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33076 Bordeaux Cedex, France.
E-mail: mostafa.bendahmane@u-bordeaux2.fr

R. Ruiz-Baier
Institute of Earth Sciences, University of Lausanne
CH-1015, Lausanne, Switzerland.
E-mail: ricardo.ruizbaier@unil.ch

C. Tian
Department of Basic Sciences, Yancheng Institute of Technology
Yancheng 224003, China.
Corresponding author, E-mail: tiancanrong@163.com

Manuscript
Click here to download Manuscript: BRT_superdiffusion_july23.pdf 
Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.editorialmanager.com/jomb/download.aspx?id=70216&guid=8e859083-e9e5-401d-acaf-4439bd4ea39d&scheme=1
http://www.editorialmanager.com/jomb/viewRCResults.aspx?pdf=1&docID=3373&rev=0&fileID=70216&msid={86B0C17F-39A6-4FDE-8F3A-4EB93481E02D}


2 M. Bendahmane, R. Ruiz-Baier & C. Tian

1 Introduction

In population dynamics, a spatially homogeneous competitive system can be modelled with
the so-called Lotka-Volterra system of differential equations written in the form

du

dt
= u(a1 − b11u− b12v),

dv

dt
= v(a2 − b21u− b22v).

In this model, u and v represent the population densities of two competitors, ai are the birth
(or generation) rates of the i−th population, the coefficients bii measure the intra-population
competitive effect of the two competitors, i = 1, 2, and b12, b21 stand for a factor representing
the inter-population competitive effects of u on v, and of v on u, respectively.

As usual, we rescale the system variables:

ū =
b11
a1
u, v̄ =

b22
a1
v, t̄ = a1t, a =

a2
a1
, b =

b21
b11

, c =
b12
b22

,

and after dropping the bars, we find that the interaction of u and v is governed by the following
system of ordinary differential equations

du

dt
= u(1− u− cv),

dv

dt
= v(a− bu− v).

The population density in a spatially heterogeneous environment depends on space, where
normal diffusive terms are usually introduced to the evolution system (see e.g. Okubo and
Levin, 2002). As it is well-known, at molecular level, classical diffusion arises as the result
of the standard Brownian motion, and it is typically characterized by the dependence of the
mean square displacement of a randomly walking particle on time ⟨(∆x)2⟩ ∼ t. Apart from
classical (or normal) diffusion, molecules may undergo anomalous diffusion effects (Bouchard
and Georges, 1990; Metzler and Klafter, 2000, 2004; Sokolov et al., 2002; Golovin et al., 2008;
Gambino et al., 2013), which, in contrast to normal diffusion, need to be characterized by the
more general dependence ⟨(∆x)2⟩ = 2dKαt

α. Here d is the (embedding) spatial dimension,
Kα is a generalized diffusion constant, and the exponent α is not necessarily an integer. For
α = 1, anomalous diffusion reduces to normal diffusion, with the classical diffusion coefficient
set to K1. For α < 1(α > 1), the diffusion process is slower (faster) than normal diffusion,
in which case it is called sub-diffusive (resp., superdiffusive). An important limiting case of
superdiffusion corresponds to Lévy flights (Metzler and Klafter, 2004), which is a phenomenon
occurring in systems where there are long jumps of particles, i.e., with a jump size distribution
having infinite moments. In the context of population dynamics, superdiffusion (rather than
classical diffusion) has been employed as a more appropriate way to describe the motion of
animals (Viswanathan and Afanasyevt, 1996; Schmitt and Seuront, 2001; Toner et al., 2005).

To take into account the movement of populations with Lévy flight type, we are led to the
following fractional reaction diffusion system:

∂tu = d11∇γu+ d12∇γv + u(1− u− cv),

∂tv = d22∇γv + v(a− bu− v).
(1.1)

Here d11 and d22 are the self superdiffusive coefficients, and d12 is the cross superdiffusive
coefficient. The so-called Weyl fractional operator∇γ (1 < γ ≤ 2) represents the superdiffusion,

whose Fourier transform is ∇̂γu(k) = −|k|γ û(k). In one dimension, the Weyl operator is
equivalent to the Riesz operator

∇γu = − 1

2 cos(πγ/2)
(Dγ

+u+Dγ
−u),
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Turing patterns and adaptive discretization for a superdiffusive Lotka-Volterra system 3

Dγ
+u =

1

Γ (2− γ)

d2

dx2

∫ x

−∞

u(ξ, t)

(x− ξ)γ−1
dξ,

Dγ
−u =

1

Γ (2− γ)

d2

dx2

∫ ∞

x

u(ξ, t)

(ξ − x)γ−1
dξ,

where Γ (·) stands for the Gamma function. In higher dimensions, the Weyl operator can be
represented by the fractional Laplacian operator ∇γ = −(−∆)γ/2, and so system (1.1) can be
written as

∂tu+ d11(−∆)γ/2u+ d12(−∆)γ/2v = u(1− u− cv),

∂tv + d22(−∆)γ/2v = v(a− bu− v).
(1.2)

Pattern formation in reaction diffusion systems with anomalous diffusion has recently re-
ceived considerable attention (Gafiychuk and Datsko, 2006; Henry et al., 2005; Henry and
Wearne, 2002; Langlands et al., 2007; Weiss et al., 2003; Golovin et al., 2008; Gambino et
al., 2013). For instance, it was shown that sub-diffusion suppresses the formation of Turing
pattern (Weiss et al., 2003). It was also found in one dimensional systems that anomalous
heat conduction can happen as a consequence of the anomalous diffusion (Li and Wang, 2003).
Additionally, in systems with Lévy flights, the emergence of spiral waves and chemical turbu-
lence from the nonlinear dynamics of oscillating reaction diffusion patterns was investigated
in Nec et al. (2008). The authors in Golovin et al. (2008) explored the effects of superdiffusion
on pattern formation and pattern selection in the substrate-depleted Brusselator model, and
found that Turing instability can occur even when diffusion of the inhibitor is slower than that
of the activator. However, results on the nonlinear dynamics and Turing pattern selection in
reaction diffusion systems with cross superdiffusion remain limited.

