where PL denotes a low-pass version
of P, and the symbol ⊗ denotes element-wise multiplication.
Furthermore, an equalization between the PAN image and the
HS spectral bands is often required. P − PL is often called
the details image, because it is a high-pass version of P, and
Eq. (4) can be seen as describing the way to inject details
into each of the bands of the HS image. According to (4), the
approaches belonging to this category can differ in i) the type
of PAN low pass image PL that is used, and ii) the definition
of the gain coefficients Gk. Two common options for defining
the gains are:

1) Gk = 1 for k = 1, . . . ,mλ, where 1 is an appropriately
sized matrix with all elements equal to 1. This choice
identifies the so-called additive injection scheme;

2) Gk = Ỹk
H�PL for k = 1, . . . ,mλ, where the symbol �

denotes element-wise division. In this case, the details
are weighted by the ratio between the upsampled HS
image and the low-pass filtered PAN one, in order
to reproduce the local intensity contrast of the PAN
image in the fused image [42]. This coefficient selection
is often referred to as high pass modulation (HPM)
method or multiplicative injection scheme. Some pos-
sible numerical issues could appear due to the division
between Ỹk

H and PL for low value of PL creating
fused pixel with very high value. In our toolbox this
problem is addressed by clipping these values by using
the information given by the dynamic range.

In the case of HS pansharpening, some further consider-
ations should be taken into account. Indeed, the PAN and
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HS images are rarely acquired with the same platform. Thus,
the ratio between the spatial resolutions of the PAN and HS
images may not always be an integer number, or a power of
two. This implies that some of the conventional approaches
initially developed for MS images cannot be extended in a
simple way to HS images (for example, dyadic wavelet-based
algorithms cannot be applied in these conditions).

1) Smoothing Filter-based Intensity Modulation (SFIM):
The direct implementation of Eq. (4) consists of applying a
single linear time-invariant (LTI) low pass filter (LPF) hLP to
the PAN image P for obtaining PL. Therefore, we have

X̂k = Ỹk
H + gk (P−P ∗ hLP ) (5)

for k = 1, . . . ,mλ, where the symbol ∗ denotes the convolu-
tion operator. The SFIM algorithm [43] sets hLP to a simple
box (i.e., an averaging) filter and exploits HPM as the details
injection scheme.

2) Laplacian Pyramid: The low-pass filtering needed to
obtain the signal PL at the original HS scale can be performed
in more than one step. This is commonly referred to as
pyramidal decomposition and dates back to the seminal work
of Burt and Adelson [17]. If a Gaussian filter is used to low-
pass filter the images in each step, one obtains a so-called
Gaussian pyramid. The differences between consecutive levels
of a Gaussian pyramid define the so-called Laplacian pyramid.
The suitability of the latter to the pansharpening problem
has been shown in [44]. Indeed, Gaussian filters can be
tuned to closely match the sensor modulation transfer function
(MTF). In this case, the unique parameter that characterizes
the whole distribution is the Gaussian’s standard deviation,
which is determined from sensor-based information (usually
from the value of the amplitude response at the Nyquist
frequency, provided by the manufacturer). Both additive and
multiplicative details injection schemes have been used in this
framework [42], [45]. They will be referred to as MTF -
Generalized Laplacian Pyramid (MTF-GLP) [45] and MTF-
GLP with High Pass Modulation (MTF-GLP-HPM) [42],
respectively.

C. Hybrid Methods

Hybrid approaches use concepts from different classes of
methods, namely from CS and MRA ones, as explained next.

1) Guided Filter PCA (GFPCA): One of the main chal-
lenges for fusing low-resolution HS and high-resolution
PAN/RGB data is to find an appropriate balance between spec-
tral and spatial preservation. Recently, the guided filter [46] has
been used in many applications (e.g. edge-aware smoothing
and detail enhancement), because of its efficiency and strong
ability to transfer the structures of the guidance image to the
filtering output. Its application to HS data can be found in [47],
where the guided filter was applied to transfer the structures
of the principal components of the HS image to the initial
classification maps.

Here, we briefly describe an image fusion framework which
uses a guided filter in the PCA domain (GFPCA) [48].
The approach won the “Best Paper Challenge” award at
the 2014 IEEE data fusion contest [48], by fusing a low

spatial resolution thermal infrared HS image and a high spatial
resolution, visible RGB image associated with the same scene.
Fig. 1 shows the framework of GFPCA. Instead of using
CS, which may cause spectral distortions, GFPCA uses a
high resolution PAN/RGB image to guide the filtering process
aimed at obtaining superresolution. In this way, GFPCA does
not only preserve the spectral information from the original
HS image, but also transfers the spatial structures of the high
resolution PAN/RGB image to the enhanced HS image. To
speed up the processing, GFPCA first uses PCA to decorrelate
the bands of the HS image, and to separate the information
content from the noise. The first p � mλ PCA channels
contain most of the energy (and most of the information) of
an HS image, and the remaining mλ−p PCA channels mainly
contain noise (recall that mλ is the number of spectral bands of
the HS image). When applied to these noisy (and numerous)
mλ − p channels, the guided filter amplifies the noise and
causes a high computational cost in processing the data, which
is undesirable. Therefore, guided filtering is used to enlarge
only the first k PCA channels, preserving the structures of
the PAN/RGB image, while cubic interpolation is used to
upsample the remaining channels.

Let PCi, with (i ≤ p), denote the ith PC channel obtained
from the HS image YH, with its resolution increased to that
of the guided image Y (Y may be a PAN or an RGB image)
through bicubic interpolation. The output of the filtering, PC′i,
can be represented as an affine transformation of Y in a local
window ωj of size (2d+ 1)× (2d+ 1) as follows:

PC′i = ajY + bj , ∀i ∈ ωj . (6)

The above model ensures that the output PC′i has an edge
only if the guided image Y has an edge, since ∇(PC′i) =
a∇Y. The following cost function is used to determine the
coefficients aj and bj :

E(aj , bj) =
∑
i∈ωj

[
(ajY + bj − PCi)2 + εa2j

]
, (7)

where ε is a regularization parameter determining the degree
of blurring for the guided filter. For more details about the
guided filtering scheme, we invite the reader to consult [46].
The cost function E leads the term ajY + bj to be as close
as possible to PCi, in order to ensure the preservation of the
original spectral information. Before applying inverse PCA,
GFPCA also removes the noise from the remaining PCA
channels PCRest using a soft-thresholding scheme (similarly
to [49]), and increases their spatial resolution to the resolution

Fig. 1. Fusion of HS and PAN/RGB images with the GFPCA framework.
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of the PAN/RGB image using cubic interpolation only (without
guided filtering).

