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MIXED-NORM ESTIMATES FOR PARAPRODUCTS

CRISTINA BENEA AND CAMIL MUSCALU

Abstract. We present a new approach to the study of singular multi-parameter multi-
linear Fourier multipliers via multiple vector-valued inequalities. This summarizes some
of our results from [1] and [2]. The main example is the bi-parameter paraproduct Π⊗Π,
for which we prove estimates within the whole range of admissible Lebesgue estimates

1. Introduction

Our aim is to present a few recent tools from harmonic analysis that could prove useful
in the study of nonlinear differential equations. These involve multilinear Littlewood-Paley
theory in several variables on mixed norm Lp spaces
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Our main results will be formulated as Leibniz rules in mixed norm Lp spaces, but other
multipliers can be treated similarly. Of great importance to us are the less conventional
cases involving quasi-Banach target spaces (s1, s2 can be < 1 in Theorem 1) or L∞ input
spaces (we allow for pj = ∞ or qj = ∞). From the technical point of view, these are more
interesting because they are not direct consequences of the linear Littlewood-Paley theory.
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)

< s1, s2 < ∞ and so that the indices satisfy

the natural Hölder-type conditions.

A result of a similar type appeared in [9], as an important tool in establishing local well-
posedness for the generalized Korteweg-de Vries equation. This is a dispersive, nonlinear
equation given by

(1)

{

∂u
∂t +

∂3u
∂x3 + uk ∂u

∂x = 0, t, x ∈ R, k ∈ Z
+

u(x, 0) = u0(x)

In order to prove existence, the authors use the contraction principle, but to be able to
do so, they need to construct a suitable Banach space. The norm of the Banach space
involves mixed Lp norms of fractional derivatives in the first variable Dα

1 , and the Leibniz
rule employed in this paper is
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Here α ∈ (0, 1), α1+α2 = α and
1

p1
+

1

p2
=

1

p
,
1

q1
+

1

q2
=

1

q
. Also, p, p1, p2, q, q1, q2 ∈ (1,∞),

but one can allow q1 = ∞ if α1 = 0.
The fractional derivatives appear as a consequence of the smoothness requirement on

the initial data: u0 is assumed to be in some Sobolev space Hα(R), where α depends on
the value of k in (1).

The paraproduct of two functions (termed para-multiplication operator in [3], where
they were first used in the study of non-linear differential equations) is a bilinear operator
associated to the Littlewood-Paley decompositions of two functions f and g. For any k ∈ Z,
the Fourier projection of f onto the shell |ξ| ∼ 2k is denoted Qkf(x) := f ∗ ψk(x), while
the projection onto |ξ| ≤ 2k is Pkf(x) := f ∗ ϕk(x). Then it is not difficult to see that

f · g =
∑

k

((f ∗ ψk) · (g ∗ ψk)) ∗ ϕk +
∑

k

((f ∗ ϕk) · (g ∗ ψk)) ∗ ψk +
∑

k

((f ∗ ψk) · (g ∗ ϕk)) ∗ ψk.

Any of the three elements on the right hand side of the expressions above is called a
classical paraproduct and is denoted Π(f, g). They also play the role of mollifiers: instead
of estimating Dα(f · g), we estimate Dα(Π(f, g)). When a derivative hits ψk or ϕk, this

becomes equivalent to multiplication by 2kα; and correspondingly, 2kαψk(x) = Dα ˜̃ψk(x).
We will see in Section 2 how Theorem 1 can be deduced from results on bi-parameter
paraproducts.

The concept of paraproduct extends readily to bilinear Fourier multipliers:

Theorem A (Coifman, Meyer [5]). Any bilinear multiplier operator associated to a symbol

m(ξ, η) satisfying
∣

∣∂αm(ξ, η)
∣

∣ .
∣

∣ (ξ, η)
∣

∣

−α
for sufficiently many multi-indices α, maps
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1

2
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1

p
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1

q
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s
.

However, we will not be working with classical paraproducts as above, but with disretized
paraproducts, which are associated to a collection I of dyadic intervals:

(3) ΠI(f, g)(x) =
∑

I∈I

cI
1

|I|
1

2

〈f, ϕI〉〈g, ψI 〉ψI(x),

where the functions ψI and ϕI are so that supp ψ̂I ⊆
[

1
|I| ,

2
|I|

]

, supp ϕ̂I ⊆
[

0, 1
|I|

]

, are

L2-normalized and decay fast away from I.
The discretized paraproducts above can be used as a black box in the study of several

other bilinear multipliers singular at a point, as we will see in Section 2. The information
on the Fourier multiplier will be encoded in the decay of the double Fourier coefficients of
its restriction to the Whitney squares associated to the point singularity.