The effect of pattern formation of the Lotka-Volterra competitive model with normal d-
iffusion and cross diffusion has been extensively investigated (see Horstmann, 2007; Jüngel,
2010 for some reviews). In Lou and Ni (1996); Lou et al. (2001), the authors show that self
diffusion tends to suppress pattern formation, whereas cross diffusion fosters the creation of
patterns. In contrast, here we consider the effect of cross Lévy flights and superdiffusion on
Turing patterns, and focus on the mode of pattern formation and the stability of the emerging
patterns.

The remainder of this paper has been structured in the following way. Section 2 focuses on
the weak solvability analysis of system (1.2), for which we use the well-known Faedo-Galerkin
strategy and the Kruzhkov compactness result to establish the existence of weak solutions.
In Section 3 we develop a linear stability analysis of the steady state of the system, which
in turn provide the Turing parameter space that identifies regions where Turing bifurcations
are expected. Section 4 is devoted to the derivation of a set of coupled amplitude equations,
obtained by a weakly nonlinear analysis. Next, an analysis of these equations yields sufficient
conditions to ensure so-called super-critical bifurcations, which we present in Section 5. There
we also show how the stability of the Turing steady states is affected by these conditions. A
fully adaptive finite volume – multiresolution method for the space-time discretization of (1.2)
is proposed and discussed in Section 6. A simple numerical example is provided in Section 7,
and we collect some closing remarks in Section 8.

2 Existence of weak solutions

Let Ω be a bounded open subset of Rd (d = 2, 3) with a smooth (say C2) boundary ∂Ω.
For 1 ≤ q < ∞ and X is a Banach space, then Lq(0, T ;X) denotes the space of measurable
function u : (0, T ) → X for which t 7→ ∥u(t)∥X ∈ Lq(0, T ). Moreover, C([0, T ];X) denotes the
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4 M. Bendahmane, R. Ruiz-Baier & C. Tian

space of continuous functions u : [0, T ] → X for which ∥u∥C([0,T ];X) := maxt∈(0,T ) ∥u(t)∥X is
finite.

The Fourier transform û of a tempered distribution u(x) on Ω is defined by

û(k) =
1

(2π)d

∫
Ω

exp(−ik · x)u(x) dx.

Note that the fractional diffusion operator Λγ can be identified with the Fourier transform

Λ̂γu(k) = |ik|γ û(k),

for γ ∈ R. We denote by Hγ(Ω) the non-homogeneous fractional Sobolev space of functions u
such that

∥u∥Hγ(Ω) =
(∑
k∈Zd

(1 + |k|2)γ |û(k)|2
) 1

2

<∞.

The homogeneous fractional Sobolev space of functions u is denoted by H̃γ(Ω) given by

∥u∥H̃γ(Ω) =
(∑
k∈Zd

|k|2γ |û(k)|2
) 1

2

<∞.

Next, we define −∆ : H1
0 (Ω) → L2(Ω) with domain:

Dom(−∆) = {u ∈ H1
0 (Ω) such that ∆u ∈ L2(Ω)}.

Note that the operator A = −∆ is positive, unbounded, closed and its inverse is compact. This
implies

Awℓ = λℓ wℓ,

for wℓ ∈ Dom(−∆), where {wℓ}∞ℓ=1. are the eigenfunctions (orthogonal basis of H1
0 (Ω)) with

the corresponding eigenvalues {λℓ}∞ℓ=1.

With this spectral decomposition the fractional powers of the Dirichlet fractional Laplacian
Λγ (Λ = (−∆)1/2, 1 < γ ≤ 2) can be defined for u ∈ C∞

0 (Ω) by

(−∆)γ/2u = Λγu =

∞∑
ℓ=1

uℓ λ
γ/2
ℓ wℓ

where the coefficients uℓ are defined by uℓ =
∫
Ω
uwℓ.

Now we define what we mean by weak solutions of the system (1.2) completed with Dirichlet
boundary conditions and initial conditions on u, v:

Definition 21 A weak solution of (1.2) is a set of nonnegative functions (u, v) such that,

a) (u, v) ∈ L∞(0, T ;L2(Ω,Rd)) ∩ L2(0, T ; H̃γ/2(Ω,Rd)),
b) F (u, v), G(u, v) ∈ L1((0, T )×Ω), u(0, ·) = u0(·) and v(0, ·) = v0(·) a.e. in Ω,
c) QT = Ω × [0, T ] and they satisfy

−
∫∫

QT

u∂tφ1 dx dt+ d11

∫∫
Ω

Λγ/2u · Λγ/2φ1 dx dt+ d12

∫∫
Ω

Λγ/2v · Λγ/2φ1 dx dt

= −
∫
Ω

u0(x)φ1(0, x) dx+

∫∫
QT

F (u, v)φ1 dx dt,

−
∫∫

QT

v∂tφ2 dx dt+ d22

∫∫
Ω

Λγ/2v · Λγ/2φ2 dx dt

= −
∫
Ω

u0(x)φ1(0, x) dx+

∫∫
QT

G(u, v)φ2 dx dt,

for all φ1, φ2 ∈ D([0, T )×Ω), where F (u, v) = u(1− u− c v) and G(u, v) = v(a− b u− v).
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Turing patterns and adaptive discretization for a superdiffusive Lotka-Volterra system 5

Theorem 1 If (u0, v0) ∈ L2(Ω,Rd), then problem (1.2) possesses a weak solution in the sense
of Definition 21.

