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An overview of recent results on Nitsche’s method for contact
problems

Franz Chouly, Mathieu Fabre, Patrick Hild, Rabii Mlika, Jérôme Pousin, and Yves Renard

Abstract We summarize recent achievements in applying Nitsche’s method to some contact and friction problems.
We recall the setting of Nitsche’s method in the case of unilateral contact with Tresca friction in linear elasticity.
Main results of the numerical analysis are detailed: consistency, well-posedness, fully optimal convergence in
H1(Ω)-norm, residual-based a posteriori error estimation. Some numerics and some recent extensions to multi-
body contact, contact in large transformations and contact in elastodynamics are presented as well.
Keywords: contact, friction, finite elements, Nitsche’s method.
AMS Subject Classification: 65N12, 65N15, 65N30, 74M10, 74M15, 74M20.

1 Introduction

For a wide range of systems in structural mechanics, it is crucial to take into account contact and friction between
rigid or elastic bodies. Among numerous applications, let us mention foundations in civil engineering, metal form-
ing processes, crash-tests of cars, design of car tires (see, e.g., [84]). Contact and friction conditions are usually
formulated with a set of inequalities and non-linear equations on the boundary of each body, with corresponding
unknowns that are displacements, velocities and surface stresses. Basically, contact conditions allow to enforce
non-penetration on the whole candidate contact surface, and the actual contact surface is not known in advance. A
friction law may be taken into account additionally, and various models exist that correspond to different surface
properties, the most popular one being Coulomb’s friction (see, e.g., [60] and references therein).
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Frictional contact problems can be formulated weakly within the framework of variational inequalities (see, e.g.,
[38, 34, 60]). Those are the very basis of most existing Finite Element Methods (FEM), see e.g. [60, 41, 48, 43,
64, 84, 83]. For numerical computations with the FEM, various techniques have been devised to enforce contact
and friction conditions at the discrete level, and the foremost are:

1. Penalty methods (see, e.g., [61, 73, 72, 60, 18, 22]), where the set of inequations associated to contact is re-
placed with a non-linear inequation that approximates them. These methods remain primal, and are easy to
implement. Nevertheless, consistence is lost, as a small amount of penetration, controlled by the penalty param-
eter, is allowed. Therefore the penalty parameter needs to be chosen with some care. Indeed, when the penalty
parameter gets smaller to improve the approximation of contact conditions, the discrete problem gets stiffer and
ill-conditioned, so iterative solvers such as semi-smooth Newton may fail to converge.

2. Mixed methods (see, e.g., [48, 52, 9, 57, 63, 83]), where a Lagrange multiplier is introduced, that stands for the
normal stress on the contact boundary (and for the tangential stress as well in case of frictional contact). The
yielding weak form remains consistent, and characterizes the saddle-point of the corresponding Lagrangian.
Inf–sup compatibility between the primal space of displacements and the dual space of Lagrange multipliers
must be satisfied at the discrete level to ensure well-posedness: see, e.g., [83] and references therein for different
solutions that have been proposed to overcome this issue. As usual for mixed formulations, stabilized finite
element methods, such as Barbosa and Hughes stabilization [6], can be designed to circumvent the discrete
inf–sup condition (see, e.g., [55]).

Nitsche’s method has hardly been considered to discretize contact and friction conditions, despite it has gained
popularity for other boundary conditions. The Nitsche method orginally proposed in [70, 5] aims at treating the
boundary or interface conditions in a weak sense, according to the Neumann boundary operator associated to the
partial differential equation and in a consistent formulation. It differs in this aspect from standard penalization
techniques which are generally non-consistent [60]. Moreover, no additional unknown (Lagrange multiplier) is
needed and no discrete inf–sup condition must be fulfilled, contrarily to mixed methods (see, e.g., [48, 83]). Most
of the applications of Nitsche’s method during the last two decades involved linear conditions on the boundary
of a domain or at the interface between sub-domains: see, e.g,. [79] for the Dirichlet problem, [7] for domain
decomposition with non-matching meshes and [45] for a global review. In some recent works [44, 51] it has been
adapted for bilateral (persistent) contact, which still corresponds to linear boundary conditions on the contact zone.
Remark furthermore that an algorithm for unilateral contact which makes use of Nitsche’s method in its original
form is presented and implemented in [44], and an extension to large strain bilateral contact has been performed in
[85].
In [21, 25] a new Nitsche-based FEM was proposed and analyzed for Signorini’s problem, where a linear elastic
body is in frictionless contact with a rigid foundation. Conversely to bilateral (persistent) contact, Signorini’s
problem involves non-linear boundary conditions associated to unilateral contact, with an unknown actual contact
region.
For this Nitsche-based FEM, optimal convergence in the H1(Ω)-norm of order O(h

1
2+ν) has been proved, provided

the solution has a regularity H
3
2+ν(Ω), 0 < ν ≤ k−1/2 (k = 1,2 is the polynomial degree of the Lagrange finite

elements). To this purpose there is no need of additional assumption on the contact/friction zone, such as an in-
creased regularity of the contact stress or a finite number of transition points between contact and non-contact. The
proof applies in two-dimensional and three-dimensional cases, and for continuous affine and quadratic finite ele-
ments. Besides, the standard FEM for contact consists in a direct approximation of the variational inequality, with
the elastic displacement as the only unknown. For this standard FEM and for many variants such as mixed/hybrid
methods (e.g., [52, 9, 63]), stabilized mixed methods (e.g., [55]), penalty methods (e.g., [22]), it has been quite
challenging to establish optimal convergence in the case the solution u belongs to H

3
2+ν(Ω) (0 < ν ≤ 1/2). As

a matter of fact, the first fully optimal result, without extra assumptions, for the standard FEM has been achieved
only recently, in 2015, see [33]. The first analyses in the 1970s were indeed sub-optimal with a convergence in
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O(h
1
2+

ν
2 ) [78, 47, 48] . In the 2000s, with additional assumptions on the finiteness of transition points between

contact and non-contact optimality has been recovered (see [8] when 0 < ν < 1/2 and [57] when ν = 1/2). We
refer to, e.g., [57, 83, 56, 33] for more detailed reviews on a priori error estimates for contact problems in elasticity.
Moreover our Nitsche-based FEM encompasses symmetric and nonsymmetric variants depending upon a parame-
ter called θ . The symmetric case of [21] is recovered when θ = 1. When θ 6= 1 positivity of the contact term in the
Nitsche variational formulation is generally lost. Nevertheless some other advantages are recovered, mostly from
the numerical viewpoint. Namely, one of the variants (θ = 0) involves a reduced quantity of terms, which makes
it easier to implement and to extend to contact problems involving non-linear elasticity. In addition, this nonsym-
metric variant θ = 0 performs better in the sense it requires less Newton iterations to converge, for a wider range
of the Nitsche parameter, than the variant θ = 1, see [75]. Concerning the skew-symmetric variant θ = −1, the
well-posedness of the discrete formulation and the optimal convergence are preserved irrespectively of the value of
the Nitsche parameter. Note that for other boundary conditions, such as non-homogeneous Dirichlet, the symmetric
variant (θ = 1) as originally proposed by Nitsche [70] is the most widespread, since it preserves symmetry, and
allows efficient solvers for linear systems with a symmetric matrix. However some nonsymmetric variants have
been reconsidered recently, due to some remarkable robustness properties (see, e.g., [13, 10]). In the context of
discontinuous Galerkin methods, such nonsymmetric variants are well-known as well (see, e.g., [31, Section 5.3.1,
p.199]).
From then on, various extensions of the method proposed in [21, 25] have been carried out:

• An extension to Coulomb’s friction has been formulated in [75] and tested numerically using a semi-smooth
Newton algorithm.

• An extension to Tresca’s friction has been studied in [19]. Optimal convergence in H1(Ω)-norm has been
established as well, without any assumption other than usual Sobolev regularity. For the standard FEM, and
other methods, technical assumptions on the contact/friction set are needed to recover optimal convergence in
2D, and in 3D, it remains an open issue [83].

• The case of contact in elastodynamics is dealt with in [23, 24]. At the opposite of mixed methods, and identically
as penalty and modified mass methods [59], Nitsche’s discretization yields a well-posed semi-discrete problem
in space (system of Lipschitz differential equations). It can be combined with various time-marching schemes,
such as the theta–scheme, Newmark or a new “hybrid” scheme. The papers [23, 24] present a theoretical study
of well-posedness and stability of the discretized schemes, as well as numerical experiments.

• The case of contact between two elastic bodies, still in the small deformations framework, is addressed in
[37, 27]. In [37] Nitsche’s method is combined with a cut-FEM / fictitious domain discretization. In [27] an
unbiased variant implements the contact between two elastic bodies without making any difference between
master and slave contact surfaces. The contact condition is the same on each surface. This is an advantage for
treatment of self-contact or multi-body contact.

• Residual-based a posteriori error estimates are presented in [20]. Upper and lower bounds are proved under a
saturation assumption, and the performance of the error estimates is investigated numerically.

• The topic of small-sliding frictional contact on 3D interfaces is the object of [3], where a weighted-Nitsche
method is designed, and tested numerically.

• In [46] a least-square stabilized augmented lagrangian method, inspired by Nitsche’s method, is described for
unilateral contact. It shares some common features with Nitsche’s method and allows increased flexibility on
the discretization of the contact pressure. This has been followed recently by some papers [15, 17] that explore
further the link between Nitsche and the augmented lagrangian, for both the contact problem and the obstacle
problem.

• A penalty-free Nitsche’s method has been designed and studied in [16] for scalar Signorini’s problem, that
is an extension of the method studied in [13] for the Dirichlet problem. It is combined with a non-conforming
discretization based on Crouzeix-Raviart finite elements. Stability and optimal convergence rate in H1(Ω)-norm
are established.
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Our paper is outlined as follows. In Section 2 we introduce a frictional contact problem and its Nitsche-based finite
element approximation. The model problem that is focused on consists in unilateral contact between an elastic
body and a rigid support (Signorini’s problem), with Tresca’s friction. We discuss as well the relationship with
other methods, such as Barbosa and Hughes stabilized method, and the augmented lagrangian of Alart and Curnier.
In Section 3 we summarize the main results that have been obtained regarding the consistence, well-posedness and
convergence of the proposed FEM. Results of optimal convergence in H1(Ω)-norm are stated. Residual-based
a posteriori error estimates are provided, as well as their main theoretical properties. Section 4 presents some
numerical results of convergence for the H1(Ω)-norm of the displacement and for the contact condition, in the
frictionless case, as well as some numerical results for the a posteriori error estimates. Some recent extensions
are described in Section 5: contact between two elastic bodies, in small and large transformation frameworks, and
contact in elastodynamics. Concluding remarks are the object of Section 6.
Let us introduce some useful notations. In what follows, bold letters like u,v, indicate vector or tensor valued
quantities, while the capital ones (e.g., V,K . . .) represent functional sets involving vector fields. As usual, we
denote by (Hs(·))d , s ∈ R,d ∈N∗ the Sobolev spaces in d space dimensions (see [1]). The standard scalar product
(resp. norm) of (Hs(D))d is denoted by (·, ·)s,D (resp. ‖ · ‖s,D) and we keep the same notation for all the values of
d. We use the same notations as in [60] for the Gâteaux derivative (or for the directional derivative) 〈DF(v),w〉
of a functional F at point v and in the direction w. The letter C stands for a generic constant, independent of the
discretization parameters.

2 Setting and Nitsche-based method

2.1 Unilateral contact with Tresca friction

.

Ω

fondation Γ

Γ
N

Γ
C

Γ
D

n

Γ
N

.Fig. 1 Elastic body that occupies the domain Ω . The boundary ∂Ω is divided into three non-overlapping parts: ΓD (the body is
clamped), ΓN (tractions are imposed) and ΓC (contact boundary).