D. Bayesian Approaches

The fusion of HS and high spatial resolution images, e.g.,
MS or PAN images, can be conveniently formulated within
the Bayesian inference framework. This formulation allows an
intuitive interpretation of the fusion process via the posterior
distribution of the Bayesian fusion model. Since the fusion
problem is usually ill-posed, the Bayesian methodology offers
a convenient way to regularize the problem by defining an
appropriate prior distribution for the scene of interest. Fol-
lowing this strategy, different Bayesian estimators for fusing
co-registered high spatial-resolution MS and high spectral-
resolution HS images have been designed [33]–[36], [50]–
[54]. The observation models associated with the HS and MS
images can be written as follows [50], [55], [56]

YH = XBS + NH

YM = RX + NM
(8)

where X, YH, and YM were defined in Section II, and
• B ∈ Rn×n is a cyclic convolution operator, correspond-

ing to the spectral response of the HS sensor expressed
in the resolution of the MS or PAN image,

• S ∈ Rn×m is a down-sampling matrix with down-
sampling factor d,

• R ∈ Rnλ×mλ is the spectral response of the MS or PAN
sensor,

• NH and NM are the HS and MS noises, assumed to
have zero mean Gaussian distributions with covariance
matrices ΛH and ΛM, respectively.

For the sake of generality, the formulation in this section as-
sumes that the observed data is the pair of matrices (YH,YM).
Since a PAN image can be represented by YM with nλ = 1,
the observation model (8) covers the HS+PAN fusion problem
considered in this paper.

Using geometrical considerations well grounded in the HS
imaging literature devoted to the linear unmixing problem
[27], the high spatial resolution HS image to be estimated is
assumed to live in a low dimensional subspace. This hypothe-
sis is very reliable when the observed scene is composed of a
finite number of macroscopic materials (called endmembers).
Based on the model (8) and on the low dimensional subspace
assumptions, the distributions of YH and YM can be expressed
as follows

YH|U ∼MNmλ,m(HUBS,ΛH, Im),
YM|U ∼MNnλ,n(RHU,ΛM, In)

(9)

whereMN represents the matrix normal distribution [57], the
target image is X = HU, with H ∈ Rmλ×m̃λ containing in
its columns a basis of the signal subspace of size m̃λ � mλ

and U ∈ Rm̃λ×n contains the representation coefficients of X
with respect to H. The subspace transformation matrix H can
be obtained via different approaches, e.g., PCA [58] or vertex
component analysis [59].

According to Bayes’ theorem and using the fact that the
noises NH and NM are independent, the posterior distribution

of U can be written as

p (U|YH,YM) ∝ p (YH|U) p (YM|U) p (U) (10)

or equivalently3

− log p (U|YH,YM)
.
=

1

2

∥∥Λ− 1
2

H (YH −HUBS)
∥∥2
F︸ ︷︷ ︸

HS data term.
=log p(YH|U)

+

1

2

∥∥Λ− 1
2

M (YM −RHU)
∥∥2
F︸ ︷︷ ︸

MS data term.
=log p(YM|U)

+ λφ(U)︸ ︷︷ ︸
regularizer.
=log p(U)

(11)
where ‖X‖F

def
=
√

Tr(XXT ) is the Frobenius norm of X.
An important quantity in the negative log-posterior (11) is the
penalization term φ(U) which allows the inverse problem (8)
to be regularized. The next sections discuss different ways of
defining this penalization term.

1) Naive Gaussian prior: Denote as ui (i = 1, · · · , n) the
columns of the matrix U that are assumed to be mutually
independent and are assigned the following Gaussian prior
distributions

p (ui|µi,Σi) = N (µi,Σi) (12)

where µi is a fixed image defined by the interpolated HS
image projected into the subspace of interest, and Σi is an un-
known hyperparameter matrix. Different interpolations can be
investigated to build the mean vector µi. In this paper, we have
followed the strategy proposed in [50]. To reduce the number
of parameters to be estimated, the matrices Σi are assumed to
be identical, i.e., Σ1 = · · · = Σn = Σ. The hyperparameter
Σ is assigned a proper prior and is estimated jointly with the
other parameters of interest. To infer the parameter of interest,
namely the projected highly resolved HS image U, from
the posterior distribution p (U|YH,YM), several algorithms
have been proposed. In [33], [34], a Markov chain Monte
Carlo (MCMC) method is exploited to generate a collection
of NMC samples that are asymptotically distributed according
to the target posterior. The corresponding Bayesian estimators
can then be approximated using these generated samples. For
instance, the minimum mean square error (MMSE) estimator
of U can be approximated by an empirical average of the
generated samples ÛMMSE ≈ 1

NMC−Nbi

∑NMC
t=Nbi+1 U(t), where

Nbi is the number of burn-in iterations required to reach the
sampler convergence, and U(t) is the image generated in
the tth iteration. The highly-resolved HS image can finally
be computed as X̂MMSE = HÛMMSE. An extension of the
proposed algorithm has been proposed in [53] to handle the
specific scenario of an unknown sensor spectral response. In
[60], a deterministic counterpart of this MCMC algorithm has
been developed, where the Gibbs sampling strategy of [33]
has been replaced with a block coordinate descent method to
compute the maximum a posteriori (MAP) estimator. Finally,
very recently, a Sylvester equation-based explicit solution of

3We use the symbol .
= to denote equality apart from an additive constant.

The additive constants are irrelevant, since the functions under consideration
are to be optimized, and the additive constants don’t change the locations of
the optima.