The approach based on discretized operators, presented in various instances in [13],
developed with the study of the bilinear Hilbert transform operator, defined by

BHT (f, g)(x) : = p.v.

ˆ

R

f(x− t)g(x+ t)
dt

t
(4)

= C

ˆ

R2

f̂(ξ)ĝ(η)sgn(ξ − η)e2πix(ξ+η)dξdη..

This operator was introduced by Alberto Calderón, in relation to the analysis of the
Cauchy integral on Lipschitz curves and to what are now called Calderón’s commutators.
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Indeed, can be written as

C1f(x) = −p.v.

ˆ

R

A(x+ t)−A(x)

t
f(x+ t)

dt

t
=

= −p.v.

ˆ

R

(
ˆ 1

0
a(x+ αt)dα

)

f(x+ t)
dt

t
,

where a(x) = A′(x) ∈ L∞.
A question that remained open for nearly thirty years, long after the Cauchy integral on

Lipschitz curves was comprehended, was whether BHT : Lp × L∞ → Lp, for 1 < p < ∞.
This question was eventually answered in the late 90’s, reviving the field of time-frequency
analysis (which priorly consisted of Carleson’s celebrated proof of the pointwise convergence
of Fourier series [4], and Fefferman’s reinterpretation of the latter [7]).

Theorem B (Lacey, Thiele [10]). BHT is a bounded bilinear operator from Lp × Lq into

Ls, for any 1 < p, q ≤ ∞, 0 < s <∞, satisfying
1

p
+

1

q
=

1

s
and

2

3
< s <∞.

In some sense, proving quasi-Banach valued results for multilinear operators is not as
much about understanding the behavior of T (f, g) in a space where the triangle inequality
doesn’t hold, as it is about understanding the admissible input spaces for the operator.
This is especially relevant for the bilinear Hilbert transform operator above; it is still not
clear if the operator is bounded for values of s between 1

2 and 2
3 . This would correspond

to both p and q being strictly less that 2, loosing some of the orthogonality (in frequency)
properties that are so significant in the proof.

Later on, the result was extended to multilinear multipliers singular along a subspace of
dimension k:

Theorem C (Muscalu, Tao, Thiele [14]). Let Γ ⊂ R
n be a non-degenerate subspace of

dimension k, with 0 ≤ k < n+1
2 , and let Tm be an n-linear operator given by

Tm(f1, . . . , fn)(x) =

ˆ

Rn

m(ξ1, . . . , ξn)f̂1(ξ1) · . . . · f̂n(ξn)e
2πix(ξ1+...+ξn)dξ1 . . . dξn.

Above, the multiplier m satisfies the estimates

|∂αξ m(ξ)| . dist (ξ,Γ)−|α|

for all partial derivatives up to some finite order. Then T : Lp1 × . . .×Lpn → Lp whenever
1
p1

+ . . .+ 1
pn

= 1
p , 1 < pj ≤ ∞, 1n < p <∞ and moreover

1

pi1
+ . . .+

1

pr
<
n+ 1− 2k + r

2

for all 1 ≤ i1 < . . . < ir ≤ n and 1 ≤ r ≤ n (here we set pn+1 = p).

The non-degeneracy condition requires Γ to be a graph over any k variables; other-
wise, the problem reduces to a lower dimensional one, and as a consequence, the range of
boundedness will be different.

The case k = 0 corresponds to the Coifman-Meyer theorem A, while k = 1, n = 2 to the
Lacey-Thiele theorem B.

There exist also certain results for multipliers that depend also on the spacial variable:

Theorem D (Bernicot, [3]). Consider a smooth symbol a(x, ξ1, ξ2) satisfying

|∂βx∂
α
ξ a(x, ξ)| . (1 + dist (ξ,Γ))−|α| ,
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for sufficiently many indices α and β. Then the bilinear operator associated to this symbol
satisfies the same estimates as the bilinear Hilbert transform of Theorem B.

