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�$�E�V�W�U�D�F�W����In��this��paper,��we��propose��the��simulation��of��polarized��speckle��
Þelds��using��the��Stokes��formalism,��which��allows��the��description��of��partially��
polarized��electromagnetic��waves.��We��deÞne��a��unique��parameter��which��
determines��the��partial��decorrelation��of��the��involved��Þelds,��allowing��to��
simulate��the��polarized��speckles��produced��by��all��types��of��scatterers,��from��
simple��to��multiple��scatterers.��We��validate��this��model��by��comparison��with��
experimental��measurements.��We��use��that��simulation��model��to��study��the��
impact��of��the��imaging��device��parameters��on��polarimetric��measurements:��
Þrst��we��emphasize��a��limit ��of��resolution��on��retardance��measurements,��then��
we��study��the��spatial��depolarization,��which��appears��when��an��observer��is��
measuring��any��space-variant��polarization��map.

OCIS codes:(290.5855) Scattering, polarization; (030.6140) Speckle; (260.5430) Polarization;
(290.5880) Scattering, rough surfaces; (120.5410) Polarimetry.
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1. Introduction

Simulating the effects of speckle Þelds present an important interest in various domain of
physics and applications, in addition to polarimetric imaging: metrology [1], telecommuni-
cations with polarization coding [2, 3], biomedical imaging [4, 5], remote sensing [6].

Usually, speckle Þelds are simulated through their scalar intensity, assuming that the Þelds
are uniformly polarized. However in most of the case, there is multiple scattering leading to
complex spatial polarization variation. These variations, which lead to a partial decorrelation
of the Þelds [7], have to be taken into account if one wants to simulate the scalar intensity of a
speckle Þeld. Several approach have been used to simulate polarized speckle Þelds, for example
based on the Jones formalism [8], or on multiple random wave superposition [9, 10].

In that paper, we propose a phenomenological way to simulate polarized speckle Þelds, based
on the plane wave description [11] of polarimetric states introduced by Gabriel Stokes (1852).
That description is still valid for partially coherent light and allows us to set the type of scat-
tering continuously from a single to a multiple scatterer. We compare the simulation results
with experimental results for surface and multiple scattering [12, 13, 14, 15]. We then study
the impact of the imaging point spread function on polarimetry. Finally we propose a study of
the spatial depolarization [16, 17, 18, 19], which appears because of the spatial sampling by an
observer of a continuous space-variant polarization map.

2. Independent speckle Þeld simulation

In that paper, we focus our attention on subjective speckle Þelds i.e. speckle Þelds imaged by
a lens. Moreover, we consider an imaging system with a circular aperture, and only in case of
a monochromatic Gaussian and fully polarized illumination. Finally, we study fully developed
speckle, produced by a large number of random phasors which phases are uniformly distributed
between[0,2� ].

The simulation of that type of speckle is resumed in Fig. 1. We assume that the imaging
device is in the far Þeld region relatively to the sample, thus the Fraunhoffer diffraction equa-
tion can be applied and the Þeld incoming on the pupil plane is the Fourier transform (FT)
of the illumination beam phase shifted by the sample phasor map (we consider a sample with
homogeneous reßectance). After the truncation by the pupil transmission function, we observe
at the focal plane of the imaging system the Fourier transform of the pupil Þeld. We refer to the
coordinates in the object plane with the subscriptsxo, yo; xp, yp in the pupil plane andxi, yi in
the image plane. The complex amplitude in the object planeEEEooo is:

EEEooo(xo,yo) = A 0(xo,yo)eŠ j� (xo,yo) (1)

With A0 the Gaussian amplitude of the beam, and� the random phasor map, uniformly
distributed on[0,2� ]. We assume that the distances between each transverse plane are large
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enough to be in a far Þeld approximation, i.e. the Fraunhoffer approximation is valid. Thus, the
complex amplitude in the pupil planeEEEppp(xp,yp) is:

EEEppp(xp,yp) = pup(xp,yp)FT { EEEooo(xo,yo)} (2)

With pup the transmittance function of the circular pupil, assumed to be 1 on the pupil
surface, and 0 elsewhere. Finally, the complex amplitude imaged in the image planeEEEiii (xi ,yi)
is:

EEEiii (xi ,yi) = FT
�

EEEppp(xp,yp)
�

(3)

We remind that the Point Spread Function (PSF) of the simulated imaging device is linked to
the ratio of the wavelength over the pupil diameter. The diameter of the pupil, and so the PSF
size, will determine the size of the imaged speckle grains, for a given wavelength.