6

the related optimization problem has been derived in [61],
leading to a significant decrease of the computational com-
plexity.

2) Sparsity promoted Gaussian prior: Instead of incorpo-
rating a simple Gaussian prior or smooth regularization for
the HS and MS fusion [34], [50], [51], a sparse represen-
tation can be used to regularize the fusion problem. More
specifically, image patches of the target image (projected
onto the subspace defined by H) are represented as a sparse
linear combination of elements from an appropriately chosen
over-complete dictionary with columns referred to as atoms.
Learning the dictionary from the observed images instead of
using predefined bases [62]–[64] generally improves image
representation [65], which is preferred in most scenarios.
Therefore, an adaptive sparse image-dependent regularization
can be explored to solve the fusion problem (8). In [36], the
following regularization term was introduced:

φ(U) ∝ − log p (U)
.
=

1

2

m̃λ∑
k=1

∥∥Uk − P
(
D̄kĀk

) ∥∥2
F
, (13)

where
• Uk ∈ Rn is the kth band (or row) of U ∈ Rm̃λ×n, with
k = 1, . . . , m̃λ,

• P(·) : Rnp×npat 7→ Rn×1 is a linear operator that averages
the overlapping patches4 of each band, npat being the
number of patches associated with the ith band,

• D̄i ∈ Rnp×nat is the overcomplete dictionary, whose
columns are basis elements of size np (corresponding to
the size of a patch), nat being the number of dictionary
atoms, and

• Āi ∈ Rnat×npat is the code of the ith band.
Inspired by hierarchical models frequently encountered in

Bayesian inference [67], a second level of hierarchy can
be considered in the Bayesian paradigm by including the
code A within the estimation, while fixing the support Ω̄ ,{
Ω̄1, . . . , Ω̄m̃λ

}
of the code A. Once D̄, Ω̄ and H have been

learned from the HS and MS data, maximizing the posterior
distribution of U and A reduces to a standard constrained
quadratic optimization problem with respect to (w.r.t.) U and
A. The resulting optimization problem is difficult to solve
due to its large dimension and due to the fact that the linear
operators H(·)BD and P(·) cannot be easily diagonalized.
To cope with this difficulty, an optimization technique that
alternates minimization w.r.t. U and A has been introduced
in [36] (where details on the learning of D̄, Ω̄ and H can be
found). In [61], the authors show that the minimization w.r.t.
U can be achieved analytically, which greatly accelerates the
fusion process.

3) HySure: The works [35], [54] introduce a convex reg-
ularization problem which can be seen under a Bayesian
framework. The proposed method uses a form of vector total
variation (VTV) [68] for the regularizer φ(U), taking into
account both the spatial and the spectral characteristics of
the data. In addition, another convex problem is formulated
to estimate the relative spatial and spectral responses of the

4A decomposition into overlapping patches was adopted, to prevent the
occurrence of blocking artifacts [66].

sensors B and R from the data themselves. Therefore, the
complete methodology can be classified as a blind superreso-
lution method, which, in contrast to the classical blind linear
inverse problems, is tackled by solving two convex problems.

The VTV regularizer (see [68]) is given by

φ
(
U
)

=

n∑
j=1

√√√√ m̃λ∑
k=1

{[
(UDh)kj

]2
+
[
(UDv)kj

]2}
, (14)

where Ak
j denotes the element in the kth row and jth column

of matrix A, and the products by matrices Dh and Dv

compute the horizontal and vertical discrete differences of an
image, respectively, with periodic boundary conditions.

The HS pansharpened image is the solution to the following
optimization problem

minimize
U

1

2

∥∥∥YH −HUBS
∥∥∥2
F

+
λm
2

∥∥∥YM −RHU
∥∥∥2
F

+ λφφ
(
U), (15)

where λm and λφ control the relative weights of the different
terms. The optimization problem (15) is hard to solve, es-
sentially for three reasons: the downsampling operator BS is
not diagonalizable, the regularizer φ

(
U) is nonquadratic and

nonsmooth, and the target image has a very large size. These
difficulties were tackled by solving the problem via the split
augmented lagrangian shrinkage algorithm (SALSA) [69], an
instance of ADMM. As an alternative, the main step of the
ADMM scheme can be conducted using an explicit solution
of the corresponding minimization problem, following the
strategy in [61].

The relative spatial and spectral responses B and R were
estimated by solving the following optimization problem:

minimize
B,R

∥∥RYH −YMBS
∥∥2 + λBφB(B) + λRφR(R)

(16)
where φB(·) and φr(·) are quadratic regularizers and λb, λR ≥
0 are their respective regularization parameters.

E. Matrix factorization

The matrix factorization approach for HS+MS fusion es-
sentially exploits two facts: 1) A basis or dictionary H for
the signal subspace can be learned from the HS observed
image YH, yielding the factorization X = HU; 2) using this
decomposition in the second equation of (9) and for negligible
noise, i.e., NM ' 0, we have YH = RHU. Assuming that
the columns of RH are full rank or that the columns of U
admit a sparse representation w.r.t. the columns of RH, then
we can recover the true solution, denoted by Û, and use it to
compute the target image as X̂ = HÛ. The works [32], [70]–
[74] are representative of this line of attack. In what follow,
we detail the application of the coupled nonnegative matrix
factorization (CNMF) [32] to the HS+PAN fusion problem.

The CNMF was proposed for the fusion of low spatial
resolution HS and high spatial resolution MS data to produce
fused data with high spatial and spectral resolutions [32]. It
is applicable to HS pansharpening as a special case, in which
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the higher spatial resolution image has a single band [75].
CNMF alternately unmixes both sources of data to obtain the
endmember spectra and the high spatial resolution abundance
maps.