In order to prove Theorem 1, we need to estimate bi-parameter paraproducts:

Π⊗Π(f, g)(x, y) =
∑

k,l

[(f ∗ ϕk ⊗ ϕl) · (g ∗ ψk ⊗ ψl)] ∗ (ψk ⊗ ψl) (x, y),

and the remaining similar eight terms obtained by permuting the ψk, ϕk, ψl, ϕl functions.
The first result along these lines was proved by Journé in [8], who in fact developed a

theory for linear bi-parameter Calderón-Zygmund operators. However, Journé did prove
that Π⊗Π : L2(R2)× L∞(R2) → L2(R2). The general result was proved later in [11]:

Theorem E (Muscalu, Pipher, Tao, Thiele [11]). Π ⊗ Π is a bounded operator from

Lp(R2)× Lq(R2) into Ls(R2) provided that 1 < p, q ≤ ∞,
1

p
+

1

q
=

1

s
, and 0 < s <∞.

In [1] together with [2], we managed to prove the following result:

Theorem 2. Let 1 < pi, qi ≤ ∞ and 1
2 < si < ∞, be so that

1

pi
+

1

qi
=

1

si
for any index

i = 1, 2. Then the bi-parameter paraproduct Π ⊗ Π satisfies the following mixed norm
estimates:

(5) Π⊗Π : Lp1
x L

p2
y × Lq1

x L
q2
y → Ls1

x L
s2
y .

A similar result holds for multi-parameter paraproducts Π ⊗ . . . ⊗ Π, if the lebesgue
exponents are strictly between 1 and ∞ (although we can allow the outer-most exponent
to be between 1

2 and 1 as well).
Theorem E was proved using discretized paraproducts in both variables, that is ΠI⊗ΠJ.

This is not the approach we take; the mixed norm Lp spaces already have a vector-valued
structure buit-in. Instead, we use some multiple vector-valued estimates for paraproducts
(which we deduce from similar estimates for the discretized paraproducts). In Section 3
we point out to the bridge between vector-valued and multi-parameter theory.

First, in [1], we treated the case 1 ≤ s2 < ∞, corresponding to a Banach case, by
developing a way of proving multiple vector-valued estimates for certain bilinear operators
( paraproducts and BHT ). In [2], we extended these methods to quasi-Banach spaces,
allowing for values of s2 strictly between 1

2 and ∞.
We should mention that a similar result, within a smaller Banach range, was proved

independently around the same time in [6].
The vector-valued result, on which our proof relies, is the following theorem:

Theorem 3. Consider the tuples R1 =
(

r11, . . . , r
n
1

)

, R2 =
(

r12, . . . , r
n
2

)

and R =
(

r1, . . . , rn
)

satisfying for every 1 ≤ j ≤ n : 1 < rj1, r
j
2 ≤ ∞, 12 < rj < ∞, and 1

rj
1

+ 1

rj
2

= 1
rj
. Then the

paraproduct Π satisfies the estimates

Π : Lp
(

R;LR1 (W, µ)
)

× Lq
(

R;LR2 (W, µ)
)

→ Ls
(

R;LR (W, µ)
)

,

for any 1 < p, q ≤ ∞, 12 < s <∞ with 1
p +

1
q = 1

s .

The LR norm on (W,Σ, µ) =
(
∏n

j=1Wj,
∏n

j=1Σj ,
∏n

j=1 µj
)

is defined as

‖~f‖LR(W,µ) :=
(

ˆ

W1

. . .
(

ˆ

Wn

|~f(w1, . . . , wn)|
rndµn(wn)

)rn−1/rn
. . . dµ1(w1)

)1/r1
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2. Reduction to discretized paraproducts

We briefly explain how to reduce the study of bilinear Fourier multipliers as in Theorem
A, to that of discretized paraproducts. But first we illustrate this reduction for classical
paraproducts. The trilinear form associated to the paraproducts can be written as

ΛΠ(f, g, h) =
∑

k

ˆ

R

(f ∗ ϕk)(x)(g ∗ ψk)(x)(h ∗ ψk)(x)dx

=
∑

k∈Z

2−k
∑

n∈Z

ˆ 1

0
(f ∗ ϕk)(2

−k(n+ β))(g ∗ ψk)(
−k(n+ β))(h ∗ ψk)(

−k(n+ β))dβ

=
∑

k

ˆ 1

0

∑

|I|=2−k

1

|I|1/2
〈f, ϕβ

I 〉〈g, ψ
β
I 〉〈h, ψ

β
I 〉

=

ˆ 1

0

∑

I

1

|I|1/2
〈f, ϕβ

I 〉〈g, ψ
β
I 〉〈h, ψ

β
I 〉.