The proof of Theorem 1 (the existence of weak solution) is based on Faedo-Galerkin method.
Although the existence proof for (1.2) will be the subject of a separate contribution, we outline
in what follows the main steps. We look for finite dimensional approximate solution to the
problem (1.2) (we complete the system (1.2) with Dirichlet boundary conditions and initial
conditions on u, v): as sequences (un)n>1, (vn)n>1 defined for t ≥ 0 and x ∈ Ω by

un(t, x) =
n∑

l=1

bn,l(t)el(x), vn(t, x) =
n∑

l=1

cn,l(t)el(x). (2.1)

The next step is to determine the coefficients (bn,l(t))
n
l=1, (cn,l(t))

n
l=1 such that for k =

1, . . . , n it holds

(∂tun, ek)L2(Ω) + d11

∫
Ω

Λγ/2un · Λγ/2ek dx

+d12

∫
Ω

Λγ/2vn · Λγ/2ek dx =

∫
Ω

F (u+n , v
+
n )ek dx,

(∂tvn, ek)L2(Ω) + d22

∫
Ω

Λγ/2vn · Λγ/2ek dx =

∫
Ω

G(u+n , v
+
n )ek dx,

(2.2)

and regarding to the initial conditions,

un(0, x) = u0,n(x) :=
n∑

l=1

bn,l(0)el(x), bn,l(0) := (u0, el)L2(Ω) ,

vn(0, x) = v0,n(x) :=
n∑

l=1

cn,l(0)el(x), cn,l(0) := (v0, el)L2(Ω) .

Herein

F (u+n , v
+
n ) = u+n (1− u+n − c v+n ) and G(u

+
n , v

+
n ) = v+n (a− b u+n − v+n ),

where w+ = max(0,−w) for w = u, v.

Observe that, since u0, v0 ∈ L2(Ω), it is clearly seen that as n → ∞, u0,n → u0 and
v0,n → v0 in L2(Ω), respectively. Using the normality of the respective basis, we can write
(2.2) as a system of ordinary differential equations:

b′n,k(t) + d11

∫
Ω

Λγ/2un · Λγ/2ek dx

+d12

∫
Ω

Λγ/2vn · Λγ/2ek dx =

∫
Ω

F (u+n , v
+
n )ek dx,

c′n,k(t) + d22

∫
Ω

Λγ/2vn · Λγ/2ek dx =

∫
Ω

G(u+n , v
+
n )ek dx.

Let F and G be functions defined as follow:

F(t, (bn,l(t))
n
l=1, (cn,l(t))

n
l=1) :=

∫
Ω

F (u+n , v
+
n )ek dx− d11

∫
Ω

Λγ/2un · Λγ/2ek dx

−d12
∫
Ω

Λγ/2vn · Λγ/2ek dx,

G(t, (bn,l(t))nl=1, (cn,l(t))
n
l=1) :=

∫
Ω

G(u+n , v
+
n )ek dx− d22

∫
Ω

Λγ/2vn · Λγ/2ek dx.
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6 M. Bendahmane, R. Ruiz-Baier & C. Tian

Proceeding in an analogous way to the developments in Andreianov et al. (2011); Bendah-
mane (2010); Bendahmane and Karlsen (2006), we can prove that F and G are Carathéodory
functions, and we can show an existence interval [0, t′) for the Faedo-Galerkin solutions un and
vn defined by (2.1).
On the other hand, to prove global existence of the solutions we derive n-independent a pri-
ori estimates bounding un, vn in various Banach spaces. Given some continuous coefficients
d1,n,l(t) and d2,n,l(t), we form the functions φ1,n(t, x) :=

∑n
l=1 d1,n,l(t)el(x) and φ2,n(t, x) :=∑n

l=1 d2,n,l(t)el(x). Now our Faedo-Galerkin solutions satisfy the following weak formulations:∫
Ω

∂sunφ1,n dx+ d11

∫
Ω

Λγ/2un · Λγ/2φ1,n dx+ d12

∫
Ω

Λγ/2vn · Λγ/2φ1,n dx =

∫
Ω

F (u+n , v
+
n )φ1,n dx,

(2.3)∫
Ω

∂svnφ2,n dx+ d22

∫
Ω

Λγ/2vn · Λγ/2φ2,n dx =

∫
Ω

G(u+n , v
+
n )φ2,n dx.

(2.4)

Now, we substitute φ1,n = un and φ1,n = un in (2.3) and (2.4), respectively. Then integrating
over (0, t) and using Young and Gronwall inequalities, we get for t ∈ [0, t′)

∥vn∥L∞(0,t;L2(Ω)) ≤ C,∫ t

0

∫
Ω

∣∣∣Λγ/2un

∣∣∣2 dx ds+ ∫ t

0

∫
Ω

∣∣∣Λγ/2vn

∣∣∣2 dx ds ≤ C,

for some constant C > 0 not depending on n.

The next step is to show that the local solution constructed above can be actually extended
to the whole time interval [0, T ) (independent of n). We stress that this can be done as in
Bendahmane and Karlsen (2006), so we omit the details.

Now, if we choose φ1,n = −u−n , φ2,n = −v−n in (2.3) and (2.4), respectively, then after
integration over (0, t) with 0 < t ≤ T , we readily obtain the non-negativity of the solution
(un, vn).

With the help of a compactness tool inspired by Kruzhkov lemma (Kruzhkov, 1969), we
justify that the solutions (un, vn) is relatively compact in L1(QT ). From this we can extract
subsequences, which we do not relabel and we can assume that there exist limit functions u, v
such that as n→ ∞

un → u, vn → v strongly in L1(QT ) and a.e. in QT ,

un ⇀ u, vn ⇀ v weakly in L2(0, T ; H̃γ(Ω)),
F (un, vn) → F (u, v), G(un, vn) → G(u, v) in L1(QT ) a.e. in QT .