To describe this method, it is convenient to first briefly
introduce linear mixture models for HS images. These models
are commonly used for spectral unmixing, owing to their
physical effectiveness and mathematical simplicity [27]. The
spectrum at each pixel is assumed to be a linear combination
of several endmember spectra. Therefore, X ∈ Rmλ×n is
formulated as

X = HU (17)

where H ∈ Rmλ×p is the signature matrix, containing the
spectral representations of the endmembers, and U ∈ Rp×n
is the abundance matrix, containing the relative abundances
of the different endmembers at the various pixels, with p
representing the number of endmembers. By substituting (17)
into (8), YH and YM can be approximated as

YH ≈ HUH

YM ≈ HMU
(18)

where UH = UBS and HM = RH. CNMF alternately
unmixes YH and YM in the framework of nonnegative matrix
factorization (NMF) [76] to estimate H and U under the
constraints of the relative sensor characteristics. CNMF starts
with NMF unmixing of the low spatial resolution HS data.
The matrix H can be initialized using, for example, the vertex
component analysis (VCA) [59], and H and UH are then
alternately optimized by minimizing ‖YH − HUH‖2F using
Lee and Seung’s multiplicative update rules [76]. Next, U
is estimated from the higher spatial resolution data. HM is
set to RH and U is initialized by the spatially up-sampled
matrix of UH obtained by using bilinear interpolation. For
HS pansharpening (nλ=1), only U is optimized by minimizing
‖YM−HMU‖2F with the multiplicative update rule, whereas
both HM and U are alternately optimized in the case of
HS+MS data fusion. Finally, the high spatial resolution HS
data can be obtained by the multiplication of H and U.
The abundance sum-to-one constraint is implemented using
a method given in [77], where the data and signature matrices
are augmented by a row of constants. The relative sensor
characteristics, such as BS and R, can be estimated from
the observed data sources [78].

III. QUALITY ASSESSMENT OF FUSION PRODUCTS

Quality assessment of a pansharpened real-life HS image
is not an easy task [79], [9], since a reference image is
generally not available. When such an image is not available,
two kinds of comparisons can be performed: i) Each band
of the fused image can be compared with the PAN image,
with an appropriate criterion. The PAN image can also be
compared with the PAN image reconstructed from the fused
image. ii) The fused image can be spatially degraded to the
resolution of the original HS image. The two images can then
be compared, to assess to what extent the spectral information
has been modified by the fusion method.

In order to be able to use a reference image for quality
assessment, one normally has to resort to the use of semi-
synthetic HS and PAN images. In this case, a real-life HS
image is used as reference. The HS and PAN images to be
processed are obtained by degrading this reference image. A
common methodology for obtaining the degraded images is
Wald’s protocol, described in the next subsection. In order
to evaluate the quality of the fused image with respect to
the reference image, a number of statistical measures can be
computed. The most widely used ones are described ahead,
and used in the experiments reported in Section IV-B.

A. Wald’s Protocol

A general paradigm for quality assessment of fused images
that is usually accepted in the research community was first
proposed by Wald et al. [79]. This paradigm is based on
two properties that the fused data have to have, as much as
possible, namely consistency and synthesis properties. The
first property requires the reversibility of the pansharpening
process: it states that the original HS image should be obtained
by properly degrading the pansharpened image. The second
property requires that the pansharpened image be as similar
as possible to the image of the same scene that would be
obtained, by the same sensor, at the higher resolution. This
condition entails that both the features of each single band
and the mutual relations among bands have to be preserved.
However, the definition of an assessment method that fulfills
these constraints is still an open issue [80], [81], and closely
relates to the general discussion regarding image quality
assessment [82] and image fusion [83], [84].

Wald’s protocol for assessing the quality of pansharpen-
ing methods [79], depicted in Fig. 2, synthetically generates
simulated observed images from a reference HS image, and
then evaluates the pansharpening methods’ results against that
reference image. The protocol consists of the following steps:
• Given a HS image, X, to be used as reference, a sim-

ulated observed low spatial resolution HS image, YH,
is obtained by applying a Gaussian blur to X, and then
downsampling the result by selecting one out of every
d pixels in both the horizontal and vertical directions,
where d denotes the downsampling factor.

• A simulated PAN image, P, is obtained by multiplying
the reference HS image, on the left, by a suitably chosen
spectral response vector, P = rTX.

• The pansharpening method to be evaluated is applied
to the simulated observations YH and P, yielding the
estimated superresolution HS image, X̂.

• Finally, the estimated superresolution HS image and the
reference one are compared, to obtain quantitative quality
measures.

B. Quality Measures

Several quality measures have been defined in the literature,
in order to determine the similarity between estimated and
reference spectral images. These measures can be generally
classified into three categories, depending on whether they
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Fig. 2. Flow diagram of the experimental methodology, derived from Wald’s
protocol (simulated observations), for synthetic and semi-real datasets.

attempt to measure the spatial, spectral or global quality of
the estimated image. This review is limited to the most widely
used quality measures, namely the cross correlation (CC),
which is a spatial measure, the spectral angle mapper (SAM),
which is a spectral measure, and the root mean squared
error (RMSE) and erreur relative globale adimensionnelle de
synthèse (ERGAS) [85], which are global measures. Below
we provide the formal definitions of these measures operating
on the estimated image X̂ ∈ Rmλ×n and on the reference
HS image X ∈ Rmλ×n. In the definitions, x̂j and xj denote
the jth columns of X̂ and X, respectively, the matrices
A,B ∈ R1×n denote two generic single-band images, and
Ai denotes the ith element of A.

1) Cross correlation: CC, which characterizes the geomet-
ric distortion, is defined as

CC(X̂,X) =
1

mλ

mλ∑
i=1

CCS(X̂i,Xi), (19)

where CCS is the cross correlation for a single-band image,
defined as

CCS(A,B) =

∑n
j=1(Aj − µA)(Bj − µB)√∑n

j=1(Aj − µA)2
∑n
j=1(Bj − µB)2

,

where, µA = (1/n)
∑n
j=1 Aj is the sample mean of A. The

ideal value of CC is 1.
2) Spectral angle mapper: SAM, which is a spectral mea-

sure, is defined as

SAM(X̂,X) =
1

n

n∑
j=1

SAM(x̂j ,xj), (20)

where, given the vectors a,b ∈ Rmλ ,

SAM(a,b) = arccos

(
〈a,b〉
‖a‖‖b‖

)
, (21)

〈a,b〉 = aTb is inner product between a and b, and ‖·‖ is the
`2 norm. SAM is a measure of the spectral shape preservation.
The optimal value of SAM is 0. The values of SAM reported
in our experiments have been obtained by averaging the values
obtained for all the image pixels.