We consider an elastic body whose reference configuration is represented by the domain Ω in Rd with d = 2
or d = 3 (see Fig. 1 when d = 2). Small strain assumption is made, as well as plane strain when d = 2. The
boundary ∂Ω of Ω is polygonal or polyhedral and we partition ∂Ω in three nonoverlapping parts ΓD, ΓN and the
contact/friction boundary ΓC, with meas(ΓD) > 0 and meas(ΓC) > 0. The contact/friction boundary is supposed
to be a straight line segment when d = 2 or a planar polygon when d = 3 to simplify. The normal unit outward
vector on ∂Ω is denoted n. The body is clamped on ΓD for the sake of simplicity. It is subjected to volume forces
f ∈ (L2(Ω))d and to surface loads F ∈ (L2(ΓN))

d .
The unilateral contact problem with Tresca friction under consideration consists in finding the displacement field
u : Ω → Rd verifying the equations and conditions (1)–(2)–(3):
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divσ(u)+ f = 0 in Ω , σ(u) = A ε(u) in Ω ,

u = 0 on ΓD, σ(u)n = F on ΓN ,
(1)

where σ = (σi j), 1 ≤ i, j ≤ d, stands for the stress tensor field and div denotes the divergence operator of tensor
valued functions. The notation ε(v) = (∇v+∇vT

)/2 represents the linearized strain tensor field and A is the fourth
order symmetric elasticity tensor having the usual uniform ellipticity and boundedness property. For any displace-
ment field v and for any density of surface forces σ(v)n defined on ∂Ω we adopt the following decomposition into
normal and tangential components:

v = vnn+vt and σ(v)n = σn(v)n+σ t(v).

The unilateral contact conditions (classical Kuhn-Tucker conditions) on ΓC are formulated as follows:

un ≤ 0, σn(u)≤ 0, σn(u)un = 0. (2)

Let s ∈ L2(ΓC), s≥ 0 be a given threshold. The Tresca friction condition on ΓC reads:
|σ t(u)| ≤ s if ut = 0, (i)

σ t(u) =− s
ut

|ut|
otherwise, (ii)

(3)

where | · | stands for the euclidean norm in Rd−1. Note that conditions (3)–(i) and (3)–(ii) imply that |σ t(u)| ≤ s
in all cases, and that if |σ t(u)|< s, we must have ut = 0.

Remark 1. The case of bilateral contact with Tresca friction can be considered too, simply substituting to equations
(2) the following one on ΓC:

un = 0. (4)

The case of frictionless contact is recovered setting s = 0 in (3).

Remark 2. The conditions of Coulomb friction can be written similarly as:
|σ t(u)| ≤−Fσn(u) if ut = 0, (i)

σ t(u) =Fσn(u)
ut

|ut|
otherwise, (ii)

(5)

where F ≥ 0 is the friction coefficient. In the Tresca friction model, it is assumed that the amplitude of the normal
friction threshold is known (i.e., F |σn(u)|= s, see, e.g., [60, Section 10.3]).

We introduce the Hilbert space V and the convex cone K of admissible displacements which satisfy the noninter-
penetration on the contact zone ΓC:

V :=
{

v ∈
(
H1(Ω)

)d
: v = 0 on ΓD

}
, K := {v ∈ V : vn = v ·n≤ 0 on ΓC} .

Define

a(u,v) :=
∫

Ω

σ(u) : ε(v) dΩ , L(v) :=
∫

Ω

f ·v dΩ +
∫

ΓN

F ·v dΓ , j(v) :=
∫

ΓC

s|vt|dΓ ,

for any u and v in V.
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The weak formulation of Problem (1)–(3) as a variational inequality of the second kind is:{
Find u ∈K such that:
a(u,v−u)+ j(v)− j(u)≥ L(v−u), ∀v ∈K.

(6)

which admits a unique solution (see, e.g., [40, Theorem 5.1, Remark 5.2, p.69]). Moreover this solution is the
unique minimizer on K of the functional

J : V 3 v 7→ 1
2

a(v,v)−L(v)+ j(v) ∈ R. (7)

Remark 3. In the case of bilateral contact (condition (4) instead of (2)), the same weak formulation (6) holds,
replacing the convex cone K by the space:

Vb := {v ∈ V : vn = 0 on ΓC} .

2.2 The Nitsche-based finite element method

Let Vh ⊂ V be a family of finite dimensional vector spaces (see [28, 36, 11]) indexed by h coming from a family
T h of triangulations of the domain Ω (h = maxT∈T h hT where hT is the diameter of T ). We suppose that the
family of triangulations is regular, i.e., there exists σ > 0 such that ∀T ∈ T h,hT/ρT ≤ σ where ρT denotes the
radius of the inscribed ball in T . Furthermore we suppose that this family is conformal to the subdivision of the
boundary into ΓD, ΓN and ΓC (i.e., a face of an element T ∈ T h is not allowed to have simultaneous non-empty
intersection with more than one part of the subdivision). We choose a standard Lagrange finite element method of
degree k with k = 1 or k = 2, i.e.:

Vh :=
{

vh ∈ (C 0(Ω))d : vh
|T ∈ (Pk(T ))d ,∀T ∈T h,vh = 0 on ΓD

}
. (8)

However, the analysis would be similar for any C 0-conforming finite element method.
We make use of the notation [·]

R−
, that stands for the projection onto R− ([x]

R−
= 1

2 (x−|x|) for x ∈R). Moreover,

for any α ∈R+, we introduce the notation [·]α for the orthogonal projection onto B(0,α)⊂Rd−1, where B(0,α)
is the closed ball centered at the origin 0 and of radius α . This operation can be defined analytically, for x ∈ Rd−1

by:

[x]α =

{
x if |x| ≤ α,

α
x
|x| otherwise.

The notation H(·) will stand for a “Heaviside” function: for any x ∈ R,

H(x) :=


1 if x > 0,
1
2 if x = 0,
0 if x < 0.

We adopt the convention H(0) = 1/2 to allow the property H(x)+H(−x) = 1,∀x ∈ R. Moreover we will make
use of the property

H(−x)[x]
R−

= [x]
R−

, ∀x ∈ R. (9)

The next properties are classical for projections and useful in the mathematical analysis of the method:
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(y− x)([y]
R−
− [x]

R−
)≥ ([y]

R−
− [x]

R−
)2 ∀x,y ∈ R, (10)

(y−x) · ([y]α − [x]α)≥ |[y]α − [x]α |2 ∀x,y ∈ Rd−1, (11)

where · is the euclidean scalar product in Rd−1.
The next result has been pointed out earlier in [2] (see as well [21, 19] for detailed formal proofs).

Proposition 1. Let γ be a positive function defined on ΓC. The contact with Tresca friction conditions (2)–(3) can
be reformulated as follows:

σn(u) = [σn(u)− γ un]
R−

, (12)

σ t(u) = [σ t(u)− γ ut]s . (13)

Remark 4. Equation (12) is an example of nonlinear complementarity (NCP) function that allows to reformulate
complementarity conditions such as expressed in (2) using a single nonlinear relationship (see, e.g., [39] and
references therein). This is not the unique possible formulation, but is among the simplest ones.

We consider in what follows that γ is a positive piecewise constant function on the contact and friction interface
ΓC which satisfies

γ|T∩ΓC =
γ0

hT
, (14)

for every T that has a non-empty intersection of dimension d−1 with ΓC, and where γ0 is a positive given constant
(the Nitsche parameter). Note that the value of γ on element intersections has no influence. Let now θ ∈ R be a
fixed parameter. Let us introduce the discrete linear operators

Pn
θ ,γ :

Vh → L2(ΓC)
vh 7→ θσn(vh)− γvh

n
and Pt

θ ,γ :
Vh → (L2(ΓC))

d−1

vh 7→ θσ t(vh)− γvh
t
.

Define as well the bilinear form:

Aθγ(uh,vh) := a(uh,vh)−
∫

ΓC

θ

γ
σ(uh)n ·σ(vh)n dΓ .

Our Nitsche-based method for unilateral contact with Tresca friction then reads:
Find uh ∈ Vh such that:

Aθγ(uh,vh)+
∫

ΓC

1
γ
[Pn

1,γ(u
h)]

R−
Pn

θ ,γ(v
h)dΓ +

∫
ΓC

1
γ

[
Pt

1,γ(u
h)
]

s
·Pt

θ ,γ(v
h)dΓ = L(vh), ∀vh ∈ Vh.

(15)

Note that we adopted in this presentation a different convention for notations compared to previous works [21, 25,
19]. This is in order to get closer to the formulations provided in most of the papers on Nitsche’s method and on
the augmented lagrangian method (see Section 2.4). Furthermore, and as already stated in [25] the parameter θ can
be set to some particular values, namely:

1. for θ = 1 we recover a symmetric method for which the contact term∫
ΓC

1
γ

[
Pn

1,γ(u
h)
]
R−

Pn
1,γ(v

h)dΓ

is positive when we set vh = uh. This method can be derived from an energy functional (see Section 2.3). The
tangent matrix yielding from linearization with semi-smooth Newton is symmetric.
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2. for θ = 0 we recover a simple method close to penalty and to the augmented lagrangian. It involves only a few
terms and is of easiest implementation.

3. for θ = −1 the skew-symmetric method admits one unique solution and converges optimally irrespectively of
the value of the Nitsche parameter γ0 > 0.

Remark 5. For frictionless unilateral contact (s = 0 in (3)) the counterpart of (15) reads:
Find uh ∈ Vh such that:

An
θγ(u

h,vh)+
∫

ΓC

1
γ
[Pn

1,γ(u
h)]

R−
Pn

θ ,γ(v
h)dΓ = L(vh), ∀vh ∈ Vh,

(16)

where
An

θγ(u
h,vh) := a(uh,vh)−

∫
ΓC

θ

γ
σn(uh)σn(vh)dΓ .

Remark that it does not correspond exactly to formulation (15) when setting s = 0. This comes from the derivation
of the method, see, e.g., [25, 19] for details.

Remark 6. For bilateral contact with friction (equations (1)–(3)–(4)), the Nitsche-based formulation reads:
Find uh ∈ Vh

b such that:

At
θγ(u

h,vh)+
∫

ΓC

1
γ

[
Pt

1,γ(u
h)
]

s
·Pt

θ ,γ(v
h)dΓ = L(vh), ∀vh ∈ Vh

b,
(17)

where At
θγ
(uh,vh) := a(uh,vh)−

∫
ΓC

θ

γ
σ t(uh) ·σ t(vh)dΓ and Vh

b := Vh∩Vb.

Remark 7. Following the same path as in Proposition 1 the Coulomb friction conditions (5) can be reformulated
as:

σ t(u) = [σ t(u)− γut](−Fσn(u)) = [σ t(u)− γut](−F [σn(u)−γun]
R−

) .

This motivates the introduction of the following Nitsche-based formulation for unilateral contact with Coulomb
friction (equations (1)–(2)–(5)):

Find uh ∈ Vh such that:

Aθγ(uh,vh)+
∫

ΓC

1
γ
[Pn

1,γ(u
h)]

R−
Pn

θ ,γ(v
h)dΓ

+
∫

ΓC

1
γ

[
Pt

1,γ(u
h)
](
−F

[
Pn

1,γ (uh)
]
R−

) ·Pt
θ ,γ(v

h)dΓ = L(vh), ∀vh ∈ Vh.

(18)

We next define convenient mesh–dependent norms, in fact weighted L2(ΓC)-norm (since (γ0/γ)|T = hT ).

Definition 1. For any v ∈ L2(ΓC), we set

‖v‖
− 1

2 ,h,ΓC
:= ‖(γ0/γ)

1
2 v‖0,ΓC , ‖v‖ 1

2 ,h,ΓC
:= ‖(γ/γ0)

1
2 v‖0,ΓC .

The same definitions extend straightforwardly to functions in (L2(ΓC))
d−1.