(2.5)

Keeping in mind (2.5) and using the following weak formulation:

−
∫ ∫

QT

un∂tφ1 dx dt+ d11

∫∫
Ω

Λγ/2un · Λγ/2φ1,n dx dt

+ d12

∫∫
Ω

Λγ/2vn · Λγ/2φ1,n dx dt

= −
∫
Ω

u0(x)φ1(0, x) dx+

∫∫
QT

F (un, vn)φ1 dx dt,

−
∫ ∫

QT

vn∂tφ2 dx dt+ d22

∫∫
Ω

Λγ/2vn · Λγ/2φ2,n dx dt

= −
∫
Ω

u0(x)φ1(0, x) dx+

∫∫
QT

G(un, vn)φ2 dx dt,

for all φ1, φ2 ∈ D([0, T )×Ω), we can let n→ ∞ and obtain a weak solution.
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Turing patterns and adaptive discretization for a superdiffusive Lotka-Volterra system 7

3 Linear stability analysis

In this section, we provide essential conditions to drive the Turing bifurcation by analyzing
the linear stability of the uniform equilibrium state of (1.1). Notice that system (1.1) has a
unique positive equilibrium (u∗, v∗) = ( 1−ac

1−bc ,
a−b
1−bc ) if and only if

b < a <
1

c
. (3.1)

Moreover, one can readily verify that (3.1) ensures that the positive equilibrium (u∗, v∗) is
stable under any spatially homogeneous perturbation.

In order to carry out the linear stability analysis of (1.1), we set ū = u − u∗, v̄ = v − v∗,
and substitute them in the system (1.1). By dropping the bars, we can write the linearized
form of the system (1.1) at the positive equilibrium as follows:

∂tu = d11∇γu+ d12∇γv − u∗u− cu∗v − u2 − cuv,

∂tv = d22∇γv − bv∗u− v∗v − buv − v2.
(3.2)

Let us further assume that the perturbation of (1.1) is periodic with respect to time. Hence
the conditions of the classical Fourier theorem are met, and we seek the general solution(

u
v

)
=

(
c1
c2

)
exp(σt+ ik · x) (3.3)

to the linearization of the problem (3.2) as a superposition of normal modes. Here σ is the
growth rate of the perturbation in time t, i denotes the imaginary unit, with i2 = −1, and k
is its wave vector. Suggested by the definition of the Weyl fractional operator ∇γ , we focus on
the time integration in Fourier space. Substituting (3.3) into the linearization of Eqs. (3.2), we
obtain the following matrix equation(

σ + u∗ + d11k
γ cu∗ + d12k

γ

bv∗ σ + v∗ + d22k
γ

)(
c1
c2

)
=

(
0
0

)
,

where the Euclidean norm k = |k| is the wavenumber of the perturbation. Therefore, we are
left to the dispersion relation

σ2 + g(k)σ + h(k) = 0,

where

g(k) := u∗ + v∗ + (d11 + d22)k
γ ,

h(k) := d11d22k
2γ + (d11v

∗ + d22u
∗ − d12bv

∗)kγ + (1− bc)u∗v∗.

We stress that the corresponding equilibrium can lose its stability via Turing bifurcation
if and only if h(k) ≤ 0. Moreover, note that in the absence of cross superdiffusion one has
h(k) > 0, which implies that in this particular case, only the cross superdiffusion effect can
induce Turing bifurcation. Notice that h(k) has a single minimum (kc, d

c
12), which is attained

whenever

dc12 =
d11v

∗ + d22u
∗ + 2

√
(1− bc)d11d22u∗v∗

bv∗
,

kc = (

√
(1− bc)u∗v∗√
d11d22

)
1
γ .

(3.4)

Summarizing, we have obtained a Turing instability threshold dc12, and we have identified
the critical value of the wave number kc. Relation (3.4) represents the bifurcations occurrying

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 M. Bendahmane, R. Ruiz-Baier & C. Tian
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Fig. 1 Turing instability boundaries in the (a, d12) and (c, d12) planes. The instability region Tinst lies above
the curves.

k

R
e(
σ
)
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−0.2

−0.1

0

0.1

γ = 1
γ = 1.5
γ = 2

Fig. 2 Dispersion relation of the system (1.1) for three different γ = 1, 1.5, 2. The other parameters are
a = 2, b = 1, c = 0.2, d11 = 1, d22 = 1, and d12 = 3.5.

in the parameter region spanned by the parameters a, c and d12. These regimes are also
depicted in Figure 1. All Turing patterns are driven by parameters chosen in this region. In
addition, Figure 2 displays the real part of the eigenvalue corresponding to three different sets
of parameters, as a function of the wavenumber, and we notice that the active wavenumber
does not change with the order of the fractional diffusion γ.

4 Weakly nonlinear analysis

In order to study the dynamics of Turing patterns, we perform here a weakly nonlinear analysis
of system (3.2) near the Turing instability threshold. In particular, we aim at analyzing the
pattern selection mechanisms associated to hexagons and stripes. Let us consider system (3.2)
defined in the whole two-dimensional space R2. Weakly nonlinear analyses are typically based
on the fact that Turing bifurcations are able to destabilize the homogeneous equilibrium, but
only in case of perturbations with wave numbers close to the critical value kc. In regimes near
to the Turing onset d12 = dc12, the solutions can be described by a system of three active
resonant pairs of modes (kj, − kj), for j = 1, 2, 3. Each pair of modes form angles of 2π/3
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and |kj| = kc. This fact implies that solutions of system (3.2) can be expanded as(
u
v

)
=

3∑
j=1

[Aj exp(ikj · x+ Āj exp(−ikj · x)], (4.1)

where Aj and its conjugate Āj stand, respectively, for the amplitudes associated with the
modes kj and −kj, and Aj ≡ (Au

j , A
v
j )

T .

We introduce a scaled slow time variable T = ε2t, and expand both fields u and v, as well
as the bifurcation parameter d12, in the form(

u
v

)
= ε

(
u1
v1

)
+ ε2

(
u2
v2

)
+ ε3

(
u3
v3

)
+ · · · ,

d12 − dc12 = µ2ε
2 +O(ε3).

(4.2)

Since the amplitude A is a variable that undergoes slow changes, it follows that

∂tA = ε2
∂A

∂T
+O(ε3).