3) Root mean squared error: The RMSE measures the `2
error between the two matrices X and X̂

RMSE(X̂,X) =
‖X̂−X‖F√
n ∗mλ

(22)

where ‖X‖F =
√

trace(XTX) is the Frobenius norm of X.
The ideal value of RMSE is 0.

4) Erreur relative globale adimensionnelle de synthèse:
ERGAS offers a global indication of the quality of a fused
image. It is defined as

ERGAS(X̂,X) = 100 d

√√√√ 1

mλ

mλ∑
k=1

(
RMSEk
µk

)2

, (23)

where d is the ratio between the linear resolutions of the PAN
and HS images, defined as

d =
PAN linear spatial resolution
HS linear spatial resolution

,

RMSEk =
‖X̂k −Xk‖F√

n
, µk is the sample mean of the kth

band of X. The ideal value of ERGAS is 0.

IV. EXPERIMENTAL RESULTS

A. Datasets

The datasets that were used in the experimental tests were
all semi-synthetic, generated according to the Wald’s protocol.
In all cases, the spectral bands corresponding to the absorption
band of water vapor, and the bands that were too noisy, were
removed from the reference image before further processing.
Three real-life HS images have been used as reference images
for the Wald protocol. In the following, we describe the
datasets that were generated from these images. Table II
summarizes their properties. These datasets are expressed in
spectral luminance (nearest to the sensor output, without pre-
processing) and are correctly registered.

TABLE II
CARACTERISTIC OF THE THREE DATASETS

dataset dimensions spatial res N instrument

Moffett
PAN 185× 395

HS 37× 79

20m
100m

224 AVIRIS

Camargue
PAN 500× 500

HS 100× 100

4m
20m

125 HyMap

Garons
PAN 400× 400

HS 80× 80

4m
20m

125 HyMap
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1) Moffett field dataset: This dataset represents a mixed
urban/rural scene. The dimensions of the PAN are 185× 395
with a spatial resolution of 20m whereas the size of the HS
image is 37 × 79 with a spatial resolution of 100m (which
means a spatial resolution ratio of 5 between the two images).
The HS image has been acquired by the airborne hyperspec-
tral instrument airborne visible infrared image spectrometer
(AVIRIS). This instrument is characterized by 224 bands
covering the spectral range 0.4− 2.5µm.

2) Camargue dataset: This dataset represents a rural area
with different kind of crops. The dimensions of the PAN
image are 500 × 500 pixels with a spatial resolution of 4m
whereas the size of the HS image is 100× 100 pixels with a
spatial resolution of 20m, (which means a spatial resolution
ratio of 5 between the two images). The HS image has been
acquired by the airborne hyperspectral instrument HyMap
(Hyperspectral Mapper) in 2007. The hyperspectral instrument
is characterized by 125 bands covering the spectral range
0.4− 2.5µm.

3) Garons dataset: This dataset represents a rural area with
a small village. The dimension of the PAN image are 400×400
with a spatial resolution of 4m whereas the size of the HS
image is 80 × 80 with a spatial resolution of 20m, (which
means a spatial resolution ratio of 5 between the two images).
This dataset has been acquired with the HyMap instrument in
2009.

B. Results and Discussion

Methods presented in Section II have been applied on
the three datasets presented in Section IV-A and analyzed
following the Wald’s Protocol (Section III-B). Tables III, IV, V
report their quantitative evaluations with respect to the quality
measures detailed in Section III-B.

TABLE III
QUALITY MEASURES FOR THE MOFFETT FIELD DATASET

method CC SAM RMSE ERGAS
SFIM 0.92955 9.5271 365.2577 6.5429

MTF-GLP 0.93919 9.4599 352.1290 6.0491
MTF-GLP-HPM 0.93817 9.3567 354.8167 6.1992

GS 0.90521 14.1636 443.4351 7.5952
GSA 0.93857 11.2758 363.7090 6.2359
PCA 0.89580 14.6132 463.2204 7.9283

GFPCA 0.91614 11.3363 404.2979 7.0619
CNMF 0.95496 9.4177 314.4632 5.4200

Bayesian Naive 0.97785 7.1308 220.0310 3.7807
Bayesian Sparse 0.98168 6.6392 200.3365 3.4281

HySure 0.97059 7.6351 254.2005 4.3582

Figures 3, 4, 5 represent the RMSEs per pixel between
the image estimated by some methods and the reference
image for the three considered datasets. Note that, for sake of
conciseness, some methods have not been considered here but
only their improved versions are presented. More specifically,
GS has been removed since GSA is an improved version of
GS. Indeed, GSA is expected to give better results than GS

TABLE IV
QUALITY MEASURES FOR THE CAMARGUE DATASET

method CC SAM RMSE ERGAS
SFIM 0.91886 4.2895 637.1451 3.4159

MTF-GLP 0.92397 4.3378 622.4711 3.2666
MTF-GLP-HPM 0.92599 4.2821 611.9161 3.2497

GS 0.91262 4.4982 665.0173 3.5490
GSA 0.92826 4.1950 587.1322 3.1940
PCA 0.90350 5.1637 710.3275 3.8680

GFPCA 0.89042 4.8472 745.6006 4.0001
CNMF 0.9300 4.4187 591.3190 3.1762

Bayesian Naive 0.95195 3.6428 489.5634 2.6286
Bayesian Sparse 0.95882 3.3345 448.1721 2.4712

HySure 0.9465 3.8767 511.8525 2.8181

TABLE V
QUALITY MEASURES FOR THE GARONS DATASET

method CC SAM RMSE ERGAS
SFIM 0.77052 6.7356 1036.4695 5.1702

MTF-GLP 0.80124 6.6155 956.3047 4.8245
MTF-GLP-HPM 0.79989 6.6905 962.1076 4.8280

GS 0.80347 6.6627 1037.6446 5.1373
GSA 0.80717 6.7719 928.6229 4.7076
PCA 0.81452 6.6343 1021.8547 5.0166

GFPCA 0.63390 7.4415 1312.0373 6.3416
CNMF 0.82993 6.9522 893.9194 4.4927

Bayesian Naive 0.86857 5.8749 784.1298 3.9147
Bayesian Sparse 0.87834 5.6377 750.3510 3.7629

HySure 0.86080 6.0224 778.1051 4.0454

thanks to its adaptive estimation of the weight for generating
the equivalent PAN image from the HS image, which allows
the spectral distortion to be reduced. Bayesian naive approach
has been also removed since the sparsity-based approach relies
on a more complex prior and gives also better results. MTF-
GLP and MTF-GLP-HPM yield similar results so only the
latter has been considered.