The functions ψβ
I are given by ψβ

I (t) = 2−k/2ψk(2−k(n+ β)− t), and similarly for ϕβ
I . They

are L2 normalized and verify the properties in the definition of the discretized paraproducts.
The parameter beta varies within the compact interval [0, 1], and for that reason its presence
is of no consequence.

Regarding the paraproduct Π(f, g) =
∑

k Pk(Qkf ·Qkg), for every k ∈ Z, Pk(Qkf ·Qkg)

is supported in frequency inside the set |ξ| ∼ 2k, |η| ∼ 2k, which can be written as a union
of a finite number of Whitney squares with respect to the origin. That is, squares in the
frequency plane ξη, so that the diameter of the box is comparable to the distance to the
singularity.

Conversely, let m(ξ, eta) be a symbol satisfying
∣

∣∂αm(ξ, η)
∣

∣ .
∣

∣ (ξ, η)
∣

∣

−α
for sufficiently

many multi-indices α. We can write m as

m(ξ, η) =
∑

Q

m(ξ, η) · φQ(ξ, η) =
∑

Q

mQ(ξ, η),

where Q runs over Whitney squares associated to the point singularity, and φQ represent
a smooth partition of unity associated to the collection of suqares Q. Every mQ is smooth
and supported mainly on Q, hence we can consider its Fourier series:

mQ(ξ, η) =
∑

n1,n2

cQn1,n2
e

2πin1ξ

|Q| e
2πin2ξ

|Q| =
∑

n1,n2

cQn1,n2
e

2πin1ξ

|Q| e
2πin2ξ

|Q| φQ1
(ξ)φQ2

(η),

where this time φQ1
(ξ) is a smooth function supported on 11

10Q1, which is constantly equal
to 1 on Q1. (Here we write Q = Q1 × Q2). The smoothness of the symbol m is reflected
in the decay of the Fourier coefficients, which is uniform in Q:

|cQn1,n2
| . (1 + |n1|+ |n2|)

−M .

In fact, cQn1,n2
only depends on the diameter of the square, hence we write ckn1,n2

for a

square of diameter comparable to 2k.
Then we have

Tm(f, g)(x) =
∑

n1,n2

∑

k

ckn1,n2
((f ∗ ϕk,n1

) · (g ∗ ψk,n2
)) ∗ ψk(x)

+ like terms.
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The functions ψk,n1
are the modulated functions ψk, which correspond to a shift in the

spatial variable. Then expressions of the form
∑

k

ckn1,n2
((f ∗ ϕk,n1

) · (g ∗ ψk,n2
)) ∗ ψk(x)

represent shifted paraproducts, which can be reduced again to discretized paraproducts.
The shifts with respect to the parameters n1 and n2 produce a dependency of these vari-
ables, but which is acceptable in the end thanks to the fast decay of the coefficients ckn1,n2

.

The Leibniz rule from Theorem 1. Using paraproducts, Dα
1D

β
2 (f, g)(x, y) can be rep-

resented as a sum of paraproducts applied to Dα
1 f and Dβ

2 g and to similar terms (this
explains the numerous terms in Theorem 1).

When the derivatives are applied to the term
∑

k,l PkPl(QkQlf ·QkQlg), we obtain

Dα
1D

β
2 (Π(f, g))(x, y) =

∑

k,l

[(f ∗ ψk ⊗ ψl) · (g ∗ ψk ⊗ ψl)] ∗ (2
kαϕ̃k ⊗ 2lβϕ̃l)(x, y).

The functions ϕ̃k and ϕ̃l have a slower decay than ϕk, ϕl:

ˆ̃ϕk(ξ) =
|ξ|α

2kα
ϕ̂k, ˆ̃ϕl(η) =

|η|β

2β
ϕ̂l.

The simple lack of smoothness at the origin causes ϕ̃ to decay as (1 + |x|)−1−α (here we
have ϕ̃ so that ϕ̃k(x) = 2kϕ̃(2kx)).