Additionally, it will be sometimes convenient to endow Vh with the following mesh– and parameter–dependent
scalar product:
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Definition 2. For all vh,wh ∈ Vh we set

(vh,wh)γ := (vh,wh)1,Ω +(γ
1
2 vh,γ

1
2 wh)0,ΓC ,

and note ‖ · ‖γ := (·, ·)
1
2
γ the corresponding norm. Remark that the two norms ‖ · ‖γ and ‖ · ‖1,Ω are equivalent on

Vh, in the following sense (for a quasi-uniform mesh T h):

‖vh‖1,Ω ≤ ‖vh‖γ ≤
(

1+C
γ0

h

)
‖vh‖1,Ω ,

for any vh ∈ Vh. The positive constant C comes from the trace inequality and the constant of quasi-uniformity of
the mesh T h. For a mesh T h that is not quasi-uniform, the same relationship holds, replacing h by (minT∈T h hT ).

We end this section with the following statement: a discrete trace inequality (see, e.g., [80, 19]), that is a key
ingredient for the whole mathematical analysis of Nitsche’s based methods.

Lemma 1. There exists C > 0, independent of the parameter γ0 and of the mesh size h, such that, for all vh ∈ Vh:

‖σn(vh)‖
− 1

2 ,h,ΓC
+‖σ t(vh)‖

− 1
2 ,h,ΓC

≤C‖vh‖1,Ω . (19)

2.3 Energy minimization for the symmetric variant

We show in this section that an energy functional can be associated to Problem (15) in the symmetric case (θ = 1),
that is a discrete counterpart of J (·). Using Riesz’s representation theorem, we identify (Vh,(·, ·)γ) to its dual.
Let us first introduce a functional for the total potential energy, i.e. the strain energy and the potential energy of the
external forces:

JE(vh) :=
1
2

a(vh,vh)−L(vh),

for any vh ∈ Vh. For the contact condition (12) we add the term:

J n
γ (v

h) :=
1
2

∫
ΓC

1
γ
[Pn

1,γ(v
h)]2

R−
dΓ − 1

2

∫
ΓC

1
γ

σn(vh)2 dΓ .

And for the Tresca friction condition (13) we take:

J t
γ (v

h) :=− 1
2

∫
ΓC

1
γ

∣∣∣Pt
1,γ(v

h)−
[
Pt

1,γ(v
h)
]

s

∣∣∣2 dΓ +
1
2

∫
ΓC

1
γ

∣∣∣Pt
1,γ(v

h)
∣∣∣2 dΓ − 1

2

∫
ΓC

1
γ

∣∣∣σ t(vh)
∣∣∣2 dΓ .

The energy functional associated to Problem (15) is then:

Jγ := JE +J n
γ +J t

γ .

Now, when θ = 1, we are able to characterize Problem (15) as the first-order optimality condition associated to the
minimization of Jγ(·) on Vh:

Proposition 2. Suppose that θ = 1 and that γ0 is large enough. Then:

1. (Jγ +L)(·) is non-negative.
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2. Jγ(·) is a Gâteaux-differentiable and convex functional on Vh.
3. Any uh that minimizes Jγ(·) on Vh is solution to Problem (15), that can be written equivalently

〈DJγ(uh),vh〉= 0, ∀vh ∈ Vh.

Proof. First, provided a large enough γ0, (Jγ(vh)+L(vh)) is a non-negative quantity due to the ellipticity of the

elasticity tensor A, the discrete trace inequality (19) and the relationship
∣∣∣Pt

1,γ(v
h)−

[
Pt

1,γ(v
h)
]

s

∣∣∣≤ ∣∣∣Pt
1,γ(v

h)
∣∣∣, this

latter being a property of the projection onto a closed ball.
Let us rewrite in a slightly different form the potential Jγ(·):

Jγ := J̃E +J̃ n
γ +J̃ t

γ ,

with, for vh ∈ Vh:

J̃E(vh) :=
1
2

Aγ(vh,vh)−L(vh),

J̃ n
γ (v

h) := J n
γ (v

h)+
1
2

∫
ΓC

1
γ

σn(vh)2 dΓ ,

J̃ t
γ (v

h) := J t
γ (v

h)+
1
2

∫
ΓC

1
γ

∣∣∣σ t(vh)
∣∣∣2 dΓ .

The potential J̃E(·) is Gâteaux-differentiable on Vh and its derivative is:

〈DJ̃E(vh),wh〉= Aγ(vh,wh)−L(wh), (20)

for all vh,wh ∈ Vh.
Similarly we check that the potential J̃ n

γ (·) is Gâteaux-differentiable too on Vh. Its derivative is obtained as

〈DJ̃ n
γ (v

h),wh〉 =
∫

ΓC

1
γ
[Pn

1,γ(v
h)]

R−
〈D([Pn

1,γ(v
h)]

R−
),wh〉dΓ

=
∫

ΓC

1
γ
[Pn

1,γ(v
h)]

R−
H(−Pn

1,γ(v
h))Pn

1,γ(w
h)dΓ

=
∫

ΓC

1
γ
[Pn

1,γ(v
h)]

R−
Pn

1,γ(w
h)dΓ (21)

where we used the property (9).
For the last potential J̃ t

γ (·) let us consider the functional

J : Rd−1 3 x 7→ 1
2
|x− [x]s |

2 ∈ R.

After simple calculations we check that J(·) is Gâteaux-differentiable and that:

〈DJ(x),y〉= (x− [x]s) ·y,

for all x,y ∈ Rd−1. Using the above formula we obtain that J̃ t
γ (·) is Gâteaux-differentiable, with derivative
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〈DJ̃ t
γ (v

h),wh〉=−
∫

ΓC

1
γ

(
Pt

1,γ(v
h)−

[
Pt

1,γ(v
h)
]

s

)
·Pt

1,γ(w
h)dΓ +

∫
ΓC

1
γ

Pt
1,γ(v

h) ·Pt
1,γ(w

h)dΓ .

This simplifies further into:

〈DJ̃ t
γ (v

h),wh〉=
∫

ΓC

1
γ

[
Pt

1,γ(v
h)
]

s
·Pt

1,γ(w
h)dΓ . (22)

The convexity of J̃E(·) (resp. J̃ n
γ (·) and J̃ t

γ (·)) results from the ellipticity of A and the inequality (19) (resp.
inequalities (10) and (11)) combined with the characterization of Gâteaux-differentiable convex functions that can
be found, in, e.g., [60, Theorem 3.3, Chapter 3]. This ends the proof of the second point in the theorem. To prove
the last Point 3, we apply, e.g., [60, Theorem 3.7, (v), Chapter 3], with the expression of DJγ(·) that is the sum of
the expressions (20)–(21)–(22). �

Remark 8. Note that a same result can be obtained for the two-body contact problem discretized with an unbiased
Nitsche method, see [27] for details.

2.4 Relationship with other methods

2.4.1 Nitsche for contact and Nitsche for Dirichlet

We consider the case of frictionless contact (s = 0) and Nitsche’s formulation (16) in this situation. Let us split the
contact boundary ΓC into two portions:

• Γ
−

C := {x ∈ ΓC : Pn
1,γ(u

h)(x)< 0},
• Γ

+
C := {x ∈ ΓC : Pn

1,γ(u
h)(x)≥ 0}(= ΓC\Γ−C ).

In this case, we can rewrite formally our Nitsche-based method (16):
Find uh ∈ Vh such that:

An
θγ(u

h,vh)+
∫

Γ
−

C

1
γ

Pn
1,γ(u

h)Pn
θ ,γ(v

h)dΓ = L(vh), ∀vh ∈ Vh.

Note that this only a formal writing since in fact the splitting of ΓC into Γ
+

C and Γ
−

C is an unknown, that depends
on uh. Then using the detailed expression of An

θγ
(·, ·) and Pn

1,γ(·), and after re-ordering of the terms we get:

a(uh,vh)−
∫

Γ
+

C

θ

γ
σn(uh)σn(vh)

−
∫

Γ
−

C

σn(uh) vh
n dΓ −θ

∫
Γ
−

C

uh
n σn(vh)dΓ +

∫
Γ
−

C

γ uh
n vh

n dΓ = L(vh), ∀vh ∈ Vh.

We recognize on Γ
−

C Nitsche’s method for imposition of Dirichlet boundary conditions on the normal component
of the displacement un (see, e.g., [70, 79]). It results that Γ

−
C can be viewed as a discrete approximation of the

actual contact surface. On Γ
+

C a free Neumann boundary condition is imposed weakly, in the same fashion as in
[58, 69]. Therefore Γ

+
C may represent a discrete approximation of the unsticked contact surface.
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2.4.2 Link with Barbosa & Hughes stabilization

We still consider the case of frictionless contact (s = 0) and Nitsche’s formulation (16). Let us introduce

L2
−(ΓC) := {µ ∈ L2(ΓC) |µ ≤ 0 a.e. on ΓC}

and the discrete multiplier
λ

h := [Pn
1,γ(u

h)]
R−

.

Following the same steps as in the symmetric case θ = 1 (see [21, Section 2.3] for details as well as [25] when
θ ∈ R), we can rewrite the formulation (16) into an equivalent mixed form:

Find (uh,λ h) ∈ Vh×L2
−(ΓC) such that:

a(uh,vh)−
∫

ΓC

λ
hvh

n dΓ +
∫

ΓC

θγ
−1(λ h−σn(uh))σn(vh)dΓ = L(vh), ∀vh ∈ Vh,∫

ΓC

(µ−λ
h)uh

n dΓ +
∫

ΓC

γ
−1(µ−λ

h)(λ h−σn(uh))dΓ ≥ 0, ∀µ ∈ L2
−(ΓC).

The first line is simply expression (16) recasted after introduction of the multiplier λ h, and the second line means
that λ h is the projection of Pn

1,γ(u
h) onto L2

−(ΓC). Note as well that the inverse of Nitsche parameter γ
−1
0 can be

interpreted as a stabilization parameter. We recover indeed a mixed form close to the stabilized method [55], the
only difference being that in [55], the dual set L2

−(ΓC) is approximated by using finite elements on the contact
boundary. The stabilized method of [55] is an adaptation to unilateral contact of Barbosa & Hughes stabilization
[6].
The method of stabilized Lagrange multiplier at the boundary proposed by Barbosa & Hughes [6] originates from
a stream of works dedicated to the use of a penalization technique for recovering coercivity for the Lagrange
multiplier in order to avoid handling the Babuska-Brezzi condition in the finite element context. At the beginning
the proposed formulation was inconsistent [71], then supplementary terms were added for ensuring consistency
[6]. This method of stabilized Lagrange multiplier has been adapted for the unilateral contact problem in the
frictionless case [55]. Optimal error estimates for the Lagrange multiplier have been obtained provided an extra
regularity result for the Lagrange multiplier is satisfied, which in certain circumstances is not relevant, see remark
3.7 in [55] (note that using the new results published in [33] this analysis can be improved now).
In the seminal paper [79] a simplified formulation of Barbosa & Hughes (where just the essential added terms are
considered) has been proved equivalent to a Nitsche formulation for a Laplace problem with Dirichlet boundary
conditions. In this context the Lagrange multiplier belongs to L2(ΓC) and is approximated with discontinuous finite
elements. Therefore this Lagrange multiplier can be eliminated and a Nitsche formulation is recovered.

2.4.3 Proximal augmented lagrangian and Nitsche

A popular formulation for solving contact problems is the augmented lagrangian (see, e.g., [2, 75, 76]). In the case
of unilateral contact problem without friction, its expression is:

Lr(uh,λ H) :=
1
2

a(uh,uh)−L(uh)+
∫

ΓC

1
2r

([
λ

H − ruh
n

]2

R−
− (λ H)2

)
dΓ , (23)

for uh ∈ Vh and where the discrete multiplier λ H belongs to a finite element space W H of functions defined on
the contact boundary ΓC. The multiplier λ H is a new unknown that approximates the normal stress σn(u). We
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introduced as well r > 0, which is the augmentation parameter. We note that

d
dx

(
1
2
[x]2

R−

)
= [x]

R−
.