Figures 6 and 7 show extracts of the final result obtained
by the considered methods on the Camargue dataset in the
visible (R= 704.39nm, G= 557.90nm, B= 454.5nm) and
in the SWIR (R= 1216.7nm, G= 1703.2nm, B= 2159.8nm)
domains, respectively.

Figures 8, 9 and 10 show pixel spectra recovered by the
fusion methods, which correspond to 10th, 50th and 90th
percentile of RMSE, respectively. Those spectra have been
selected by choosing GSA as the reference for RMSE value.
GSA have been chosen since it is a classical approach that
has been widely used in literature and also gives good results.
To ensure a reasonable number of figures, only visual results
and some spectra of the Camargue dataset has been reported
in this article. The results for the two other datasets can be
found in the supporting document [86] available online5. In

5http://openremotesensing.net

http://openremotesensing.net
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Fig. 3. RMSE between the methods’ result and the reference image, per
pixel for the Moffett field dataset

Fig. 4. RMSE between the methods’ result and the reference image, per
pixel for the Camargue dataset

Fig. 5. RMSE between the methods’ result and the reference image, per
pixel for the Garons dataset

particular, because of the nature of the Garons dataset (village
with lot of small buildings) and the chosen ratio of 5, worse
results have been obtained than for the two first datasets since

                                  (a)                                                                          (b)

                                  (i)                                                                          (j)

                                  (c)                                                                          (d)                                                                        (e)

                                  (f )                                                                          (g)                                                                        (h)

Fig. 6. Details of original and fused Camargue dataset HS image in the
visible domain. (a) reference image, (b) interpolated HS image, (c) SFIM,
(d) MTF-GLP-HPM, (e) GSA, (f) PCA, (g) GFPCA, (h) CNMF, (i) Bayesian
Sparse, (j) HySure

a lot of mixing is presented in the HS image.
A visual analysis of the result shows that most of the fusion

approaches considered in this paper give good results, excepted
two methods: PCA and GFPCA. PCA belongs to the class of
CS methods which are known to be characterized by their high
fidelity in rendering the spatial details but their generation of
significant spectral distortion. This is clearly visible in Figure
6 (f), where significant differences of color can be observed
with respect to the reference image, in particular when exam-
ining the different fields. GFPCA here also performs poorly.
Compared with PCA, there is less spectral distortion but the
included spatial information seems to be not sufficient, since
the fused image is significantly blurred. Spatial information
provided by PCA is better since the main information of HS
image (where the spatial information is contained) is replaced
by the high spatial information contained in the PAN image.
When using GFPCA, the guided filter controls the amount of
spatial information added to the data, so not all the spatial
information may be added to avoid to modify the spectral
information too much. For the Moffett field dataset, GFPCA
performs a little bit better since, in this dataset, there is a lot
of large areas. Thus blur is less present whereas, in the Garons
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                                  (a)                                                                          (b)

                                  (i)                                                                          (j)

                                  (c)                                                                          (d)                                                                        (e)

                                  (f )                                                                          (g)                                                                        (h)

Fig. 7. Details of original and fused Camargue dataset HS image in the
SWIR domain. (a) reference image, (b) interpolated HS image, (c) SFIM, (d)
MTF-GLP-HPM, (e) GSA, (f) PCA, (g) GFPCA, (h) CNMF, (i) Bayesian
Sparse, (j) HySure

Fig. 8. Luminance of the pixel corresponding to the 10th percentile of the
RMSE (Camargue dataset)

dataset, GFPCA performs worse since this image consists of
numerous small features, leading to more blurring effects. As a
consequence, in this case, GFPCA performs worse than PCA.

To analyze the spectrum in detail, chosen thanks to RMSE

Fig. 9. Luminance of the pixel corresponding to the 50th percentile of the
RMSE (Camargue dataset)

Fig. 10. Luminance of the pixel corresponding to the 90th percentile of the
RMSE (Camargue dataset)

percentiles, some additional information about the correspond-
ing pixels are needed. Fig. 9 corresponds to a pixel in the
reference image which represents a red building. Since in the
HS image this building is mixed with its neighborhood, we do
not have the same information between the reference image
(“pure” spectrum) and the HS image (“mixed” spectrum). Fig.
8 corresponds to a pixel in a vegetation area, no mixing is
present and very good results have been obtained for all the
methods. For Fig. 10, the pixel belongs to a small building
not visible in the HS image and spectral mixing is then
also present. More generally, spectra in the HS and reference
images differ since some mixing processes occur in the HS
image. Thus, the HS pansharpening methods are expected to
provide spectra that are more similar to the HS spectra (which
contains the available spectral information) than the reference
(which has information missing in the HS which should not
be found in the result, unless successful unmixing has been
conducted). However, it is important to note that for Fig.9,
Bayesian methods and HySure successfully recover spectra
that are more similar to the reference spectrum than the HS
spectrum.
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Table VI report the computational times required by each
HS pansharpening methods on the Camargue dataset those
values have been obtained with a Intel Core i5 3230M 2.6
GHz with 8 GB RAM. Based on this table, these methods can
be classified as follows:
• Methods which do not work well for HS pansharpening:

PCA, GS, GFPCA
• Methods which work well with a low time of computation

(few seconds): GSA, MRA methods, Bayesian Naive
• Methods which work well with an average time of

computation (around one minute): CNMF
• Methods which work well (slightly better) with an impor-

tant time of computation (few minutes, depends greatly
on the size of the dataset): Bayesian Sparse and HySure.