Substituting Equations (4.2) into the system (3.2), we have

ε3
∂

∂T

(
u1
v1

)
= εLc

(
u1
v1

)
+ ε2Lc

(
u2
v2

)
+ ε3Lc

(
u3
v3

)
− ε3µ2k

γ
cM

(
u1
v1

)
−ε2

(
u21 + cu1v1
bu1v1 + v21

)
− ε3

(
2u1u2 + cu1v2 + cu2v1
bu1v2 + bu2v1 + 2v1v2

)
,

where the involved matrices are defined as

Lc =

(
−u∗ + d11∇γ −cu∗ + dc12∇γ

−bv∗ −v∗ + d22∇γ

)
, M =

(
0 1
0 0

)
.

After collecting like powers of ε, we obtain the following systems, arranged according to the
orders εj , j = 1, 2, 3

O(ε) : Lc

(
u1
v1

)
= 0,

O(ε2) : Lc

(
u2
v2

)
=

(
u21 + cu1v1
bu1v1 + v21

)
,

O(ε3) : Lc

(
u3
v3

)
=

∂

∂T

(
u1
v1

)
+ µ2k

γ
cM

(
u1
v1

)
+

(
2u1u2 + cu1v2 + cu2v1
bu1v2 + bu2v1 + 2v1v2

)
.

(4.3)

Our next goal is to describe the appearance of both hexagonal and stripped spatial dis-
tributions as well as their spatio-temporal interactions. Since Lc is the linear operator of the
system at the Turing instability threshold, it holds that (u1, v1)

T is the linear combination of
the eigenvectors corresponding to the null eigenvalue. Therefore, at O(ε) the solution of the
system exhibits the following structure(

u1
v1

)
=

(
−K1

1

) 3∑
j=1

Wj exp(ikj · x) + c.c.,

where

K1 =
v∗ +

√
(1− bc)u∗v∗d22/d11

bv∗
,
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and Wj is the amplitude of the mode exp(ikj · x) when the system is under the first-order
perturbation. Its form is determined by the perturbation term of highest order. The addition
of the complex conjugate c.c. allows (u1, v1)

T to be real.

Next, we turn to the term of O(ε2). Since the right-hand side does not exhibit resonance-
related terms, the solution is given simply by(

u2
v2

)
=

(
U0

V0

)
+

(
Uj

Vj

) 3∑
j=1

exp(ikj · x) + c.c.

On the other hand, substitution of the above equation into the second equation of problem
(4.3) yields

Lc

(
U0

V0

)
+

3∑
j=1

exp(ikj · x)Lc

(
Uj

Vj

)
+

3∑
j=1

exp(−ikj · x)Lc

(
Ūj

V̄j

)

= (|W1|2 + |W2|2 + |W3|2)
(
2K2

1 − 2cK1

2− 2bK1

)
+

3∑
j=1

O(exp(2ikj · x))

+O(exp(i(k1 − k2) · x)) +O(exp(i(k2 − k3) · x)) +O(exp(i(k3 − k1) · x)) + c.c.,

and after collecting terms of orders O(1) and O(exp(ikjx)), we obtain(
U0

V0

)
= (|W1|2 + |W2|2 + |W3|2)

(
−K2

1

)
,

K2 =
v∗2 + (v∗ − 2)

√
(1− bc)u∗v∗d22/d11

bv∗2
, Uj = −K1Vj .

We now turn to the term of O(ε3). According to the Fredholm solvability condition, the
vector function of the right-hand side must be orthogonal with the zero eigenvalues of the
operator L+

c in order to ensure the existence of a nontrivial solution to this equation, where
L+
c is the adjoint operator of Lc. The nontrivial kernel of the operator L+

c is(
1

−K3

)
exp(−ikjx), K3 =

u∗ +
√
(1− bc)u∗v∗d11/d22

bv∗
.

Substituting the solution (u1, v1)
T and (u2, v2)

T into the problem containin the O(ε3) term,
and applying Fredholm solvability condition, we can assert that

−(K1 +K3)
∂W1

∂T
= −µ2k

γ
cW1 − [2K1(K1 − c)− 2K3(1− bK1)](W̄2V̄3 + V̄2W̄3)

− [2K1K2 − cK1 − cK2 −K3(2− bK1 − bK2)]W1(|W1|2 + |W2|2 + |W3|2).
(4.4)

In view of (4.1) and (4.2), the amplitude Av
j can be expanded as

Av
j = εWj + ε2Vj +O(ε3), j = 1, 2, 3,

∂tA
v
j = ε3

∂Wj

∂T
+O(ε4).

Multiplying (4.4) by −ε3, we get

(K1 +K3)∂tA
v
1 = ε2µ2k

γ
cA

v
1 + [2K1(K1 − c)− 2K3(1− bK1)]Ā

v
2Ā

v
3

− [cK1 + cK2 +K3(2− bK1 − bK2)

− 2K1K2]A
v
1(|Av

1|2 + |Av
2|2 + |Av

3|2).
(4.5)
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In addition, multiplying (4.5) by 1
kγ
c d

c
12
, we have the following amplitude equation

τ0∂tA
v
1 = µAv

1 + hĀv
2Ā

v
3 − [g1|Av

1|2 + g2(|Av
2|2 + |Av

3|2)]Av
1, (4.6)

where µ =
d12−dc

12

dc
12

is a normalized distance to the Turing instability threshold, and τ0 = K1+K3

kγ
c d

c
12

is a typical relaxation time. Moreover,

h =
2K1(K1 − c)− 2K3(1− bK1)

kγc dc12
,

g1 = g2 =
cK1 + cK2 +K3(2− bK1 − bK2)− 2K1K2

kγc dc12
.

(4.7)

The remaining equations for Av
2 and Av

3 can be obtained analogously, through transformation
of the subscript of Av.