Therefore, using the notation 〈 ∂

∂u (·), ·〉 (resp. 〈 ∂

∂λ
(·), ·〉) for the directional derivative according to the first variable

u (resp. to the second variable λ ):〈
∂

∂u

(∫
ΓC

1
2r

[
λ

H − ruh
n

]2

R−
dΓ

)
,vh
〉

=
∫

ΓC

1
r

[
λ

H − ruh
n

]
R−

(−rvh
n)dΓ =−

∫
ΓC

[
λ

H − ruh
n

]
R−

vh
n dΓ .

Similarly 〈
∂

∂λ

(∫
ΓC

1
2r

[
λ

H − ruh
n

]2

R−
dΓ

)
,µH

〉
=
∫

ΓC

1
r

[
λ

H − ruh
n

]
R−

µ
H dΓ .

Using the above expressions, let us write explicitly the optimality system associated to the augmented lagrangian
(23):

0 =

〈
∂Lr

∂u
(uh,λ H),vH

〉
= a(uh,vh)−L(vh)−

∫
ΓC

[
λ

H − ruh
n

]
R−

vh
n dΓ , ∀vh ∈ Vh,

0 =

〈
∂Lr

∂λ
(uh,λ H),µH

〉
=
∫

ΓC

1
r

([
λ

H − ruh
n

]
R−
−λ

H
)

µ
H dΓ , ∀µ

H ∈W H .

This is an unconstrained formulation, that is more appropriate for numerical solving. Now, remark that the second
equation is a way to enforce weakly, at the discrete level, the condition (12). Another way, straightforward, to
enforce this condition, is to substitute σn(uh) to λ H in the first equation of the optimality system (and we forget
about the second equation):

a(uh,vh)−
∫

ΓC

[
σn(uh)− ruh

n

]
R−

vh
n dΓ = L(vh), ∀vh ∈ Vh.

We now recognize Nitsche’s method (16) for θ = 0. Moreover the parameter γ can be identified with the augmen-
tation parameter r. Note that some recent works are filling the gap between Nitsche and augmented lagrangian
formulations in the case of contact and obstacle problems [15, 17, 46].

3 Analysis of the Nitsche-based method

This section sums up the main results about the numerical analysis of the Nitsche-based formulation (15). For
detailed proofs, the reader is refered to [21, 25, 19, 20]. First of all we recall the consistency of the method, that is
a direct consequence of reformulations (12)–(13) followed by integration-by-parts:

Lemma 2. The Nitsche-based method (15) is consistent: suppose that the solution u to (1)–(3) belongs to
(H

3
2+ν(Ω))d , with ν > 0, then u is also solution to
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Aθγ(u,vh)+
∫

ΓC

1
γ

[
Pn

1,γ(u)
]
R−

Pn
θ ,γ(v

h)dΓ +
∫

ΓC

1
γ

[
Pt

1,γ(u)
]

s
·Pt

θ ,γ(v
h)dΓ = L(vh), (24)

for any vh ∈ Vh.

Note that for the same reasons the formulation (16) (resp. (17)) for frictionless unilateral contact (resp. for frictional
bilateral contact) is consistent too.

3.1 Well-posedness

To show that Problem (15) is well-posed we use an argument by Brezis for M-type and pseudo-monotone operators
[12] (see also [67] and [61]). We define a (non-linear) operator Bh : Vh → Vh, by using the Riesz representation
theorem and by means of the formula:

(Bh
s vh,wh)γ := Aθγ(vh,wh)+

∫
ΓC

1
γ
[Pn

1,γ(v
h)]

R−
Pn

θ ,γ(w
h)dΓ +

∫
ΓC

1
γ

[
Pt

1,γ(v
h)
]

s
·Pt

θ ,γ(w
h)dΓ . (25)

Note that Problem (15) is well-posed if and only if Bh
s is one-to-one. The following result characterizes well-

posedness:

Theorem 1. The operator Bh
s is hemicontinuous. Moreover there exist C,C′ > 0 such that, for all vh,wh ∈ Vh:

(Bh
s vh−Bh

s wh,vh−wh)γ ≥C′
(

1− C(1+θ)2

2γ0

)
‖vh−wh‖2

γ . (26)

As a result, when the condition below holds
γ0 ≥C(1+θ)2, (27)

Problem (15) admits one unique solution uh in Vh.

Remark 9. In the symmetric case θ = 1, we remark that:

〈DJγ(vh),wh〉= (Bh
s vh,wh)γ −L(wh),

for vh,wh ∈Vh, in other terms Bh
s is the gradient of (Jγ +L)(·). In this case the equation (26) means that Jγ(·) is

strongly convex under the condition (27). As a result, when θ = 1, well-posedness can alternatively be established
using a minimization argument, such as [60, Theorem 3.4, Chapter 3], and the unique solution to (15) is also the
unique minimizer of Jγ(·) on Vh.

3.2 A priori error estimates in H1(Ω)-norm

First we recall the abstract error estimate.

Theorem 2. Suppose that the solution u to Problem (6) belongs to (H
3
2+ν(Ω))d with ν > 0 and d = 2 or d = 3.

1. Let θ ∈R. Suppose that the parameter γ0 > 0 is sufficiently large. Then the solution uh to Problem (15) satisfies
the following abstract error estimate:
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‖u−uh‖1,Ω + γ
− 1

2
0

∥∥∥∥σn(u)−
[
Pn

1,γ(u
h)
]
R−

∥∥∥∥
− 1

2 ,h,ΓC

+
∥∥∥σ t(u)−

[
Pt

1,γ(u
h)
]

s

∥∥∥
− 1

2 ,h,ΓC


≤ C inf

vh∈Vh

(
‖u−vh‖1,Ω + γ

1
2

0 ‖u−vh‖ 1
2 ,h,ΓC

+ γ
− 1

2
0 ‖σ(u−vh)n‖

− 1
2 ,h,ΓC

)
,

(28)

where C is a positive constant, independent of h, u and γ0.
2. Set θ = −1. Then for all values of γ0 > 0, the solution uh to Problem (15) satisfies the abstract error estimate
(28) where C is a positive constant, dependent of γ0 but independent of h and u.

The optimal convergence of the method is stated below.

Theorem 3. Suppose that the solution u to Problem (6) belongs to (H
3
2+ν(Ω))d with 0 < ν ≤ k− 1

2 (k = 1,2 is
the degree of the finite element method, given in (8)) and d = 2,3. When θ 6= −1, suppose in addition that the
parameter γ0 is sufficiently large. The solution uh to Problem (15) satisfies the following error estimate:

‖u−uh‖1,Ω +

∥∥∥∥σn(u)−
[
Pn

1,γ(u
h)
]
R−

∥∥∥∥
− 1

2 ,h,ΓC

+
∥∥∥σ t(u)−

[
Pt

1,γ(u
h)
]

s

∥∥∥
− 1

2 ,h,ΓC

≤ Ch
1
2+ν‖u‖ 3

2+ν ,Ω , (29)

where C is a positive constant, independent of h and u.

We can easily obtain the following error estimate on the Cauchy constraint ‖σ(u−uh)n‖
− 1

2 ,h,ΓC
in the weighted

L2(ΓC)-norm (note that σn(uh) 6=
[
Pn

1,γ(u
h)
]
R−

and σ t(uh) 6=
[
Pt

1,γ(u
h)
]

s
on ΓC conversely to the continuous case).

Corollary 1. Suppose that the solution u to Problem (6) belongs to (H
3
2+ν(Ω))d with 0 < ν ≤ k− 1

2 and d = 2,3.
When θ 6= −1, suppose in addition that the parameter γ0 is sufficiently large. The solution uh to Problem (15)
satisfies the following error estimate:

‖σ(u−uh)n‖
− 1

2 ,h,ΓC
≤Ch

1
2+ν‖u‖ 3

2+ν ,Ω , (30)

where C is a positive constant, independent of h and u.

3.3 Residual-based a posteriori error estimate

An explicit residual-based a posteriori error estimate can be derived for Problem (15), that is an extension of the
one presented in [7] (see also, e.g., [81] for linear elasticity). We introduce standard notations for this purpose:

• We define Eh the set of edges/faces of the triangulation and define E int
h := {E ∈ Eh : E ⊂Ω} as the set of interior

edges/faces of T h. We denote by EN
h := {E ∈ Eh : E ⊂ ΓN} the set of Neumann edges/faces and similarly

EC
h := {E ∈ Eh : E ⊂ ΓC} is the set of contact edges/faces.

• For an element T , we denote by ET the set of edges/faces of T and according to the above notation, we set
E int

T := ET ∩E int
h , EN

T := ET ∩EN
h , EC

T := ET ∩EC
h .

• For an edge/face E of an element T , introduce νT,E the unit outward normal vector to T along E. Furthermore,
for each edge/face E, we fix one of the two normal vectors and denote it by νE . The jump of some vector valued
function v across an edge/face E ∈ E int

h at a point y ∈ E is defined as
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v
]]

E(y) := lim
α→0+

v(y+ανE)− v(y−ανE).

• Let ωT be the union of all elements having a nonempty intersection with T . Similarly for a node x and an
edge/face E, let ωx := ∪T :x∈T T and ωE := ∪x∈E ωx.

• fT (resp. FE ) is a computable quantity that approximates f on the element T ∈T h (resp. F on the edge E ∈ EN
h ).

The a posteriori error estimator is defined below.

Definition 3. The local error estimators ηT and the the global estimator η are defined by

ηT :=

(
4

∑
i=1

η
2
iT

)1/2

,

η1T := hT‖div σ(uh) + fT‖0,T ,

η2T := h1/2
T

 ∑
E∈E int

T ∪EN
T

‖JE,n(uh)‖2
0,E

1/2

,

η3T := h1/2
T

 ∑
E∈EC

T

∥∥∥σ t(uh)−
[
Pt

1,γ(u
h)
]

s

∥∥∥2

0,E

1/2

,

η4T := h1/2
T

 ∑
E∈EC

T

∥∥∥∥σn(uh)−
[
Pn

1,γ(u
h)
]
R−

∥∥∥∥2

0,E

1/2

,

η :=

(
∑

T∈T h

η
2
T

)1/2

,

where JE,n(uh) means the constraint jump of uh in the normal direction, i.e.,

JE,n(uh) :=
{[[

σ(uh)νE
]]

E , ∀E ∈ E int
h ,

σ(uh)νE −FE , ∀E ∈ EN
h .

(31)

The local and global approximation terms are given by

ζT :=

h2
T ∑

T ′⊂ωT

‖f− fT ′‖2
0,T ′ +hE ∑

E⊂EN
T

‖F−FE‖2
0,E

1/2

,

ζ :=

(
∑

T∈T h

ζ
2
T

)1/2

.

We need for the analysis a “saturation” assumption as in [7] for Nitsche-based domain decomposition, and as in
[82] for mortar methods.

Assumption 4 The solution u to (1)–(2)–(3) and the discrete solution uh to (15) are such that:∥∥∥σn(u−uh)
∥∥∥
−1/2,h,ΓC

+
∥∥∥σ t(u−uh)

∥∥∥
−1/2,h,ΓC

≤C‖u−uh‖1,Ω , (32)
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where C is a positive constant independent of h.

The following statement guarantees the reliability of the a posteriori error estimator:

Theorem 5. Let u be the solution to (1)–(2)–(3), with u ∈ (H
3
2+ν(Ω))d (ν > 0 and d = 2,3), and let uh be the

solution to the corresponding discrete problem (15). Assume that, for θ 6=−1, γ0 is sufficiently large. Assume that
the saturation assumption (32) holds as well. Then we have

‖u−uh‖1,Ω +

∥∥∥∥σn(u)−
[
Pn

1,γ(u
h)
]
R−

∥∥∥∥
− 1

2 ,h,ΓC

+
∥∥∥σ t(u)−

[
Pt

1,γ(u
h)
]

s

∥∥∥
− 1

2 ,h,ΓC

+‖σn(u)−σn(uh)‖−1/2,h,ΓC +‖σ t(u)−σ t(uh)‖−1/2,h,ΓC ≤C(1+ γ
−1
0 )(η +ζ ),

where the positive constant C is independent of h and γ0.