Fig. 1. Schematic representation of the transverse planes used for the simulation of the far
Þeld amplitude of subjective speckle Þelds. Coordinates in the object plane arexo, yo, xp,
yp in the pupil plane andxi , yi in the image plane. The distances between each transverse
plane are large enough to use a far Þeld approximation.

3. Polarized speckle Þelds simulation

We can describe any State Of Polarization (SOP) by a sum of two plane waves perpendicularly
polarized, and a depolarized intensity. Thus, if we consider a polarized wave propagating along
thezaxis, its SOP can be described by the following Stokes vector [11]:

S=

�
���

���

I = |EEEiiixxx|2 + |EEEiiiyyy|2 + C2

Q = 2|EEEiiixxx||EEEiiiyyy| cos(� )
U = |EEEiiixxx|2 Š |EEEiiiyyy|2

V = 2|EEEiiixxx||EEEiiiyyy| sin(� )

(4)

With I the total intensity (polarized or not),Q the amount of intensity polarized along the
horizontal (resp. vertical) ifQ > 0 (resp.Q < 0), U the amount of intensity polarized in the
± 45� direction (depending on the sign ofU) andV the amount of intensity polarized along a
right handed (resp. left handed) circular SOP ifV > 0 (resp.V < 0); EEEiiixxx the complex amplitude
in the image plane of the Þrst plane wave linearly polarized along thex axis,EEEiiiyyy the complex
amplitude in the image plane of the second plane wave linearly polarized along they axis, �
their relative phase shift, andC2 a constant corresponding to the depolarized intensity [15]. The
Degree Of Polarization (DOP) of this SOP is:

DOP=

�
Q2 + U2 + V2

I
(5)
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Substituting Eq. (4) into Eq. (5) gives:

DOP=
|EEEiiixxx|2 + |EEEiiiyyy|2

|EEEiiixxx|2 + |EEEiiiyyy|2 + C2 = 1Š
C2

I
(6)

Thus, in order to simulate a polarized speckle Þeld, one have to determine the parametersEEEiiixxx,
EEEiiiyyy, C and� , we will see in the following how to determine them.

By looking at theI parameter in Eq. (4), one can see that the polarized intensity is obtained
by the incoherent sum of two plane waves intensities|EEEiiixxx|2 and|EEEiiiyyy|2 polarized in orthogonal
directions. Thus, in order to simulate a polarized speckle Þeld, we can sum two independent
speckle Þelds, respectively uniformly polarized in orthogonal directions.

One can notice that the convention for the plane wave decomposition is deÞned by Eq. (4): in
the convention chosen here, thex andy directions are respectively corresponding to the± 45�

directions of polarization. We choose that convention in accordance with the simulated illu-
mination SOP (chosen to be vertical), in order to produce two orthogonal plane waves with
equivalent mean intensity levels (i.e. due to the projection of a vertical SOP on the± 45� direc-
tions). In that case, the SOP variations are only produced by modiÞcations of the relative phase
shifts� , and do not depend of a variation of the mean level of the intensities|EEEiiixxx|2 and|EEEiiiyyy|2.

Moreover, experimental measurements have shown that the more the scattered light comes
from multiple scattering, the more the SOP are spreading on the Poincar«e sphere surface, cen-
tered around the illumination SOP [12][13]. Thus, the effect of the regime of diffusion (from
surface to volume) can be modelized through the standard deviation of the relative phase shifts
� , around a mean phase value corresponding to the illumination SOP:� for a vertical incident
SOP in the convention chosen here.