5 Stability of inhomogeneous patterns

In order to study the pattern selection, we need to analyze further the amplitude equation
(4.6), where each amplitude can be decomposed into a mode ρj = |Av

j | and a corresponding
phase angle φj . We proceed to rewrite (4.6) and the other two associated amplitude equations
for Av

j = ρj exp(iφj) in the following form:

τ0∂tΦ = −hρ
2
1ρ

2
2 + ρ21ρ

2
3 + ρ22ρ

2
3

ρ1ρ2ρ3
sinΦ, (5.1)

τ0∂tρ1 = µρ1 + hρ2ρ3 cosΦ− g1ρ3 − g2(ρ
2
2 + ρ23)ρ1,

τ0∂tρ2 = µρ2 + hρ1ρ3 cosΦ− g1ρ2 − g2(ρ
2
1 + ρ23)ρ2,

τ0∂tρ3 = µρ3 + hρ1ρ2 cosΦ− g1ρ3 − g2(ρ
2
1 + ρ22)ρ3,

where Φ = ϕ1 + ϕ2 + ϕ3. The above equations imply that when the system is at steady state,
the sum of the amplitude-phases only attains two values Φ = 0 and Φ = π. The fact that
ρj > 0 for j = 1, 2, 3, implies that in the case Φ = 0, the solutions of Eq. (5.1) are stable when
h > 0; whereas for Φ = π, the solutions of Eq. (5.1) are stable when h < 0. If we consider only
the stable solutions of Eq. (5.1), then the mode equations can be recast in the form:

τ0
dρ1
dt

= µρ1 + |h|ρ2ρ3 − g1ρ
3
1 − g2(ρ

2
2 + ρ23)ρ1, (5.2)

τ0
dρ2
dt

= µρ2 + |h|ρ1ρ3 − g1ρ
3
2 − g2(ρ

2
1 + ρ23)ρ2, (5.3)

τ0
dρ3
dt

= µρ3 + |h|ρ1ρ2 − g1ρ
3
3 − g2(ρ

2
1 + ρ22)ρ3. (5.4)

Notice that the quadratic terms in (5.2)-(5.4) are positive, which is the main cause of instability
in the linear term. In order to ensure that mode equations possess a steady state solution,
the coefficients of cubic terms must be positive, which translates in imposing the following
conditions

cK1 + cK2 +K3(2− bK1 − bK2) > 2K1K2,

that in turn yield supercritical Turing bifurcations in system (1.1). Otherwise, the weakly
nonlinear analysis requires to be extended by expanding the Taylor series in (4.3) up to the
fifth order so that the instability is covered (that is, (5.1) holds). The latter case corresponds
to the so-called subcritical Turing bifurcation, which we do not consider in the present paper.
Figure 3 displays the Turing bifurcation diagram in the (b, a) plane.
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Fig. 3 Turing bifurcation diagram. The shaded region represents the supercritical states, whereas the white
region is subcritical zone. The remaining parameters are c = 0.2, d11 = 1, and d22 = 1.

In order to assess the stability of the mode equations, we add a perturbation (δρ1, δρ2, δρ3)
to the steady state (ρ1, ρ2, ρ3) and substitute it into Eqs. (5.2)-(5.4). Retaining the linear
terms, we end up with the linear perturbation equations:

τ0
d

dt

 δρ1
δρ2
δρ3

 = J

 δρ1
δρ2
δρ3

 ,

where J =

(
µ− 3g1ρ21 − g2(ρ22 + ρ23) |h|ρ3 − 2g2ρ1ρ2 |h|ρ2 − 2g2ρ1ρ3

|h|ρ3 − 2g2ρ1ρ2 µ− 3g1ρ22 − g2(ρ21 + ρ23) |h|ρ1 − 2g2ρ2ρ3
|h|ρ2 − 2g2ρ1ρ3 |h|ρ1 − 2g2ρ2ρ3 µ− 3g1ρ23 − g2(ρ21 + ρ22)

)
.

(5.5)

We now focus on the stability of Turing patterns, for which we separate the discussion into
two cases depending on the shape of the spatial distributions.

Case (I) Striped patterns correspond to

(ρ1, ρ2, ρ3) = (ρ, 0, 0), where ρ =
√
µ/g1. (5.6)

Substituting (5.6) into the perturbation equations (5.5), we have

τ0
d

dt

 δρ1
δρ2
δρ3

 =

−2µ 0 0

0 µ(1− g2/g1) |h|
√
µ/g1

0 |h|
√
µ/g1 µ(1− g2/g1)

 δρ1
δρ2
δρ3

 . (5.7)

In view of g1 = g2 defined in (4.7), we have that the three eigenvalues of system (5.7) are

λ1 = −2µ < 0, λ2 = −|h|
√
µ/g1 < 0, λ3 = |h|

√
µ/g1 > 0,

and therefore striped patterns are not stable and will eventually vanish in the long term.

Case (II) Hexagonal patterns correspond to

(ρ1, ρ2, ρ3) = (ρ, ρ, ρ), where ρ =
|h| ±

√
h2 + 4(g1 + 2g2)µ

2(g1 + 2g2)
. (5.8)
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Substituting (5.8) into the perturbation equations (5.5), we have

τ0
d

dt

 δρ1
δρ2
δρ3

 =

α β β
β α β
β β α

 δρ1
δρ2
δρ3

 , (5.9)

where α = µ− 5g1ρ
2, β = |h|ρ− 2g1ρ

2. The characteristic equation of (5.9) is

(λ− α)3 − 3β2(λ− α)− 2β3 = 0,

and so the three eigenvalues of system (5.7) are

λ1 = λ2 = µ− |h|ρ− 3g1ρ
2, λ3 = µ+ 2|h|ρ− 9g1ρ

2. (5.10)

Substituting ρ =
|h|±

√
h2+4(g1+2g2)µ

2(g1+2g2)
and g1 = g2 into (5.10), we have

λ1 = λ2 = − h2

3g1
< 0, λ3 = −12g1µ+ h2 ± |h|

√
h2 + 12g1µ

6g1
< 0.

Therefore, hexagonal patterns are stable whenever µ > − h2

12g1
.