The last result concerns the local lower error bounds of the discretization error terms:

Theorem 6. For all elements T ∈T h, the following local lower error bounds hold:

η1T ≤C‖u−uh‖1,T +ζT , (33)

η2T ≤C‖u−uh‖1,ωT +ζT . (34)

For all elements T such that T ∩EC
h 6= /0, the following local lower error bounds hold:

η3T ≤C ∑
E∈EC

T

h1/2
T

(∥∥∥σ t(u)−
[
Pt

1,γ(u
h)
]

s

∥∥∥
0,E

+
∥∥∥σ t(u−uh)

∥∥∥
0,E

)
, (35)

η4T ≤C ∑
E∈EC

T

h1/2
T

(∥∥∥∥σn(u)−
[
Pn

1,γ(u
h)
]
R−

∥∥∥∥
0,E

+
∥∥∥σn(u−uh)

∥∥∥
0,E

)
, (36)

where the positive constant C is independent of h and γ0.

Remark 10. From Theorem 6, optimal convergence rates of order O(hmin(k, 1
2+ν)) are expected for the estimator of

Definition 3.

4 Numerical experiments

This section is devoted to numerical results that illustrate the theoretical analysis and the practical interest of the
method, in the frictionless case. First, in 4.1 we provide practical details concerning the implementation. Then in
4.2 we assess numerically the a priori error estimates of Subsection 3.2. Numerical assessment of the a posteriori
error estimator described in 3.3 and adaptive computations are object of Subsection 4.3.

4.1 Some implementation issues

The discrete contact problem is solved by using a generalized Newton method, which means that Problem (15) is
derived with respect to uh to obtain the tangent system. The term “generalized Newton’s method” comes from the
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fact that the operators such as [·]
R−

and [·]s are not Gâteaux-differentiable at some specific points. However, no
special treatment is considered. If a point of non-differentiability is encountered, the tangent system corresponding
to one of the two alternatives (x < 0 or x > 0 for [·]

R−
) is chosen arbitrarily. Integrals of the non-linear term on ΓC

are computed with standard quadrature formulas. Note that, for frictionless contact, the situation where the solution
is non-differentiable at an integration point is very rare and corresponds to what is called a “grazing contact” (both
un = 0 and σn = 0). In [75] one can find further details and references on generalized Newton’s method, and
especially a numerical study of its convergence when applied to contact problems discretized by Nitsche’s method
(for variants θ = 1 and θ = 0) as well as other methods.
The finite element library Getfem++1 has been used for all the computations presented in this paper.

4.2 Numerics for Hertz’s contact

The numerical results obtained in [25] for frictionless Hertz’s contact problems of a disk/sphere with a plane rigid
foundation are summarized here. This slightly exceeds the scope defined in Section 2 since a non-zero initial
gap between the elastic solid and the rigid foundation is considered in the computations. Moreover, the tests are
performed with P1 and isoparametric P2 Lagrange finite elements on meshes which are approximations of the real
domain.
The numerical situation in two-dimensions is represented in Fig. 2. A disc of radius 20 cm is considered with a
contact boundary ΓC which is restricted to the lower part (y < 20 cm) of the boundary. A homogeneous Neumann
condition is applied on the remaining part of the boundary. Since no Dirichlet condition is considered, the problem
is not fully coercive. To overcome the non-definiteness coming from the free rigid motions, the horizontal displace-
ment is prescribed to be zero on the two points of coordinates (0 cm,10 cm) and (0 cm,30 cm) which blocks the
horizontal translation and the rigid rotation. Homogeneous isotropic linear elasticity in plane strain approximation
is considered with a Young modulus fixed at E = 25 MPa and a Poisson ratio P = 0.25. A vertical density of
volume forces of 20MN/m3 is applied.
The solution for mesh sizes h = 0.5 cm,1 cm,3 cm,4.5 cm and h = 10 cm are compared with a reference solution
on a very fine mesh (h = 0.15 cm) using quadratic isoparametric finite elements. Moreover, the reference solution
is computed with a different discretization of the contact problem (Lagrange multipliers and Alart–Curnier aug-
mented lagrangian, see [75]). In complement to the relative error in H1(Ω)–norm we compute also the following
relative error in L2(ΓC)-norm: ∥∥∥∥γ

− 1
2

([
Pn

1,γ(u
h)
]
R−
−
[
Pn

1,γ(u
h
re f )
]
R−

)∥∥∥∥
0,ΓC∥∥∥∥[Pn

1,γ(u
h
re f )
]
R−

∥∥∥∥
0,ΓC

,

where uh is the discrete solution and uh
re f the reference solution. Note that

[
Pn

1,γ(u
h)
]
R−

is an approximation of the

contact stress with a convergence of order 1 (see Theorem 3). The convergence rates computed thanks to this test
are reported in Table 1 and Table 2, for P1 and P2 finite elements, respectively, and for different values of θ and γ0.
For the 3D Hertz’s problem and P1 finite elements, convergence rates are reported in Table 3.
When θ = 1, optimal convergence is obtained for both H1(Ω) and weighted L2(ΓC)-norms of the error, but only for
the largest value of the parameter γ0 (γ0 = 100E). This corroborates the theoretical result of Theorem 3 for which

1 see http://download.gna.org/getfem/html/homepage/
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Fig. 2 Example of two-dimensional mesh and reference solution (with color plot of the Von-Mises stress).

γ0/E H1(Ω) L2(ΓC)
100 1.20 1.43

1 0.84 0.61
0.01 1.35 0.53

γ0/E H1(Ω) L2(ΓC)
100 1.20 1.43

1 1.23 1.35
0.01 0.89 0.82

γ0/E H1(Ω) L2(ΓC)
100 1.21 1.43
1 1.32 1.32

0.01 1.63 1.47
θ = 1 θ = 0 θ =−1

Table 1 Computed convergence rates for Hertz’s problem in 2D and P1 finite elements. The column “H1(Ω)” stands for the relative
error in H1(Ω)–norm on the displacement, the column “L2(ΓC)” stands for the relative error in L2(ΓC) on the contact condition.

γ0/E H1(Ω) L2(ΓC)
100 1.62 1.45

1 0.14 0.44
0.01 1.00 0.58

γ0/E H1(Ω) L2(ΓC)
100 1.63 1.42

1 1.63 1.50
0.01 1.43 1.24

γ0/E H1(Ω) L2(ΓC)
100 1.64 1.42
1 1.75 1.55

0.01 1.94 1.61
θ = 1 θ = 0 θ =−1

Table 2 Computed convergence rates for Hertz’s problem in 2D and P2 finite elements. The column “H1(Ω)” stands for the relative
error in H1(Ω)–norm on the displacement, the column “L2(ΓC)” stands for the relative error in L2(ΓC) on the contact condition.

γ0/E H1(Ω) L2(ΓC)
100 1.62 1.12

1 -0.21 0.81
0.01 -0.47 0.51

γ0/E H1(Ω) L2(ΓC)
100 1.59 1.10

1 1.00 1.94
0.01 0.40 1.25

γ0/E H1(Ω) L2(ΓC)
100 1.56 1.07
1 1.44 1.85

0.01 1.42 1.41
θ = 1 θ = 0 θ =−1

Table 3 Computed convergence rates for Hertz’s problem in 3D and P1 finite elements. The column “H1(Ω)” stands for the relative
error in H1(Ω)–norm on the displacement, the column “L2(ΓC)” stands for the relative error in L2(ΓC) on the contact condition.

the optimal rate of convergence is obtained for a sufficiently large γ0. When θ = 0, for the smallest value of γ0 the
convergence remains sub-optimal. However, for the intermediate value of γ0 (γ0 = E) the optimal convergence is
reached. Concerning the version with θ =−1, which corresponds to an unconditionally coercive problem, one can
see that optimal convergence is reached for all values of γ0.
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Remark that the same conclusions hold both for 2D and 3D cases, and linear and quadratic finite elements, though
the difference between the variants θ = 1 and the others can be greater for quadratic elements or in the 3D case.
A strategy to guarantee an optimal convergence is of course to consider a sufficiently large γ0. However, the price
to pay is an ill-conditioned discrete problem. The study presented in [75] for the versions θ = 1 and θ = 0 shows
that Newton’s method has important difficulties to converge when γ0 is large. When symmetry is not required, a
better strategy seems to consider the version with θ = −1 or an intermediate value of θ = 0 which ensure both a
optimal convergence rate and few iterations of Newton’s method to converge.

4.3 A posteriori error estimation

We report the test case taken from [54] (see also [53, 68] in the frictional case). We consider the domain Ω =
(0,1)× (0,1) with material characteristics E = 106 and P = 0.3. A homogeneous Dirichlet condition on ΓD =
{0}× (0,1) is prescribed to clamp the body. The body is potentially in contact on ΓC = {1}× (0,1) with a rigid
obstacle and ΓN = (0,1)× ({0}∪{1}) is the location of a homogeneous Neumann condition. The body Ω is acted
on by a vertical volume density of force f = (0, f2) with f2 =−76518 such that there is coexistence of a slip zone
and a separation zone with a transition point between both zones. For error computations, since we do not have a
closed-form solution, a reference solution is computed with Lagrange P2 elements, h = 1/160, γ0 = E and θ =−1.
First of all we illustrate in Fig. 3 the difference between uniform and adaptive refinement. For the latter we refine
only the mesh elements T in which the local estimator ηT is below a given threshold s = 2.5×10−3. The minimal
(respectively maximal) size of the adaptive mesh is equal to 1/160 (respectively h = 1/40). As expected the rate
of convergence with respect to the number of degrees of freedom is far better in the case of adaptive refinement
than with uniform refinement.
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Fig. 3 Rate of convergence for uniform and adaptive refinement methods. Parameters γ0 = E, θ =−1 and Lagrange P2 elements.

The solution obtained with adaptive refinement and θ = −1 is depicted in Fig. 4. We observe that the error is
concentrated at both left corners (transition between Dirichlet and Neumann conditions) and near the transition
point between contact and separation.
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Fig. 4 Left panel: mesh with adaptive refinement and contact boundary on the right. Right panel: plot of Von Mises stress. Parameters
γ0 = E, θ =−1 and Lagrange P2 elements.

A detailed numerical convergence study of the error estimator η for this test-case, as well as for 2D and 3D Hertz
contact, is provided in [20].

5 Recent extensions

5.1 Contact between two elastic bodies

Now, we consider two elastic bodies Ω 1 and Ω 2 expected to come into contact. To simplify notations, a general
index i is used to represent indifferently each body (i = 1,2). We denote by Γ i

C a portion of the boundary of the
body Ω i which is a candidate contact surface with an outward unit normal vector ni.
For the contact surfaces, let us assume a sufficiently smooth one to one application (projection for instance) map-
ping each point of the first contact surface to a point of the second one (see also Fig. 5):

Π
1 : Γ

1
C → Γ

2
C .

Let J1 be the Jacobian of the transformation Π 1 and J2 =
1
J1 the Jacobian of Π 2 = (Π 1)−1.

We suppose in the following that J1 > 0. We define on each contact surface another “normal” vector ñi such that:

ñi(x) =


Π i(x)−x
‖Π i(x)−x‖

if x 6= Π i(x),

ni if x = Π i(x).

Note that ñ1 = −ñ2 ◦Π 1 and ñ2 = −ñ1 ◦Π 2. For any displacement field vi and for any density of surface forces
σ i(vi)ni defined on ∂Ωi, we adopt the following notation:

vi = vi
nñi +vi

t and σ
i(vi)ni = σ

i
n(v

i)ñi +σ
i
t(v

i).
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.

Ω2

n1 x1 = Π2(x2)

x2 = Π1(x1)

Γ2
C

n2

Γ1
C

Ω1

.

Fig. 5 Two bodies Ω 1 and Ω 2 in contact: mapping Π 1 from Γ 1
C to Γ 2

C and its inverse mapping Π 2.