The ϕ̃k and ϕ̃l will be again decomposed in Fourier series in frequency as before, and
we are reduce to the study of the operator

(6)
∑

n1,n2

∑

k

ck,ln1,n2
((f ∗ ψk,n1

⊗ ψl,n2
) · (g ∗ ψk,n1

⊗ ψl,n2
)) ∗ ϕk ⊗ ϕl(x, y),

where this time the coefficients satisfy uniformly in k and l the estimate

(7) |ck,ln1,n2
| .

1

(1 + |n1|)
(1+α)

·
1

(1 + |n2|)
(1+β)

.

The expression in (6) is essentially

∑

n1,n2

cn1,n2
Π̃⊗ Π̃(f, g)(x, y),

and we will need to estimate this in Ls1
x L

s2
y . Using the subadditivity of ‖ · ‖s0

L
s1
x L

s2
y
, where

s0 = min(1, s1, s2), and assuming the estimate in Theorem 2, Theorem 1 is reduced to the
summability of

∑

n1,n2

1

(1 + |n1|)
s0(1+α)

·
1

(1 + |n2|)
s0(1+β)

.

The latter is true provided s0 (1 + α) > 1 and s0 (1 + β) > 1, i.e. if

min(1, s1, s2) > max
1

1 + α
,

1

1 + β
.
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3. From multiple vector-valued operators to multi-parameter operators

The study of multi-parameter operators in harmonic analysis is not an easy task. The
reason for that, at least partly, is the more complicated characterization of the BMO space
in higher dimensions, which plays a very important role in the study of bilinear operators as
well. This can avoided however, by regarding multi-parameter operators as (some multiple)
vector-valued operators, an approach we are going to take.

Correspondingly, vector-valued extensions of an operator T can be regarded as mixed-
norm estimates for the bi-parameter operator T ⊗ Id (in the second component, nothing
happens). This is a useful point of view because it also suggests that bi-parameter operators
can be understood in a way similar to the treatment of vector-valued extensions.

Sometimes in time-frequency analysis, multi-parameter operators behave unexpectedly.
In [11], it was noticed that even though Π ⊗ Π is bounded on all admissible Lp spaces,
BHT ⊗ BHT = ∞ a.e. The range of boundedness for Π ⊗ BHT was only recently
understood in [16] and [1].

The paraproducts on the other hand have a special “splitting” property. Recall that
Qk is the Littlewood-Paley projection onto {|ξ| ∼ 2k}(which is really the convolution with
ψk(·)), and Pk is the projection onto {|ξ| ≤ 2k}, corresponding to the convolution with ϕk.
Then we can regard paraproducts as being expressions of the form

(8)
∑

k

Qk(Pkf ·Qkg)(x, y) ,
∑

k

Qk(Qkf · Pkg)(x, y) or
∑

k

Pk(Qkf ·Qkg)(x, y).

It is important for us that the outer-most function ϕ̂k(ξ1+ξ2) and ψ̂k(ξ1+ξ2) are identically

equal to 1 on the supports of ψ̂k(ξ1)·ψ̂k(ξ2) and ψ̂k(ξ1)·ϕ̂k(ξ2) respectively. This can always
be achieved with the price of an extra decomposition.

Proposition 1. Let Tm : Lp(Rn) × Lq(Rn) → Lr(Rn) be a bilinear operator with smooth
symbol m, and Π : Lp(R)× Lq(R) → Lr(R) a paraproduct as described above.

(1) If Π is given by
∑

kQk(Pkf ·Qkg)(x, y), then

(Tm ⊗Π)(f, g)(x, y) =
∑

k

Q2
k

(

Tm(P y
k f,Q

y
kg)

)

(x) =
∑

k

Tm(P y
k f,Q

y
kg)(x).

(2) If Π is given by
∑

k Pk(Qkf ·Qkg)(x, y), then

(Tm ⊗Π)(f, g)(x, y) =
∑

k

P 2
k

(

Tm(Qy
kf,Q

y
kg)

)

(x) =
∑

k

Tm(Qy
kf,Q

y
kg)(x).

Here we need to explain the notation: Q2
k denotes the projection onto |ξ2| ∼ 2k in the second

variable, and P y
k f is a function of x only, with the variable y fixed. The exact formulas are

P y
k f(x) =

ˆ

R

ϕk(s)f(x, y − s)ds, P 2
k f(x, y) =

ˆ

R

ϕk(s)f(x, y − s)ds,

Qy
kf(x) =

ˆ

R

ψk(s)f(x, y − s)ds, Q2
kf(x, y) =

ˆ

R

ψk(s)f(x, y − s)ds.