We notice that one could choose to modelize any other illumination SOP, in that case in
order to be in the same conÞguration than the model presented here, he would have to use the
plane waves convention in which the mean intensities|EEEiiixxx|2 and|EEEiiiyyy|2 are equivalent, in order
to ensure that the SOP variations are only due to relative phase shifts variations.

The variations of� produce, after the Þelds propagation, a (spatial) partial decorrelation
between the two speckle Þelds intensities|EEEiiixxx|2 and |EEEiiiyyy|2. The spatial correlation of these
intensities is depending on the standard deviation of the relative phase shift variations.

In order to introduce a phase correlation between the two speckle Þelds, we Þrst generate
the phasor map of one of the speckle Þelds in the object plane, e.g.� x(xo,yo), with a uniform
random distribution between 0 and 2� . The phasor map of the second Þeld in the object plane
EEEoooyyy is obtained with:

� y(xo,yo) = � x(xo,yo) + G (� , � ) (7)

With G the normal distribution with mean� and standard deviation� . One can notice that
the mean value� lead to a uniform relative phase shift (a piston), e.g. produced by a uniform
retarder. Thus, the degree of correlation between the two phasor maps is only depending on the
standard deviation value� .

At this point, we have simulatedEEEiiixxx(xi ,yi) andEEEiiiyyy(xi ,yi) obtained respectively by propagat-
ing the phasor maps� x(xo,yo) and� y(xo,yo), as described in section 2. Moreover, we compute
� , the relative phase shift in the image plane with:
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� (xi ,yi) = atan2(Im{ EEEiiixxx(xi ,yi)} ,Re{ EEEiiixxx(xi ,yi)} )

Š atan2
	
Im

�
EEEiiiyyy(xi ,yi)

�
,Re

�
EEEiiiyyy(xi ,yi)

�

(8)

In the following of that paper, we neglect eventual experimental noises. As we modelize
a monochromatic illumination, elastic scattering and temporally stable Þelds, there is no
effects of spectral depolarization. We Þrst neglect the spatial depolarization, i.e.C2 = 0
and DOP=1 (see Eq. (6)). Thus, the [I Q U V] parameters of the polarization map can be
computed with Eq. (4) in function of the modelizedEEEiiixxx, EEEiiiyyy and� parameters. We will see
in section 6 how to estimate the valueC2 when the spatial depolarization is no longer negligible.

One can notice that the adjustable parameters of the simulation are the characteristics of the
imaging device i.e. the diameter of the entrance pupil, which will determine the speckle size,
and the correlation between the two speckles depending on the standard deviation� in Eq. (7),
which determine the mode of diffusion. As explained above, the particular cases are for� = 0
which represent a perfect surface scatterer, and� >> 2� which represent a perfect multiple
scatterer. Between that interval, all types of scatterers are described.

4. Validation of the model

We study experimental results obtained using SOPAFP method [13, 14]. These results were
produced by a black lambertian scatterer under a 532 nm Single Longitudinal Mode (SLM)
illumination, vertically polarized. Using SOPAFP method, we measure the 4 parameters
[I Q U V] (or |EEEiiixxx|2, |EEEiiiyyy|2, � , C2) of the Þeld scattered by the sample, using the conven-
tion deÞned by Eq. 4 for the plane wave decomposition (i.e.x andy directions are corresponding
respectively to the± 45� directions). The measured mean relative phase shift and its standard
deviation value aremean(� ) = 2.90 rad andstd(� ) = 0.73 rad. As the measured Þeld is ob-
tained by the surface scattering of a vertical incident SOP, one can notice that we should obtain
a mean relative phase shift of� : we observe a global phase shift of� Š 2.90= 0.24rad. This
piston value is coming from the incidence and detection angles relatively to the sample inter-
face, which have to be taken into account in the simulation. We determine the input parameters
of the model in order to obtain simulation results comparable with the measurement:

¥ We adjust the diameter of the simulated pupil in order to obtain roughly the same PSF
size that our imaging system, and so the same speckle size in the image plane.