The two–body contact problem, in the linear elastic framework, consists in finding the displacement field u =
(u1,u2) verifying the equations (37) and the contact conditions described hereafter:

divσ
i(ui)+ fi = 0 in Ω

i, (37a)

σ
i(ui) = Ai

ε(ui) in Ω
i, (37b)

ui = 0 on Γ
i

D, (37c)

σ
i(ui)ni = Fi on Γ

i
N , (37d)

We consider a zero initial normal gap to simplify the notations (see [37] for a nonzero one) and we define the
relative normal displacements JuK1

n = (u1−u2 ◦Π 1) · ñ1 and JuK2
n = (u2−u1 ◦Π 2) · ñ2.

The classical master/slave (biased) formulation is obtained by selecting for instance Γ 1
C to be the slave surface and

Γ 2
C to be the master one. Then the unilateral contact condition is written on the slave side Γ 1

C :

JuK1
n ≤ 0, σ

1
n (u

1)≤ 0, σ
1
n (u

1)JuK1
n = 0. (38)

Let s1 ∈ L2(Γ 1
C ), s1 ≥ 0, JuK1

t = u1
t −u2

t ◦Π 1. The Tresca friction condition on Γ 1
C reads:

‖σ1
t (u1)‖ ≤ s1 if JuK1

t = 0,

σ
1
t (u

1) =−s1 JuK1
t

‖JuK1
t ‖

otherwise.
(39)

As in Section 2, we reformulate the contact and friction conditions (38)-(39) as follows:

σ
1
n (u

1) =
[
σ

1
n (u

1)− γ
1JuK1

n
]
R−

, (40)

σ
1
t (u

1) =
[
σ

1
t (u

1)− γ
1JuK1

t
]

s1 , (41)

where γ1 is the counterpart of γ on the slave surface Γ 1
C . We note T h,i a triangulation of the domain Ω i and

introduce the finite element spaces as in Section 2:

Vh := Vh,1×Vh,2, with Vh,i :=
{

vh,i ∈ C 0(Ω i) : vh,i
|T ∈ (Pk(T ))d ,∀T ∈T h,i,vh,i = 0 on Γ

i
D

}
.

We use the Green formula and equations (37a)–(37d) as well as the Nitsche’s writing of the contact and friction
conditions (40)–(41) to get the following biased finite element approximation:
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Find uh ∈ Vh such that,

A1
θγ(u

h,vh)+
∫

Γ 1
C

1
γ1

[
P1,n

1,γ1(uh)
]
R−

P1,n
θ ,γ1(vh)dΓ

+
∫

Γ 1
C

1
γ1

[
P1,t

1,γ1(uh)
]

s1
·P1,t

θ ,γ1(vh)dΓ = L(vh), ∀vh ∈ Vh,

(42)

where:

Pi,n
θ ,γ i(v) := θσ i

n(vi)− γ iJvKi
n, , Pi,t

θ ,γ i(v) := θσ i
t(vi)− γ iJvKi

t ,

and

A1
θγ(u,v) :=

2

∑
i=1

(∫
Ω i

σ(ui) : ε(vi) dΩ

)
−
∫

Γ 1
C

θ

γ1 σ
1(u1)n ·σ1(v1)ndΓ ,

L(v) :=
2

∑
i=1

(∫
Ω i

fi ·vi dΩ +
∫

Γ i
N

Fi ·vi dΓ

)
.

All the mathematical properties presented in Section 3 for the deformable/rigid case can be transposed to this
biased deformable/deformable Nitsche formulation (see [37]).

5.2 Contact between two elastic bodies with a fictitious domain

A complete analysis in a frictionless case is presented in [37] in the framework of a fictitious domain discretization
using cut-elements. A fictitious domain Ω that contains both Ω 1 and Ω 2 is considered, generally with a simple

.

Ω

Γ1
C

Γ2
C

Γ1
D

Γ1
N

Γ2
D

Ω2

Γ1
NΩ1

.

Fig. 6 Two bodies Ω 1 and Ω 2 in contact: a single mesh of the fictitious domain Ω .

geometry such that a structured mesh T h of Ω can be used (see the example in Fig. 6). Then a single finite element
space

Wh :=
{

vh ∈ C 0(Ω) : vh,i
|T ∈ (Pk(T ))d ,∀T ∈T h

}
,

is used to approximate the displacement of the two bodies, in the sense that we consider the following approxima-
tions space
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Vh := Wh
|Ω 1 ×Wh

|Ω 2 .

in the discrete problem (42), where Wh
|Ω i is the space of restrictions to Ω i of functions of Wh. Additionnaly,

since the boundaries of the bodies are independent of the mesh element edges, the Dirichlet conditions are also
prescribed with Nitsche’s method. This yields the following approximation (in the frictionless case):

Find uh ∈ Vh such that,

Ā1
θγ(u

h,vh)+
∫

Γ 1
C

1
γ1

[
P̄1,n

1,γ1(uh)
]
R−

P̄1,n
θ ,γ1(vh)dΓ

+ ∑
i=1,2

∫
Γ i

D

(
1
γ1 uh,i ·vh,i−Rρ̂(uh,i) ·vh,i−θuh,i ·Rρ̂(vh,i)

)
dΓ = L(vh), ∀vh ∈ Vh,

(43)

where now
P̄i,n

θ ,γ i(v) := θRρ̂(vi)− γ iJvKi
n ,

and

Ā1
θγ(u,v) :=

2

∑
i=1

(∫
Ω i

σ(ui) : ε(vi) dΩ

)
−
∫
(Γ 1

C ∪Γ 1
D∪Γ 2

D )

θ

γ1 Rρ̂(u1) ·Rρ̂(v1)dΓ .

The new term Rρ̂(vh,i) is an approximation of σ i(vi)ni built in order to recover an optimal order of convergence.
In [37] this operator is defined as the polynomial extension of the displacement field of neighbour elements having
a sufficiently large intersection with the domain Ω i, as proposed initially in [49]. Note that an alternative is the use
of the so-called ghost penalty introduced in [14].
Remark finally that the presentation here differs slightly from [37] in which the second Newton’s law is used to
reformulate differently the contact conditions (38). This second Newton’s law reveals as well to be a key ingredient
for the derivation of an unbiased formulation, as detailed in next section.

5.3 Unbiased formulation for self– and multi–body contact

If the master/slave formulation consists in a natural extension of the contact treatment between a deformable body
and a rigid ground, it has no complete theoretical justification, and induces detection difficulties in the case of
self–contact and multi–body contact. We provide in this section a short description of the unbiased formulation
presented in [27] that circumvents these difficulties. We do not distinguish between a master surface and a slave
one since we impose the non–penetration and the friction conditions on both of them. Unbiased contact and friction
formulations have been considered before in [77] and references therein.
In order to obtain an unbiased method we prescribe the contact condition on the two surfaces in a symmetric way.
Thus, the conditions describing contact on Γ i

C (i = 1,2) are:

JuKi
n ≤ 0, σ

i
n(u

i)≤ 0, σ
i
n(u

i)JuKi
n = 0. (44)

Let si ∈ L2(Γ i
C), si ≥ 0, JuK1

t = u1
t −u2

t ◦Π 1 and JuK2
t = u2

t −u1
t ◦Π 2 =−JuK1

t ◦Π 2. The Tresca friction condition
on Γ 1

C and Γ 2
C reads:
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‖σ i

t(ui)‖ ≤ si if JuKi
t = 0,

σ
i
t(u

i) =−si JuKi
t

‖JuKi
t‖

otherwise.
(45)

Finally, we need to consider the second Newton law between the two bodies:
∫

γ1
C

σ
1
n (u

1)ds−
∫

γ2
C

σ
2
n (u

2)ds = 0,∫
γ1
C

σ
1
t (u

1)ds+
∫

γ2
C

σ
2
t (u

2)ds = 0,

where γ1
C is any subset of Γ 1

C and γ2
C = Π 1(γ1

C). Mapping all terms on γ1
C allows writing:{

σ
1
n (u

1)− J1
σ

2
n (u

2 ◦Π
1) = 0,

σ
1
t (u

1)+ J1
σ

2
t (u

2 ◦Π
1) = 0,

on Γ
1

C . (46)

Remark 11. : A similar condition holds on Γ 2
C :{

σ
2
n (u

2)− J2
σ

1
n (u

1 ◦Π
2) = 0,

σ
2
t (u

2)+ J2
σ

1
t (u

1 ◦Π
2) = 0.

Let us mention that, due to second Newton law, we need to fix s1 and s2 such that:

−s1 JuK1
t

‖JuK1
t ‖

= σ
1
t (u

1) =−J1
σ

2
t (u

2 ◦Π
1) = J1s2 JuK2

t ◦Π 1

‖JuK2
t ◦Π 1‖

=−J1s2 JuK1
t

|JuK1
t |
.

It results that the following compatibility condition on s1 and s2 needs to be satisfied:

s1 = J1s2. (47)

The reformulation of the contact and friction conditions (44)–(45) reads:

σ
i
n(u

i) =
[
σ

i
n(u

i)− γ
iJuKi

n
]
R−

, (48)

σ
i
t(u

i) =
[
σ

i
t(u

i)− γ
iJuKi

t
]

si , (49)

where γ i plays the same role as γ on each contact surface Γ i
C . Still using the Green formula and the different

equations considered as well as the Nitsche’s writing of the contact and friction we obtain the following unbiased
finite element approximation:

Find uh ∈ Vh such that,

A1,2
θγ
(uh,vh)+

1
2 ∑

i=1,2

∫
Γ i

C

1
γ i

[
Pi,n

1,γ i(uh)
]
R−

Pi,n
θ ,γ i(vh)dΓ

+
1
2 ∑

i=1,2

∫
Γ i

C

1
γ i

[
Pi,t

1,γ i(uh)
]

si
·Pi,t

θ ,γ i(vh)dΓ = L(vh), ∀vh ∈ Vh,

(50)
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where this time:

A1,2
θγ
(u,v) :=

2

∑
i=1

(∫
Ω i

σ(ui) : ε(vi) dΩ − 1
2

∫
Γ i

C

θ

γ i σ
i(ui)n ·σ i(vi)ndΓ

)
.

Note that in the above method the two contact surfaces are treated similarly. This small strain formulation allows
an extended mathematical study which is impossible to perform in a large transformations framework. Indeed, all
the mathematical analysis carried out for the unilateral contact problem can be adapted for this method, and yields
the same theoretical properties of well-posedness and convergence. This analysis as well as a complete numerical
study in the small strain framework can be found in [27].
However, the true potential of this unbiased paradigm is to able the design of a similar method in large transforma-
tions. We quickly describe it in the rest of this section. Let Ω ⊂ Rd be a possibly multi-body domain representing
the reference configuration of one or several hyper-elastic bodies. Let ΓC be the part of the boundary of Ω where
contact may occur. Let JH(·) be the potential of the hyper-elastic law (more details can be found in [74]). Then,
to each point X ∈ ΓC and to the displacement u : Ω → Rd , we associate g(X,u) the (nonnegative) gap distance (in
the deformed configuration) between the surface ΓC at point X and the nearest other surface in potential contact.
The main difference with the small strain case is that the point in potential contact at X ∈ ΓC is a priori unknown.
Moreover it changes during the deformation and is possibly quite difficult to define. This gap calculation can be
performed in different ways, see [74] and the references therein for more details.

Fig. 7 Example of use of the unbiased Nitsche’s method for the contact with large transformations of two tubes. Only a quarter of each
tube is represented. Left panel : undeformed configuration, right panel : deformed one.