TABLE VI
COMPUTATIONAL TIMES OF THE DIFFERENT METHODS (IN SECONDS)

method Moffett Camargue Garons
SFIM 1.26 3.47 2.74

MTF-GLP 1.86 4.26 4.00
MTF-GLP-HPM 1.71 4.25 2.98

GS 4.77 8.29 5.56
GSA 5.52 8.73 5.99
PCA 3.46 8.92 6.09

GFPCA 2.58 8.51 4.36
CNMF 10.98 47.54 23.98

Bayesian Naive 1.31 7.35 3.07
Bayesian Sparse 133.61 485.13 259.44

HySure 140.05 296.27 177.60

To summarize, the comparison of the different methods
performances for RMSE curves and quality measures confirms
than PCA and GFPCA does not provide good results for
HS pansharpening (GFPCA is know to perform much better
on HS+RGB data). The other methods perform well, with
Bayesian approaches having slightly better result but with a
higher computational cost. The favorable fusion performance
obtained by the Bayesian methods can be explained, in part,
by the fact that they rely on a forward modeling of the PAN
and HS images and explicitly exploit the spatial and spectral
degradations applied to the target image. However, these
algorithms may suffer from performance discrepancies when
the parameters of these degradations (i.e., spatial blurring
kernel, sensor spectral response) are not perfectly known. In
particular, when these parameters are fully unknown and need
to be fixed, they can be estimated jointly with the fused image,
as in [53], or estimated from the MS and HS images in a pre-
processing step, following the strategies in [78] or [35]. CS
methods are fast to compute and easy to implement. They
provide good spatial results but poor spectral results with
significant spectral distortions, in particular when considering
PCA and GS. GSA provides better results than the two other
methods thanks to its adaptive weight estimation reducing the
spectral distortion of the equivalent PAN image created from
the HS image. MRA methods are fast, MTF-based methods
give better results than SFIM and perform as well as the most

competitive algorithms with higher computational complexity.
SFIM does not perform as well than the other MRA methods
since it used a box filter which should give less good result. In
our experimentations, results from SFIM are not so different
from those obtained with the MTF-based methods. This may
come from the fact that semi-synthetic datasets are used so
MTF may not be fully used to its potential. Table VII report
these pro and cons associated with each HS pansharpening
method.

Finally, note that, in our experimentations, no registration
error and temporal misalignment have been considered, which
suggests that the robustness of the different methods has
not been fully analyzed. When such problems may occur,
CS and MRA methods may perform better thanks to their
great robustness. In particular, CS methods are robust against
misregistration error and aliasing, whereas MRA approaches
are robust against aliasing and temporal misalignment. It is
also worthy to note that the quality of a fusion method should
also be related to a specific application (such as classification
or target detection). Indeed, a method providing images with
good performance metrics may or may not be the best for this
specific application.

V. CONCLUSION

In this paper a qualitative and quantitative comparison
of 11 different HS pansharpening methods was conducted,
considering classical MS pansharpening techniques adapted
to the HS context, and methods originally designed for HS
pansharpening. More precisely, five classes of methods were
presented: CS, MRA, Hybrid, Bayesian and matrix factoriza-
tion. Those methods were evaluated on three different datasets
representative of various scenario: mixed urban/rural area,
rural area and urban area.

A careful analysis of their performances suggested a classifi-
cation of these methods into four groups: i) Methods with poor
fusion results (CS-based methods and GFPCA), ii) Methods
with good fusion performances and low computational costs
(MRA methods, GSA and Bayesian naive) that may be suit-
able for fusing large scale images, which is often the case
for spaceborne hyperspectral imaging missions, iii) Methods
with good fusion performances and reasonable computational
costs (CNMF), iv) Methods with slightly better fusion results
but with higher computational costs (HySure and Bayesian
Sparse). Those results were obtained with semi-synthetic
datasets with no registration error or temporal misalignment.
Thus robustness of the methods against these issues were
not taken into account. When such problems may happen,
different results could be obtained and classical pansharpening
methods (CS and MRA) may give better results thanks to their
robustness to these specific issues.

The experiments and the quality measures presented in this
paper were performed using MATLAB implementations of the
algorithms. A MATLAB toolbox is made available online6 to
the community to help improving and developing new HS
pansharpening methods and to facilitate comparison of the
different methods.

6http://openremotesensing.net

http://openremotesensing.net
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TABLE VII
PROS AND CONS OF EACH METHODS

method pros cons

SFIM
II.B.1

1) Low computational
complexity

1) Reduced performance
when compared to MTF
methods (since it uses a
box filter)

MTF-GLP
II.B.2

1) Performs well
2) Low computational
complexity

MTF-GLP-HPM
II.B.2

1) Performs well
2) Low computational
complexity

GS
II.A.2

1) Spatial information
is well preserved
2) Low computational
complexity
3) Easy implementation

1) Low performance
for HS images
2) Significant spectral
distortion

GSA
II.A.2

1) Spatial information
is well preserved
2) Spectral distortion
is reduced (compared
to GS)
3) Low computational
complexity
4) Easy implementation

PCA
II.A.1

1) Spatial information
is well preserved
2)Low computational
complexity
3) Easy implementation

1) Low performance
for HS images
2) Significant spectral
distortion

GFPCA
II.C.1

1) Spectral information
is well preserved
2) Low computational
complexity

1) Low performance
for HS images (work
better with RGB images)
2) Not enough spatial
information added (lot
of blur)

CNMF
II.E.1

1) Good results
(spatial and spectral)

1) Sensor characteristics
required
2) Medium computational
cost

Bayesian Naive
II.D.1

1) Good results
(spatial and spectral)
2) Low computational
complexity

1) Sensor characteristics
required

Bayesian Sparse
II.D.2

1) Good results
(spatial and spectral)

1) high computational
cost
2) Sensor characteristics
required

HySure
II.D.3

1) Good results
(spatial and spectral)