With this observation at hand, we can present our approach to multiparameter para-
products.
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Sketch of proof for Theorem 2. Now we show how to deduce the results of Theorem
2, for any 1

2 < s1, s2 <∞.
If Πy, the paraproduct acting on the variable y is of the form

Πy (·, ·) =
∑

k

Qk (Pk (·) , Qk (·)) ,

then we can write Π⊗Π as Π⊗Π(f, g)(x, y) =
∑

kQ
2
kΠ

(

P y
k , Q

y
k

)

(x).
A less known result, which plays an important role in our approach, is the following

lemma, which appears in [15]:

Lemma 1. Let f ∈ S(Rn), and 1 ≤ l ≤ n, and {i1, . . . il} ⊂ {1, . . . , n}. Then

‖f‖Lp . ‖





∑

k1,...,kl

|Qi1
k1
. . . Qil

kl
f |2





1/2

‖Lp

for any 0 < p <∞.

This is saying that the Lp norm of f is bounded by the Lp norm of the square function,
for any 0 < p < ∞. The reverse statement is used more often, but it only holds for
1 < p < ∞. Also, a Banach-valued result holds, and it will be needed for the special case
1
2 < s1 < 1, and p2 = ∞ or q2 = ∞, when the Banach space concerned is L1.
We have

∥

∥

∥

∥

∑

k

Q2
kΠ

(

P y
k , Q

y
k

)

(x)
∥

∥

L
s2
y

∥

∥

L
s1
x

.
∥

∥

∥

∥

(

∑

k

∣

∣Π
(

P y
k , Q

y
k

)

(x)
∣

∣

2)1/2∥
∥

L
s2
y

∥

∥

L
s1
x

(9)

.
∥

∥

∥

∥ sup
k

∣

∣P y
k f(x)

∣

∣

∥

∥

L
p2
y

∥

∥

L
p1
x

·
∥

∥

∥

∥

(

∑

k

∣

∣Qy
kg(x)

∣

∣

2)1/2∥
∥

L
q2
y

∥

∥

L
q1
x
.

In the above inequality we used the multiple vector-valued estimate

Πx : Lp1
x

(

Lp2
y (ℓ∞)

)

× Lq1
x

(

Lq2
y

(

ℓ2
))

→ Ls1
x

(

Ls2
y

(

ℓ2
))

,

which is a consequence of Theorem 3.
On the last line of (9), we recognize a maximal operator in big‖

∥

∥ supk
∣

∣P y
k f(x)

∣

∣

∥

∥

L
p2
y

∥

∥

L
p1
x

and a square function in
∥

∥

∥

∥

(
∑

k

∣

∣Qy
kg(x)

∣

∣

2)1/2∥
∥

L
q2
y

∥

∥

L
q1
x
. The latter is not bounded on L∞,

leaving out the case q2 = ∞.
If 1 ≤ s1, s2 < ∞, the case when p2 = ∞ or q2 = ∞ can be obtained by duality: the

dual of Lp
xL

q
y is Lp′

x L
q′
y . More more difficult however is the case when 1

2 < s1 < 1 and
p2 = ∞ or q2 = ∞, and needs to be dealt with differently. Indeed, we treat it similarly to
vector-valued extensions for operators: we prove sharp estimates for the localized version

ΠF,G,H′

I0
⊗Π : L∞

x L
∞
y × Lq

xL
q
y → Lq

xL
q
y,

with sharp operatorial bounds that depend on the dyadic interval I0, and the fixed sets
F,G,H ′. Then the mixed norm Lp estimates are deduced through careful stopping times.

On the other hand, if Πy is of the form

Πy (·, ·) =
∑

k

Pk (Qk (·) , Qk (·)) ,

we can write Π ⊗ Π as Π ⊗ Π(f, g)(x, y) =
∑

k P
2
kΠ

(

Qy
k, Q

y
k

)

(x). Then the boundedness
of Π⊗Π in Ls1

x L
s2
y follows from the vector-valued inequality

Πx : Lp1
x

(

Lp2
y

(

ℓ2
))

× Lq1
x

(

Lq2
y

(

ℓ2
))

→ Ls1
x

(

Ls2
y

(

ℓ2
))

.
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Remark:. Through the above method, we can recover the results of Theorem E, and their
multi-parameter equivalents from [12].