¥ We set the mean phase value� in Eq. (7) to 2.90 rad, in order to take into account the
effect of the incidence and detection angles in the model.

¥ We adjust the input parameter� in Eq. (7) for the simulation of the phase decorrelation in
the object plane in order to obtain the same standard deviation value than experimentally
in the image plane (std(� ) = 0.73rad). This value is roughly obtained with� = � /6 rad.

The simulation and measurement results are represented in Fig. 2. We choose to represent
the polarization maps with a RGB representation, deÞned byR= |Q|, G = |U|, B = |V|. One
can see that the spatial variations of polarization and the SOP probability in the Poincar«e
sphere (Figs. 2(a)-2(b)), are equivalent. Moreover, the simulated (Fig. 2(c)) and measured
(Fig. 2(d)) phase spatial variations are equivalent at the speckle grain scale. Finally, one can
see that the probability density function of the simulated phase in the image plane (Fig. 2(c),
red) is close to the measured one (Fig. 2(c), blue), with a high cross correlation coefÞcient
R2 = 0.998. Thus, the simulation leads to results in accordance with experimentation, in terms
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Fig. 2. Comparison between simulation and experimental measurement of the polarization
map scattered by a black lambertian scatterer under SLM illumination. (a) RGB polar-
ization map obtained by the simulation with� = � /6 rad. The SOP probability density
function is represented in the inset. (b) Measured polarization map scattered by the sam-
ple illuminated with a 532 nm SLM laser source. The SOP probability density function
is represented in the inset. (c) Simulated relative phase shifts in the image plane, in the
inset is represented its probability density function (red) and the measured one (blue). (d)
Measured relative phase shifts.
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of SOP statistics and spatial variations.

We simulate polarized speckle Þelds produced by surface and multiple scattering. The re-
sults are presented in Fig. 3 and 4. In case of surface scattering, the decorrelation between the
orthogonal plane waves is simulated in the object plane through a normal distribution (Eq. (7))
with a � = �

12 standard deviation. This deviation value is chosen arbitrarily. In case of multiple
scattering, simulated with� = 109, the normal distributionG in Eq. (7) is quasi uniform on
[0;2� ]. Thus there is no correlation between� x and� y and the relative phase shift in the im-
age plane� is uniformly distributed between 0 and 2� . One can see that we obtain simulation
results in accordance with previous theoretical or experimental speckle Þelds studies (e.g. in
[9, 10, 13, 14, 18]), in terms of polarization singularities and SOP statistics.

5. Impact of the PSF size on polarimetry

The aim of polarimetry is to measure the retardance and diattenuation produced by a sample.
The spatial limit of resolution for diattenuation measurements is the Rayleigh criterion, as the
diattenuation is depending on the spatial variations of the two plane waves intensities (|EEEiiixxx|2

and|EEEiiiyyy|2). However, the retardance is deÞned as a spatial variation of the relative phase shift
� between these two plane waves.

Here, we study the effect of the PSF size on retardance measurements. We can simulate the
effect of retardance by adding the corresponding phase variation in the object plane. Equation
(7) becomes:

� y(xo,yo) = � x(xo,yo) + G (� (xo,yo), � ) (9)

With � the sample retardance map. We simulate the scattering by a given surface scatterer,
with � = � /12. We use two maps of retardance, spatially varying at different frequencies,
but imaged with the same parameters and so the same PSF size. The spatial frequency of the
retardance is 10 times higher in Figs. 5(d)-5(f) than in Figs. 5(a)-5(c). One can notice that the
SOP variations in Fig. 5(c) are quasi only due to retardance variations (Fig. 5(a)). However, the
SOP are completely random in Fig. 5(f) when the spatial frequency of the retardance reaches a
given value (Fig. 5(d)), similarly than in case of multiple scattering (see Fig. 4(c)). That effect
can be explained by the fact that if the retardance� is spatially varying from 0 to 2� on a lower
scale than the PSF size, it appears a loss of the phase correlation between the two orthogonal
plane waves. In that case, the surface scatterer seems to have the same polarimetric behavior
than a multiple scatterer.