6 Finite volume method and multiresolution-based adaptivity

6.1 Perliminaries and admissible meshes

Let us consider a discretization of the time interval (0, T ) by setting tn := n∆t for n ∈
{0, . . . , N}, where N is the smallest integer such that N∆t ≥ T . By an admissible mesh for Ω
we will refer to a family T of control volumes of maximum diameter h and a family of points
(xK)K∈T satisfying the following properties (cf. Eymard et al., 2000, Def. 5.1). For a given
finite volume K ∈ T , xK is its center and N(K) the set of its neighbors (control volumes
sharing a common edge with K). We denote by E(K) the set of edges of K, Eint(K) is the
restriction to those in the interior of Ω and Eext(K) = E(K) \ Eint(K) is the set of edges of
K lying on ∂Ω. For every L ∈ N(K), by σ = K|L (σ = K|∂Ω, respectively) we denote the
interface between K and L (between K and ∂Ω, respectively). By nK,σ we denote the unit
normal vector to σ = K|L (σ ∈ Eext(K), respectively) pointing from K to L (from K to
∂Ω, respectively). Moreover, |K| stands for the two-dimensional measure of K and |σ| for the
one-dimensional measure of σ ∈ E . It is also assumed that

the segment xKxL is orthogonal to σK,L for every K,L ∈ T . (6.1)

6.2 Multiresolution setting

We now introduce a hierarchy of nested admissible meshes T 0 ⊂ · · · ⊂ T H forming a graded
tree Λ, in which each grid T l is a compound of control volumes Kl of the level l, l = 0, . . . , H,
where l = 0 corresponds to the coarsest and l = H to the finest level of the tree Λ. In order to
define a multiresolution framework (Berres and Ruiz-Baier, 2011), for a given control volume
Kl we define a refinement set by

RKl :=
{
Ll+1
i

}
i
,
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where Ll+1
i denotes a control volume at the resolution level l+ 1, Ll+1

i ⊂ Kl. By definition of
the nested hierarchy, it holds that

Kl :=

#R
Kl∪

i=1

Ll+1
i .

For x ∈ Kl the scale box function is defined as φKl(x) := |Kl|−1χKl(x) (where χ is the
characteristic function), and therefore the average of any function w(t) ∈ L1(Ω) over Kl can
be recast as wKl(t) =

⟨
w(t), φKl

⟩
L1(Ω)

.

To move between resolution levels, certain transfer operators are needed. With the help of
these maps, one can determine an invertible transformation between finite volumes on level
l = H, and the set formed by finite volumes on the level l = 0 and a sequence of wavelet
coefficients. To switch from fine to coarser levels, a projection operator for cell averages and
box functions is defined by

w(t)Kl =
∑

Ll+1
i ∈R

Kl

|Ll+1
i |

|Kl|
w(t)Ll+1

i
, φKl =

∑
Ll+1

i ∈R
Kl

|Ll+1
i |

|Kl|
φLl+1

i
,

whereas to move from coarse to fine levels we define a polynomial interpolation

w̃(t)Kl+1 =
∑

T l∈Sl
K

glK,Tw(t)T l .

The set Sl
K is a stencil of interpolation (of order s), and glK,T are prediction coefficients. Further

details on the precise definition of these coefficients and stencils are given in e.g. Bendahmane
et al. (2009). For x ∈ Kl+1, and depending on the choice of the predictor map, the wavelet
function is defined as

ψKl,j = φLl+1
i

−
s∑

m=−s

γ̃i+mφLl
i+m

for j = 1, . . . ,#RKl ,

where Ll+1
i ∈ RKl , and the value of each γ̃i+m depends on the coefficients glK,T of the prediction

operator. The difference between the cell average and the predicted value for the scalar w(t)
is called wavelet coefficient and is defined by

dwKl :=
∣∣w(t)Kl − w̃(t)Kl

∣∣= ∣∣⟨w(t), ψKl⟩
∣∣.

Data compression is achieved by discarding all information of control volumes where the local
wavelet coefficient is lower than a level-dependent tolerance, i.e.,

dwKl < εl, l = 0, . . . , H. (6.2)

These level-dependent tolerances can be defined so that the error due to thresholding is of
the same order as the discretization error induced by the baseline finite volume formulation,
therefore preserving the order of the base scheme (Berres and Ruiz-Baier, 2011).

Remark 1 The key concept of the fully adaptive strategy of multiresolution consists in defining
an evolving set of leaves L(Λ) of the tree Λ, formed by all tree nodes Kl that are not discarded
by the thresholding defined in (6.2), and such that all cells in RKl satisfy (6.2). Then, the
underlying discrete scheme is first defined on L(Λ). However, L(Λ) is not an admissible mesh
in general, and therefore an auxiliary set of nodes, called virtual leaves is required in order to
fullfil (6.1).

The set of virtual leaves consists in cells of Λ \ L(Λ) that for a given Kl ∈ L(Λ), belong to
N(Kl) ∩ T l. We will denote by L̃(Λ) the set formed by leaves and virtual leaves. In addition,
the set Λd of cells marked as deletable consists in all elements that satisfy (6.2). Virtual leaves
are needed to evaluate numerical fluxes on each leaf.
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6.3 Multiresolution - Finite volume formulation

The baseline finite volume discretization of (1.2) is based on the so-called shifted Grünwald
approximation of local gradients (see e.g. Meerschaert and Tadjeran, 2006; Yang et al., 2010).
Irrespective of the specific form of the gradient approximation, the property of local flux
conservation yields the following expression for a first order finite volume approximation of
the fractional diffusion operator applied to a generic scalar field w over the finest-level cell KH

at time tn:

− ∆̃γ/2 := −∆γ/2wn
KH ≈ −

∑
Li∈H(KH)

gγ,Li

|σKH ,Li
|

dKH ,Li

(
wn

Li
− wn

KH

)
, (6.3)

where gγ,Li ,H are, respectively, particular weights and approximation stencil which we will
precisely defined in terms of Cartesian grids, for sake of clarity. Let us assume a square domain
Ω discretized intoNx×Ny equally sized boxes of area hxhy, and notice that (6.3) can be written
as