4. A few comments on quasi-Banach spaces

Even though for 0 < p < 1, the triangle inequality is missing in Lp spaces, the bounded-
ness of a (multi-) linear operator on such spaces can still be proved thanks to Marcinkiewicz
interpolation theorem, which is true also for multi-sublinear operators. In this situation,
the dual of Lp is {0} for non-atomic spaces(such as Lp(Rn)), or a complicated space con-
taining ℓ∞ in the case of an atomic space such as ℓp. We will not attempt to dualize the
Lp quasinorm, but instead the Lp,infty quasinorm, which could seem surprising.

Using generalized restricted type dualization, we have

(10)
∥

∥f
∥

∥

p,∞
∼ sup

E,0<
∣

∣E
∣

∣<∞

inf
E′⊆E

major subset

∣

∣ 〈f,1E′〉
∣

∣

∣

∣E
∣

∣

1− 1

p

,

where we say E′ is a major subset of E if E′ ⊆ E and
∣

∣E′
∣

∣ ≥
∣

∣E
∣

∣/2.
More generally, we have

(11) ‖f‖p,∞ ∼ sup
0<
∣

∣E
∣

∣<∞

inf
Ẽ⊆E

major subset

‖f · 1Ẽ‖r
∣

∣E
∣

∣

1

r
− 1

p

.

This means that, given a set E of finite measure, we can in fact remove an exceptional
subset whose measure is relatively small (which can represent the set where the maximal
function of f is too large, for example), and estimate f on the complement of the exceptional
set. Such a technique is extremely useful, but there might be certain technicalities involved
and one needs to exercise care. If we want to evaluate ‖Tf‖p0,∞ and ‖Tf‖p1,∞, and
from this deduce estimates for ‖T‖Lp→Lp via a Marcinkiewicz interpolation theorem, the
exceptional set should be independent of the function f .

The type of interpolation most suitable to this techniques is the generalized restricted-
type interpolation (which is an adaptation of Marcinkiewicz’s ideas). The principle behind
it is that whatever is true for characteristic functions should also hold for function in Lp

spaces. We present a bilinear theorem which is often used in time-frequency analysis:

Proposition 2. Let (p, q, s) be a tuple so that 1
2 < s < ∞, 1 < p, q < ∞ and

1

s
=

1

p
+

1

q
,

and T a bilinear operator satisfying the restricted type estimate:
for any sets of finite measure E1 and E2, and any functions f, g so that |f(x)| ≤ 1E1

(x)
and |g(x)| ≤ 1E2

(x) respectively, the estimate

(12)
∥

∥T (f, g)
∥

∥

s̃,∞
≤ Ks1,s2,s̃

∣

∣E1

∣

∣

1/s1
∣

∣E2

∣

∣

1/s2

holds for all tuples (s1, s2, s̃) satisfying 1
s1

+ 1
s2

= 1
s̃ in a neighborhood of (p, q, s), with the

constant Ks1,s2,s̃ depending continuously on s1, s2, s̃.
Then T is of strong type (p, q, s), in the sense that

(13)
∥

∥T (f, g)
∥

∥

s
≤ Kp,q,s

∥

∥f
∥

∥

p

∥

∥g
∥

∥

q

for any sequences of functions for which the RHS is finite.

The interpolation theorem above extends easily to the framework of multiple Banach
or quasi-Banach spaces; the conditions |f(x)| ≤ 1E1

, |g(x)| ≤ 1E2
(x) are replaced by
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∥

∥~f(x)
∥

∥

LR1 (W,µ)
≤ 1E1

(x) and
∥

∥~g(x)
∥

∥

LR2 (W,µ)
≤ 1E2

(x) respectively. Moreover, the mea-

sure spaces can be arbitrary, for example if we want to prove:
∥

∥‖T (~f ,~g)‖LR(W,µ)

∥

∥

Ls(ν)
≤ Kp,q,s

∥

∥‖~f‖LR1

∥

∥

Lp(ν1)

∥

∥‖~g‖LR2

∥

∥

Lq(ν2)
.

Remark:. In [2], identity (11) plays an essential role. In proving Theorem 3, it was

important for us to linearize the operator
(
∑

k |T (fk, gk)|
r
)1/r

for values of r < 1. This
could not be achieved pointwise (the dual of ℓr in this case is unknown), but using (11) we

were able to linearize the Lp,∞ norm of
(
∑

k |T (fk, gk)|
r
)1/r

.
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