Thus, we point out a polarimetric limit of resolution, that can lead to false interpretations
between the retardance variations and the mode of diffusion.

6. Spatial depolarization estimation

Another polarimetric parameter is the DOP of the scattered Þelds, which is determined here by
the valueC2 in Eq. (6). As we study the case of monochromatic illumination and temporally
stable Þelds, the only contributions to theC2 value are the experimental noises, that are ne-
glected here, and the spatial depolarization [16, 17, 18, 19]. The spatial depolarization appears
due to the sampling on the pixel surface of a continuously varying polarization map. Indeed, as
the measurable quantity is the intensity integrated by a pixel, we can only measure the sum of
all the polarimetric states incoming on its surface.

We simulate that effect, by generating a highly resolved speckle map produced by a perfect
multiple scatterer, with a large PSF relatively to the sampling size. We then simulate its integra-
tion by a CCD, by computing the sum of the polarimetric states on larger pixels, which lowers
the DOP. The spatially depolarized intensity (Isdp) is obtained with the following equation:
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Fig. 3. Results of the simulation for a surface scatterer in the image plane. (a) Scalar inten-
sity I . (b) Relative phase shift� between the two orthogonal directionsx andy. In the inset
is represented its normalized probability density function. (c) RGB representation of the
polarization map. (d) Representation of the scattered SOP in the Poincar«e sphere, the black
dot is representing the illumination SOP (vertical). (e) Representation of the polarization
ellipses corresponding to the area in the white square in (c), the ellipse color is represen-
tative of the scalar intensity in a logarithmic scale, a darker background represents right
handed SOP, the others are left handed ones.
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Fig. 4. Results of the simulation for a multiple scatterer in the image plane. (a) Scalar inten-
sity I . (b) Relative phase shift� between the two orthogonal directionsx andy. In the inset
is represented its normalized probability density function. (c) RGB representation of the
polarization map. (d) Representation of the scattered SOP in the Poincar«e sphere, the black
dot is representing the illumination SOP (vertical). (e) Representation of the polarization
ellipses corresponding to the area in the white square in (c), the ellipse color is represen-
tative of the scalar intensity in a logarithmic scale, a darker background represents right
handed SOP, the others are left handed ones.
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Fig. 5. Simulation of the speckle Þeld produced by the scattering on a surface scatterer with
additional Gaussian retardance. (a) Representation of the retardance� applied to the plane
waves polarized along thex axis. (b) Representation of the relative phase shift� in the im-
age plane. (c) RGB representation of the polarimetric states. (d, e, f) Same representations
in case of a retardance with a 10 times higher spatial frequency, but imaged with the same
PSF size.
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Isdp= I � Š
�

Q�2 + U�2 + V�2 (10)

With [I � Q� U� V�] the sum of[I Q U V] over the sampling surface. In the following
we give relative sampling sizes, 1× 1 being the dimension of the initial, highly resolved map.
We simulate the effect of its integration on 2× 2, 10× 10 and 70× 70 pixels, the results are
presented in table 1 and Fig. 6.

Table 1. Contrast value of the speckle scalar intensityI �, deÞned bystd(I �)/mean(I �), and
depolarization ratio, deÞned bymean(Isdp)/mean(I �), in function of the spatial sampling
of a given Þeld produced by multiple scattering.

Sampling size (pix.) Contrast Depolarization ratio (%)
2× 2 0.70 0.1

10× 10 0.67 3
70× 70 0.23 70

We can see in table 1 that the mean spatial depolarization produced by the integration on
10× 10 pixels is 30 times higher than with 2× 2 pixels. In case of classical imaging, one will
lower the speckle noise by using a large pupil aperture in order to sum various speckle grains
on the same pixel. One can notice that this summation leads to a huge spatial depolarization:
for pixels at roughly the same size than the speckle grain (70× 70), 70% of the total intensity
is depolarized due to the Þeld summation, in case of a multiple scatterer.