−∆̃γ/2wn
ij = − 1

hγx

i+1∑
k=0

gγ,kw
n
i−k+1,j −

1

hγy

j+1∑
l=0

gγ,lw
n
i,j−l+1,

where gγ,m := (−1)m
(
γ
m

)
, (see also Concezzi and Spigler, 2012). These considerations imply

that the fully explicit Euler FV discrete analogue of (1.2) defined on the finest mesh reads:
Starting from a L2−average of the initial data

u0KH =
1

|KH |

∫
KH

u0(x) dx, v0KH =
1

|KH |

∫
KH

v0(x) dx, ∀KH ∈ T H ,

and for every n = 0, . . ., recursively find un+1
KH , v

n+1
KH such that

|KH |
un+1
KH − unKH

∆t
− d11∆̃γ/2unKH − d12∆̃γ/2vnKH = |K|Fn

KH ,

|KH |
vn+1
KH − vnKH

∆t
− d22∆̃γ/2vnKH = |K|Gn

KH ,

(6.4)

where Fn
KH , G

n
KH are explicit approximations of the reaction terms over each control volume

1

|KH |

∫
K

F
(
u(x, tn), v(x, tn)

)
dx,

1

|KH |

∫
K

G
(
u(x, tn), v(x, tn)

)
dx,

and are given by

Fn
KH = F

(
unKH

+, vnKH
+), Gn

KH = G
(
unKH

+, vnKH
+).

We stress that if Kl is a leaf, then the unknowns are computed from the MRFV method (6.4),
whereas if Kl is a virtual leaf, the values of each species concentration are simply obtained
by the MR transform of their values at lower refinement levels. The multiresolution transform
and thresholding strategy are summarized in Algorithm 1.

7 A numerical example

For numerically studying the pattern formation of system (1.1), it suffices to consider the
dynamics induced by small-amplitude perturbations to the homogeneous steady state. The
domain is confined to the square Ω = [0, 50] × [0, 50], and it is discretized using a Cartesian
mesh consisting of 262,144 cells in the highest resolution level H = 9, and the time step is
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Algorithm 1 – Multiresolution transform and thresholding.
1: set level-dependent threshold εl
2: set values un

KH , vn
KH on the finest level of Λ

3: for l = H − 1, . . . , 1 do
4: for Kl ∈ T l do

5: Compute un
Kl =

∑
Ll+1

i ∈R
Kl

|Ll+1
i |

|Kl|
un
K+1 , vn

Kl =
∑

Ll+1
i ∈R

Kl

|Ll+1
i |

|Kl|
vn
K+1 .

6: end for
7: end for
8: for l = 1, . . . , H − 1 do
9: for Kl ∈ T l do
10: Compute

un,∗
Kl =

∑
T l−1∈Sl−1

K

gl−1
K,Tun

Kl−1 , vn,∗
Kl =

∑
T l−1∈Sl−1

K

gl−1
K,T vn

Kl−1 , dn
Kl =

∥∥un
Kl − un,∗

Kl

∥∥+
∥∥vn

Kl − vn,∗
Kl

∥∥,
11: if dn

Kl < εl then

12: Add Ll+1
i ∈ RKl to the set of deletable cells Λd

13: end if
14: end for
15: end for
16: for l = H − 1, . . . , 1 do
17: for Kl ∈ T l do
18: if Kl ∈ Λd and Ll+1 ∈ RKl ∩ Λd ∩ L(Λ) then
19: Remove Ll+1 from the tree Λ.
20: end if
21: if Kl /∈ Λd and l < H then
22: Add Ll+1 to the tree Λ.
23: end if
24: end for
25: end for

∆t = 0.005. The model parameters are set to γ = 1, a = 1.2, b = 1, c = 0.5, d11 = d22 = 1,
d12 = 5.02, and the reference tolerance required for the thresholding algorithm is εR = 0.0001.
The initial data is taken as

u(x, 0) = u∗ + η1(x), v(x, 0) = v∗ + η2(x), (7.1)

where η1 ∈ [−0.05, 0.05] and η2 ∈ [−0.025, 0.025] are uniformly distributed random perturba-
tions and (u∗, v∗) is the equilibrium state. The time evolution of the perturbed initial state
(7.1) is displayed in Figure 4, where we can observe convergence to hexagonally-shaped spatial
patterns. Note that in the case of normal diffusion, the system is expected to exhibit a regime
of self-replicating spots, as discussed in e.g. Pearson (1993). We also depict sketches of the
meshes generated by the multiresolution strategy (see the bottom row of Figure 4), which
after successive local refinement and coarsening clearly identify the zones of high solution gra-
dients. The multiresolution method also allows substantial reduction in computational burden
due to the fast MR transform and graded tree structure (Bendahmane et al., 2009). We also
present an analogous test where we have only modified the order of the fractional diffusion to
γ = 1.5, and we can observe substantial differences in terms of spatial distribution of patterns.
The approximate solutions along with fully adaptive meshes are presented in Figure 5.

8 Concluding remarks

We have introduced the Lévy flights type of superdiffusion into a Lotka-Volterra competitive
model. A stability analysis yields as conclusion that cross superdiffusion gives rise to Turing
instability while self superdiffusion suppresses Turing instability. Moreover, after applying a

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Turing patterns and adaptive discretization for a superdiffusive Lotka-Volterra system 17

Fig. 4 Snapshots at t = 10, 200, 800 (left, center, right, respectively) of the Turing pattern formation for
species u, v (top and middle, respectively) in the case where the order of Weyl fractional operator is γ = 1.
The employed parameters are a = 1.2, b = 1, c = 0.5, d11 = d22 = 1, d12 = 5.02. The bottom panels exhibit
snapshots of the mass center of leaves in the adaptively refined meshes generated with the multiresolution
algorithm with a global threshold of εR = 0.0001.

weakly nonlinear analysis, we can also assert that the Turing patterns are stable hexagons.
An immediate application of these observations from the viewpoint of biology, is that when
the inter-population competition is larger than the intra-population competition, the reached
inhomogeneous steady state is stable.
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