Then, an extension of unbiased Nitsche’s method to large transformation contact in the frictionless case can be
written 〈

DJH(uh),vh
〉
+

1
2

∫
ΓC

[
σn(uh)+ γg(uh)

]
R−

〈
Dg(uh),vh

〉
dΓ = 0, (51)

for all admissible increment of displacement vh. The notation σn(u) stands for the contact stress in large transfor-
mations.
Note that, similarly to the method presented in the small strain case, the integral on ΓC in (51) being calculated on
the whole boundary, it is notably calculated on both the two corresponding surfaces of a potential contact whether
a multi-body contact is considered or a self-contact. Nitsche’s method allows thus to approximate both multi-
body– and self–contact in the same simple formalism. An example of application of this method to the contact and
self-contact of two deformable tubes is presented in Fig. 7.
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5.4 Contact in elastodynamics

This section shows an adaptation of Nitsche’s method to elastodynamic frictionless contact problems. In this
context Nitsche-based approximation produces well-posed space semi-discretizations contrary to standard finite
element discretizations. We recall the main results of the analysis for the space semi-discretization in terms of
well-posedness and energy conservation. We consider some time-marching schemes (theta–scheme, Newmark and
a new hybrid scheme) for which the well-posedness and the stability results are given. The details can be found in
the papers [23] and [24]. This sections ends with an extension of the method to the frictional case which is actually
under investigation in [26].

The setting is the same as in section 2, but in the evolution case: an elastic body Ω in Rd with d = 2,3 of density ρ

(constant to simplify). In the reference configuration, the body is in contact on ΓC with a rigid foundation and we
suppose that the unknown contact zone during deformation is included into ΓC.
We consider the unilateral contact problem in linear elastodynamics during a time interval [0,T ) where T > 0 is
the final time. We denote by ΩT := (0,T )×Ω the time-space domain, and similarly ΓDT := (0,T )×ΓD, ΓNT :=
(0,T )×ΓN and ΓCT := (0,T )×ΓC. The problem consists in finding the displacement field u : [0,T )×Ω → Rd

verifying the equations and conditions (52)–(53):

divσ(u)+ f = ρü, σ(u) = A ε(u) in ΩT ,

u = 0 on ΓDT ,

σ(u)n = F on ΓNT ,

u(0, ·) = u0, u̇(0, ·) = u̇0 in Ω ,

(52)

where u̇ is the velocity of the elastic body and ü its acceleration; u0 is the initial displacement and u̇0 is the initial
velocity.
The conditions describing unilateral contact without friction on ΓCT are:

un ≤ 0, σn(u)≤ 0, σn(u)un = 0, σ t(u) = 0. (53)

Note additionally that the initial displacement u0 should satisfy the compatibility condition u0n ≤ 0 on ΓC.
To our knowledge, the well-posedness of Problem (52)–(53) is still an open issue. For partial results, see e.g.,
[66, 62, 29, 35].

Remark 12. The (total) mechanical energy associated with the solution u to the dynamic contact problem (52)–(53)
is:

E(t) :=
1
2

ρ‖u̇(t)‖2
0,Ω +

1
2

a(u(t),u(t)), ∀t ∈ [0,T ].

Formally, we get from (52), after multiplication by u̇(t), integration by parts, with the boundary conditions on ΓDT ,
ΓNT , the absence of friction and the persistency condition σn(u(t))u̇(t) = 0 (see, e.g., [65, 4, 50]) :

d
dt

E(t) = L(t)u̇(t), ∀t ∈ [0,T ]. (54)

In particular, when L vanishes, we get energy conservation: E(t) = E(0), for all t ∈ [0,T ].
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5.4.1 Semi-discretization in space with a Nitsche-based finite element method

We consider the same family of finite element spaces Vh as defined in Section 2.2. The space semi-discretized
Nitsche-based method for unilateral contact problems in elastodynamics then reads:

Find uh : [0,T ]→ Vh such that for t ∈ [0,T ] :

(ρüh(t),vh)0,Ω +An
θγ(u

h(t),vh)+
∫

ΓC

1
γ
[Pn

1,γ(u
h(t))]

R−
Pn

θ ,γ(v
h)dΓ = L(t)(vh), ∀vh ∈ Vh,

uh(0, ·) = uh
0, u̇h(0, ·) = u̇h

0,

(55)

where uh
0 (resp. u̇h

0) is a finite element approximation in Vh of the initial displacement u0 (resp. the initial velocity
u̇0).
Nitsche’s formulation leads to a well-posed (Lipschitz) system of differential equations, as it will be shown be-
low. This feature is shared with the standard penalty method, the difference being that Nitsche’s method remains
consistent (for details concerning consistency, we refer the reader to [23]).
Since we consider the frictionless case, we modify slightly the definition of (·, ·)γ provided initially in Definition
2:

(vh,wh)γ := (vh,wh)1,Ω +(γ
1
2 vh

n,γ
1
2 wh

n)0,ΓC .

In order to prove well-posedness we reformulate (55) as a system of (non-linear) second-order differential equa-
tions. To this purpose, using Riesz’s representation theorem in (Vh,(·, ·)γ) we first introduce the mass operator
Mh : Vh→Vh, which is defined for all vh,wh ∈Vh by (Mhvh,wh)γ = (ρvh,wh)0,Ω . Still using Riesz’s representa-
tion theorem, we define the (non-linear) operator Bh : Vh→ Vh, by means of the formula

(Bhvh,wh)γ = An
θγ(v

h,wh)+
∫

ΓC

1
γ
[Pn

1,γ(v
h)]

R−
Pn

θ ,γ(w
h)dΓ ,

for all vh,wh ∈ Vh (it corresponds exactly to the operator Bh
s introduced in (25), when setting s = 0). Finally, we

denote by Lh(t) the vector in Vh such that, for all t ∈ [0,T ] and for every wh in Vh: (Lh(t),wh)γ = L(t)(wh). With
the above notation, Problem (55) reads:

Find uh : [0,T ]→ Vh such that for t ∈ [0,T ] :

Mhüh(t)+Bhuh(t) = Lh(t),

uh(0, ·) = uh
0, u̇h(0, ·) = u̇h

0.

(56)

The following theorem together with the boundedness of ‖(Mh)−1‖γ (see [23]) show that Problem (55) (or equiv-
alently Problem (56)) is well-posed.

Theorem 7. The operator Bh is Lipschitz-continuous in the following sense: there exists a constant C > 0, inde-
pendent of h, θ and γ0 such that, for all vh

1,v
h
2 ∈ Vh:

‖Bhvh
1−Bhvh

2‖γ ≤C(1+ γ
−1
0 )(1+ |θ |)‖vh

1−vh
2‖γ . (57)

As a consequence, for every value of θ ∈ R and γ0 > 0, Problem (55) admits one unique solution uh ∈
C 2([0,T ],Vh).

Remark 13. Note that, conversely to the static case (see [21, 25, 19]) and the fully-discrete case there is no condition
on γ0 for the space (semi-)discretization, which remains well-posed even if γ0 is arbitrarily small.
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Now we consider the energy estimates which are counterparts of the equation (54), in the semi-discretized case.
Let us define the discrete energy as follows:

Eh(t) :=
1
2

ρ‖u̇h(t)‖2
0,Ω +

1
2

a(uh(t),uh(t)), ∀t ∈ [0,T ].

which is associated to the solution uh(t) to Problem (55). Note that this is the direct transposition of the mechanical
energy E(t) for the continuous system. Set also

Eh
θ (t) := Eh(t)− θ

2γ0

[∥∥∥σn(uh(t))
∥∥∥2

− 1
2 ,h,ΓC

−
∥∥∥[Pn

1,γ(u
h(t))]

R−

∥∥∥2

− 1
2 ,h,ΓC

]
:= Eh(t)−θRh(t),

that corresponds to a modified energy in which a consistent term is added. This term denoted Rh(t) represents,
roughly speaking, the nonfulfillment of the contact condition (12) by uh.

Theorem 8. Suppose that the system associated to (52)–(53) is conservative, i.e., that L(t) ≡ 0 for all t ∈ [0,T ].
The solution uh to (55) then satisfies the following identity:

d
dt

Eh
θ (t) = (1−θ)

∫
ΓC

1
γ
[Pn

1,γ(u
h(t))]

R−
u̇h

n(t)dΓ .

Notably, when θ = 1, we get for any t ∈ [0,T ]: Eh
1 (t) = Eh

1 (0).

5.4.2 Fully discrete formulations

Now we fully discretize the dynamic contact problem by combining Nitsche’s method with some classical schemes
(theta–scheme, Newmark) as well as a new hybrid scheme. We focus on the well-posedness and the stability of the
schemes.
Let τ > 0 be the time-step, and consider a uniform discretization of the time interval [0,T ]: (t0, . . . , tN), with
tn = nτ , n = 0, . . . ,N. Let θ̃ ∈ [0,1], we use the notation:

xh,n+θ̃ = (1− θ̃)xh,n + θ̃xh,n+1

for arbitrary quantities xh,n,xh,n+1 ∈ Vh. Hereafter we denote by uh,n (resp. u̇h,n and üh,n) the resulting discretized
displacement (resp. velocity and acceleration) at time-step tn. We next define the following energy:

Eh,n :=
1
2

ρ‖u̇h,n‖2
0,Ω +

1
2

a(uh,n,uh,n),

which is associated with the solution uh,n to Problems (58), (60) or (61). Set also

Eh,n
θ

:= Eh,n− θ

2γ0

[∥∥∥σn(uh,n)
∥∥∥2

− 1
2 ,h,ΓC

−
∥∥∥[Pn

1,γ(u
h,n)]

R−

∥∥∥2

− 1
2 ,h,ΓC

]
:= Eh,n−θRh,n.

Note that the energies Eh,n and Eh,n
θ

are the fully discrete counterparts of the semi-discrete energies Eh(t) and
Eh

θ
(t).

• Theta–scheme. We discretize in time Problem (55) using a theta–scheme, of parameter θ̃ ∈ [0,1]. For n≥ 0, the
fully discretized problem reads:
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Find uh,n+1, u̇h,n+1, üh,n+1 ∈ Vh such that:

uh,n+1 = uh,n + τu̇h,n+θ̃ ,

u̇h,n+1 = u̇h,n + τüh,n+θ̃ ,

(ρüh,n+1,vh)0,Ω +An
θγ(u

h,n+1,vh)+
∫

ΓC

1
γ
[Pn

1,γ(u
h,n+1)]

R−
Pn

θ ,γ(v
h)dΓ = Ln+1(vh), ∀vh ∈ Vh,

(58)

with initial conditions uh,0 = uh
0, u̇h,0 = u̇h

0, üh,0 = üh
0 and where Ln+1(·) = L(tn+1)(·).

The following proposition concerns well-posedness and stability of the theta–scheme:

Proposition 3. 1. If θ̃ = 0, existence and uniqueness of (58) always holds since the scheme is fully explicit.
2. Let θ̃ > 0. If

(1+θ)2 ≤Cγ0

(
1+

ρh2

τ2θ̃ 2

)
where C is a positive constant, then at each time-step n, Problem (58) admits one unique solution.
3. Suppose that Ln ≡ 0 for all n≥ 0. Then, for γ0 sufficiently large, θ = 1 and θ̃ = 1 (backward Euler scheme), the
following stability estimate holds for the solution to Problem (58), for all n≥ 0:

Eh,n+1
1 ≤Eh,n

1 . (59)

Consequently, the scheme (58) is unconditionally stable when θ = 1, θ̃ = 1 (i.e., stable for all h > 0 and all τ > 0).

• Newmark scheme. We discretize in time Problem (55) using a Newmark scheme of parameters β̃ ∈ [0,1/2] and
γ̃ ∈ [0,1]. For n≥ 0, the fully discretized problem reads:

Find uh,n+1, u̇h,n+1, üh,n+1 ∈ Vh such that:

uh,n+1 = uh,n + τu̇h,n +
τ2

2
üh,n+2β̃ ,

u̇h,n+1 = u̇h,n + τüh,n+γ̃ ,

(ρüh,n+1,vh)0,Ω +An
θγ(u

h,n+1,vh)+
∫

ΓC

1
γ
[Pn

1,γ(u
h,n+1)]

R−
Pn

θ ,γ(v
h)dΓ = Ln+1(vh), ∀vh ∈ Vh,

(60)

with initial conditions uh,0 = uh
0, u̇h,0 = u̇h

0, üh,0 = üh
0. The following proposition holds:

Proposition 4. 1. If β̃ = 0, existence and uniqueness of (60) always holds since the scheme is fully explicit.
2. Let β̃ > 0. If

(1+θ)2 ≤Cγ0

(
1+

ρh2

τ2β̃

)
where C is a positive constant, then at each time-step n, Problem (60) admits one unique solution.
3. Suppose that Ln ≡ 0 for all n ≥ 0. Then, for γ0 sufficiently large, θ = 1, γ̃ = 1, and β̃ = 1/2, the following
stability estimate holds for the solution to Problem (60) for all n≥ 0:

Eh,n+1
1 ≤ Eh,n

1 .