One can notice in Figs. 6(d)-6(f) that the structure of the spatially depolarized intensity is
not depending on the pixel size. Indeed, the pixel size will only impact the absolute value of
that intensity and the highest spatial frequency observable. Thus, the depolarization map is only
depending on the spatial variations of the SOP map. We deÞne an empirical equation in order
to estimate the structure of that spatially depolarized intensityIsdp:

gxi =
� Si

� x
(11)

gyi =
� Si

� y
(12)

Isdp 	 Ip. 

i

(g2
xi + g2

yi) (13)

With i = 2 : 4 the index value of the normalized Stokes vector componentSi, gxi (resp.gyi)
the gradient of theith Stokes component along thex (resp.y) dimension andIp the polarized
part of the speckle scalar intensity (Ip = |EEEiiixxx|2 + |EEEiiiyyy|2). We used that equation to estimate
the depolarized intensity from a polarization map sampled with 1× 1 pixels. We compare that
calculated depolarized intensity with the simulated one, obtained similarly than Figs. 6(d)-6(f),
i.e. by the sum of the 1× 1 polarization map on 45× 45 pixels. The results are presented
in Fig. 7, one can see that the spatial variations of the calculated and simulated maps are similar.

As a consequence, in order to simulate any measurement of monochromatic space-variant
polarization map, one should Þrst determine the polarization map and then compute the spatial
depolarization. That intensity is the valueC2 which has to be summed with the intensities of
the two orthogonal plane waves in Eq. (4). Thus, the DOP of the Þeld simulated will be the
highest DOP that one will obtain with his imaging system, i.e. for a given ratio of wavelength
over pupil diameter and pixel size, if one neglects the experimental noises.
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Fig. 6. (a) Representation of the normalized speckle intensityI �, after a sampling of the
initial map on 2× 2 pixels. (b) Representation of the speckle intensityI �, after a sampling
of the initial map on 10× 10 pixels. (c) Representation of the speckle intensityI �, after
a sampling of the initial map on 70× 70 pixels, which is roughly the surface of a single
speckle grain. (d, e, f) Representation of the corresponding spatially depolarized intensities
Isdp.
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Fig. 7. (a) Representation of the normalized spatially depolarized intensity, calculated with
Eq. (13) on the 1× 1 polarization map. (b) Representation of the normalized spatially de-
polarized intensity, after a sampling of the 1× 1 polarization map on 45× 45 pixels. One
can see that the spatial variations of the two maps are similar.

7. Conclusion

We propose a new mean of simulating polarized speckle Þelds, with a criterion allowing to
evolve continuously from a simple scatterer to a multiple scatterer. We validate this algorithm
by comparison of the simulation results with experimental measurements performed on the Þeld
scattered by a black lambertian scatterer. Then, we use that algorithm to simulate the effects of
the PSF size on polarimetric measurements.

We show that if one performs a polarimetric analysis on a surface scatterer in which relative
phase shifts (e.g. retardance) are varying with an higher spatial frequency than the PSF width
of the imaging system, then the scatterer appears as a multiple scatterer. Reciprocally, one can
see a multiple scatterer as a sample which phase variations are spatially varying more quickly
than the PSF. Thus, as the Rayleigh criterion in scalar optics, one can deÞne a polarimetric limit
of resolution, which is increasing in frequency with the decreasing of the PSF size. However
we saw that for a given pixel size, when the PSF size is decreasing the spatially depolarized
intensity is increasing.

Finally, we show that the structure of the spatial depolarization is not depending on the pixel
size, but only on the spatial variations of polarization. The pixel size only impacts its absolute
value and its spatial sampling. If one knows the polarization map, he can estimate the intensity
depolarized by spatial depolarization with an empirical equation.
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