1) high computational
cost

VI. ACKNOWLEDGMENT

The Garons and Camargue datasets were acquired in
the frame of the PRF Enviro program (internal federa-
tive project lead at ONERA). This work was partially

supported by the Fundacc ao para a Ciência e Tecnolo-
gia, Portuguese Ministry of Science and Higher Education
(UID/EEA/50008/2013), project PTDC/EEI-PRO/1470/2012,
and grant SFRH/BD/87693/2012. Part of this work has been
also supported by the Hypanema ANR Project n◦ANR-12-
BS03-003 and by ANR-11-LABX-0040-CIMI within the pro-
gram ANR-11-IDEX-0002-02. This work was supported by
the SBO-IWT project Chameleon: Domain-specific Hyper-
spectral Imaging Systems for Relevant Industrial Applications,
and FWO project G037115N “Data fusion for image analysis
in remote sensing”. This work is supported by China Schol-
arship Council. This work is supported by DGA (Direction
Generale de l’Armement). This work was finally supported by
the ERC CHESS (CHallenges in Extraction and Separation
of Sources) and by ANR HYEP ANR 14-CE22-0016-01
(Agence National de la Recherche, Hyperspectral Imagery for
Environmental Planning).

REFERENCES

[1] [Online]. Available: http://smsc.cnes.fr/PLEIADES/index.htm
[2] S. Michel, P. Gamet, and M.-J. Lefevre-Fonollosa, “HYPXIM – a

hyperspectral satellite defined for science, security and defence users,”
in Proc. IEEE GRSS Workshop Hyperspectral Image SIgnal Process.:
Evolution in Remote Sens. (WHISPERS), Lisbon, Portugal, June 2011,
pp. 1–4.

[3] L. Alparone, L. Wald, J. Chanussot, C. Thomas, P. Gamba, and L. M.
Bruce, “Comparison of pansharpening algorithms: Outcome of the 2006
GRS-S data fusion contest,” IEEE Trans. Geosci. and Remote Sens.,
vol. 45, no. 10, pp. 3012–3021, Oct. 2007.

[4] G. Vivone, L. Alparone, J. Chanussot, M. Dalla Mura, Garzelli, and
G. Licciardi, “A critical comparison of pansharpening algorithms,” in
Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS), July 2014, pp.
191–194.

[5] B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and M. Selva, “25 years
of pansharpening: a critical review and new developments,” in Signal
and Image Processing for Remote Sensing, 2nd ed., C. H. Chen, Ed.
Boca Raton, FL: CRC Press, 2011, ch. 28, pp. 533–548.

[6] C. Thomas, T. Ranchin, L. Wald, and J. Chanussot, “Synthesis of
multispectral images to high spatial resolution: a critical review of fusion
methods based on remote sensing physics,” IEEE Trans. Geosci. and
Remote Sens., vol. 46, no. 5, pp. 1301–1312, May 2008.

[7] W. Carper, T. M. Lillesand, and P. W. Kiefer, “The use of intensity-
hue-saturation transformations for merging SPOT panchromatic and
multispectral image data,” Photogramm. Eng. Remote Sens., vol. 56,
no. 4, pp. 459–467, April 1990.

[8] T.-M. Tu, S.-C. Su, H.-C. Shyu, and P. S. Huang, “A new look at IHS-like
image fusion methods,” Information Fusion, vol. 2, no. 3, pp. 117–186,
Sept. 2001.

[9] P. S. Chavez Jr., S. C. Sides, and J. A. Anderson, “Comparison of
three different methods to merge multiresolution and multispectral data:
Landsat TM and SPOT panchromatic,” Photogramm. Eng. Remote Sens.,
vol. 57, no. 3, pp. 295–303, March 1991.

[10] P. S. Chavez and A. Y. Kwarteng, “Extracting spectral contrast in
landsat thematic mapper image data using selective principal component
analysis,” Photogramm. Eng. Remote Sens., vol. 55, no. 3, pp. 339–348,
1989.

[11] V. Shettigara, “A generalized component substitution technique for
spatial enhancement of multispectral images using a higher resolution
data set,” Photogramm. Eng. Remote Sens., vol. 58, no. 5, pp. 561–567,
1992.

[12] V. P. Shah, N. Younan, and R. L. King, “An efficient pan-sharpening
method via a combined adaptative-PCA approach and contourlets,” IEEE
Trans. Geosci. and Remote Sens., vol. 56, no. 5, pp. 1323–1335, May
2008.

[13] C. Laben and B. Brower, “Process for enhacing the spatial resolution of
multispectral imagery using pan-sharpening,” U.S. Patent US6 011 875,
2000.

[14] S. Mallat, “A theory for multiresolution signal decomposition: the
wavelet representation,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 11,
no. 7, pp. 674–693, July 1989.

http://smsc.cnes.fr/PLEIADES/index.htm


14

[15] G. P. Nason and B. W. Silverman, “The stationary wavelet transform and
some statistical applications,” in Wavelets and Statistics, A. Antoniadis
and G.Oppenheim, Eds. New York, NY: Springer-Verlag, 1995, vol.
103, pp. 281–299.

[16] M. J. Shensa, “The discrete wavelet transform: wedding the a trous and
Mallat algorithms,” IEEE Trans. Signal Process., vol. 40, no. 10, pp.
2464–2482, Oct. 1992.

[17] P. J.Burt and E. H. Adelson, “The Laplacian pyramid as a compact
image code,” IEEE Trans. Comm., vol. 31, no. 4, pp. 532–540, April
1983.

[18] M. N. Do and M. Vetterli, “The contourlet transform: an efficient
directional multiresolution image representation,” IEEE Trans. Image
Process., vol. 14, no. 12, pp. 2091–2106, Dec. 2005.

[19] J. F. J.-L. Starck and F. Murtagh, “The undecimated wavelet decomposi-
tion and its reconstruction,” IEEE Trans. Image Process., vol. 16, no. 2,
pp. 297–309, Feb. 2007.

[20] C. Ballester, V. Caselles, L. Igual, J. Verdera, and B. Rougé, “A
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