So the scheme (60) is unconditionally stable when θ = 1, γ̃ = 1 and β̃ = 1/2 (i.e., stable for all h > 0 and all
τ > 0).
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• A new time-marching scheme. We followed the ideas from [42] in the context of incompressible nonlinear elas-
ticity and from [50] for penalized contact, where the authors design modified time-marching schemes to enforce
energy conservation. The idea is to propose an hybrid discretization of the Nitsche-based contact term: the linear
part of Problem (55) is treated with a conservative Crank-Nicolson scheme, whereas the non-linear part arising
from contact is discretized with a linear combination of Crank-Nicolson and Midpoint schemes. This strategy is
of interest since the resulting scheme is unconditionally stable in the symmetric case (for more properties, see
[23, 24]).
For n≥ 0, the fully discretized problem reads:

Find uh,n+1, u̇h,n+1, üh,n+1 ∈ Vh such that:

uh,n+1 = uh,n + τu̇h,n+ 1
2 ,

u̇h,n+1 = u̇h,n + τüh,n+ 1
2 ,

(ρüh,n+ 1
2 ,vh)0,Ω +An

θγ(u
h,n+ 1

2 ,vh)+
∫

ΓC

1
γ

Φ(uh,n,uh,n+1)Pn
θ ,γ(v

h)dΓ = Ln+ 1
2 (vh), ∀vh ∈ Vh,

(61)

with the initial conditions uh,0 = uh
0, u̇h,0 = u̇h

0, üh,0 = üh
0 and with the following expression for Φ(uh,n,uh,n+1):

Φ(uh,n,uh,n+1) := H(−Pn
1,γ(u

h,n))[Pn
1,γ(u

h,n+ 1
2 )]

R−
+H(Pn

1,γ(u
h,n))[Pn

1,γ(u
h)]

n+ 1
2

R− .

Remark that [Pn
1,γ(u

h)]
n+ 1

2
R− = 1/2([Pn

1,γ(u
h,n)]

R−
+ [Pn

1,γ(u
h,n+1)]

R−
) represents the Crank-Nicolson part, whereas

[Pn
1,γ(u

h,n+ 1
2 )]

R−
= [1/2(Pn

1,γ(u
h,n)+Pn

1,γ(u
h,n+1))]

R−
stands for the Midpoint part. So, when Pn

1,γ(u
h,n) < 0, the

Midpoint scheme is applied, and when Pn
1,γ(u

h,n) > 0, the Crank-Nicolson scheme is applied instead. When
Pn

1,γ(u
h,n) = 0 both schemes coincide.

The well-posedness and stability properties of the fully discrete scheme (61) are stated below.

Proposition 5. 1. If the condition below is satisfied

(1+θ)2 ≤Cγ0

(
1+

ρh2

τ2

)
where C is a positive constant, then at each time-step n, Problem (61) admits one unique solution.
2. Suppose that Ln ≡ 0 for all n ≥ 0 and that Problem (61) is well-posed. Suppose also that θ = 1. The following
stability estimate holds for the solution to Problem (61) for all n≥ 0:

Eh,n+1
1 ≤ Eh,n

1 .

So the scheme (61) is unconditionally stable when θ = 1 (i.e., stable for all h > 0 and all τ > 0).

Remark 14. From Proposition 5 we observe that the scheme (61) is not exactly conservative. Nevertheless the
energy dissipation caused by the scheme is almost negligible in practice, and reduces when the discretization
parameters h,τ are taken smaller.

We next show an extension of the method to the Coulomb frictional case where F ≥ 0 still denotes the friction
coefficient (the case F = 0 corresponds to the former frictionless case). Now the condition σ t(u) = 0 on ΓCT in
(53) has to be changed with



32 Franz Chouly, Mathieu Fabre, Patrick Hild, Rabii Mlika, Jérôme Pousin, and Yves Renard

u̇t = 0 =⇒ |σ t(u)| ≤ −F σn(u)

u̇t 6= 0 =⇒ σ t(u) = F σn(u)
u̇t

|u̇t|
.

(62)

It is easy to check that the total mechanical energy E(t) satisfies

d
dt

E(t)≤ L(t)u̇(t). (63)

In particular, when L vanishes, we get energy dissipation contrary to the frictionless case: E(t2) ≤ E(t1), for all
0≤ t1 ≤ t2 ≤ T .
Next, the space semi-discretized Nitsche-based method for frictional unilateral contact problems in elastodynamics
reads: 

Find uh : [0,T ]→ Vh such that for t ∈ [0,T ] :

(ρüh(t),vh)0,Ω +Aθγ(uh(t),vh)+
∫

ΓC

1
γ
[Pn

1,γ(u
h(t))]

R−
Pn

θ ,γ(v
h)dΓ

+
∫

ΓC

1
γ
[σ t(uh(t))− γu̇h(t)](

−F [Pn
1,γ (uh(t))]

R−

) ·Pt
θ ,γ(v

h)dΓ = L(t)(vh), ∀vh ∈ Vh,

uh(0, ·) = uh
0, u̇h(0, ·) = u̇h

0,

(64)

where uh
0 (resp. u̇h

0) is a finite element approximation in Vh of the initial displacement u0 (resp. the initial velocity
u̇0). Using similar tools as in the frictionless case allows us to prove that for any F ≥ 0,θ ∈ R,γ0 > 0, Problem
(64) admits one unique solution uh ∈ C 2([0,T ],Vh). Further details and schemes can be found in [26].
We end this section with a numerical result that comes from [24] (see this reference for more details and other
numerical tests). The corresponding test-case concerns multiple impacts of an elastic bar: in the absence of external
volume forces, the bar is initially compressed. It is then released without initial velocity. It first impacts the rigid
ground, located at x = 0, then gets compressed once again and moves back to its initial position. This problem
admits a closed-form solution which derivation and expression are detailed in [30]. Especially it has a periodic
motion of period 3. At each period, the bar remains in contact with the rigid ground during one time unit (see Fig.
8). The chosen simulation time is T = 12, so that we can observe 4 successive impacts.

x = 0

L

t = 0 t2 = 2 t3 = 3t1 = 1

Fig. 8 Multiple impacts of an elastic bar. The bar is clamped at x = L and the contact node is located at the bottom. The solution is
periodic of period 3, with one impact during each period (here between t = 1 and t = 2).

We compare our results to those obtained with the modified mass method (see, e.g., [59]). The chosen method to
compute the modified mass matrix is the simplest possible, since we set the entries associated with the contact
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node to 0 and no mass redistribution is considered (see also [32]). We combine the modified mass method either
to the standard (mixed) method or to Nitsche’s method for the treatment of contact conditions. The chosen time-
marching scheme is Crank-Nicolson (Newmark with γ = 1/2, β = 1/4). These two methods are compared to the
Nitsche-Hybrid scheme, with the same parameters and without modified mass. The results are depicted in Fig. 9.
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Fig. 9 Multiple impacts. Comparison of mixed with modified mass, Nitsche with modified mass and Nitsche-Hybrid methods. Dis-
placement u (left), zoom on displacement u during the fourth impact (center) and discrete energy Eh (right).

The three methods compare well and there is no significant difference: the displacement is free of spurious oscilla-
tions, the energy is quite well preserved, with only 1 or 2 % of dissipation and some small spurious oscillations are
still present on the contact pressure, that are of similar magnitude. This behaviour is well-known for modified mass
combined to mixed discretization of the contact (see, e.g., [59, 32]). These results show that, also for Nitsche’s
discretization of the contact condition, the modified mass improves the quality of the solution in terms of spurious
oscillations and energy conservation. In this test-case, the treatment through modified mass produces almost the
same effects as the Hybrid time-marching scheme.

6 Conclusion and perspectives

Nitsche’s method allows a numerical treatment of contact and friction in a simple manner since it remains a
primal method, and is more robust than penalty, since it is consistent. For the Signorini problem, a rather complete
numerical analysis can be carried out, to establish well-posedness and optimal convergence under assumptions on
Nitsche’s parameters similar to those commonly encountered for Dirichlet boundary conditions. The method can
be extended to take into account various situations such as multi-body contact, large transformations and contact
in elastodynamics. Most common friction’s law such as Coulomb or Tresca can be formulated as well within this
framework. Non-symmetric methods corresponding to θ = 0 and θ = −1 reveal to be more robust numerically,
though they imply a loss of symmetry in the tangent system.
Forthcoming studies may deal with numerical analysis in some situations in which results are lacking, such as
contact in elastodynamics, or Coulomb’s friction. The same method can be considered as well to discretize other
categories of contact / friction problems, or other types of non-linear boundary conditions associated to variational
inequalities.
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Paris (1972)

35. Eck, C., Jaruvsek, J., Krbec, M.: Unilateral contact problems, Pure and Applied Mathematics (Boca Raton), vol. 270. Chap-
man & Hall/CRC, Boca Raton, FL (2005). DOI 10.1201/9781420027365. URL http://dx.doi.org/10.1201/
9781420027365

36. Ern, A., Guermond, J.L.: Theory and practice of finite elements, Applied Mathematical Sciences, vol. 159. Springer-Verlag, New
York (2004)

37. Fabre, M., Pousin, J., Renard, Y.: A fictitious domain method for frictionless contact problems in elasticity using Nitsche’s method.
SMAI J. Comput. Math. 2, 19–50 (2016)

38. Fichera, G.: Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambigue condizioni al contorno. Atti
Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I (8) 7, 91–140 (1963/1964)

39. Galántai, A.: Properties and construction of NCP functions. Comput. Optim. Appl. 52(3), 805–824 (2012). DOI 10.1007/
s10589-011-9428-9. URL http://dx.doi.org/10.1007/s10589-011-9428-9

40. Glowinski, R.: Numerical methods for nonlinear variational problems. Springer Series in Computational Physics. Springer-Verlag,
New York (1984). DOI 10.1007/978-3-662-12613-4. URL http://dx.doi.org/10.1007/978-3-662-12613-4

41. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM Studies in
Applied Mathematics, vol. 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1989)

42. Gonzalez, O.: Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Comput. Methods
Appl. Mech. Engrg. 190(13-14), 1763–1783 (2000). DOI 10.1016/S0045-7825(00)00189-4. URL http://dx.doi.org/
10.1016/S0045-7825(00)00189-4

43. Han, W., Sofonea, M.: Quasistatic contact problems in viscoelasticity and viscoplasticity, AMS/IP Studies in Advanced Mathemat-
ics, vol. 30. American Mathematical Society, Providence, RI (2002)

44. Hansbo, A., Hansbo, P.: A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput.
Methods Appl. Mech. Engrg. 193(33-35), 3523–3540 (2004). DOI 10.1016/j.cma.2003.12.041. URL http://dx.doi.org/
10.1016/j.cma.2003.12.041

45. Hansbo, P.: Nitsche’s method for interface problems in computational mechanics. GAMM-Mitt. 28(2), 183–206 (2005)
46. Hansbo, P., Rashid, A., Salomonsson, K.: Least-squares stabilized augmented Lagrangian multiplier method for elastic contact.

Finite Elem. Anal. Des. 116, 32–37 (2016). DOI 10.1016/j.finel.2016.03.005. URL http://dx.doi.org/10.1016/j.
finel.2016.03.005

47. Haslinger, J.: Finite element analysis for unilateral problems with obstacles on the boundary. Apl. Mat. 22(3), 180–188 (1977)
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