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Résumé — In this work, we study the variational approach to mesh adaptation. This approach is shown
on a 1-D thermal problem in steady case. The solution obtained with an adapted mesh is compared to
that computed with a uniform refinement. We demonstrate that variational mesh adaptation technique
costs less than taking a uniform mesh when precise solution is needed.
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1 Introduction

In many engineering problems (thermal or structural), zones of high gradient of fields of interest
evolve with time and loading. When we solve such a problem with finite element method, mesh has to be
dynamically adapted in order to capture the solution in zones of high gradients with required precision.

Many methods of mesh adaptation are proposed in the literature based on error estimators. But, these
methods have limitations when we wish to treat problems with non-linear constitutive relations (e.g.
plasticity) [1].

An alternative approach of mesh adaptation was recently proposed [2] [3] based on variational ap-
proach [4]. This technique allows to perform calculations in the presence of large transformations and
nonlinear irreversible behavior (e.g. plasticity).

In this work, we are focusing on steady state thermal problems. In this case, we try to minimize an
energy-like potential Φ. Firstly, we calculate the finite element solution on the initial mesh. Secondly, we
choose a patch in the domain and we calculate the local value the potential. Thirdly, we refine the mesh
in that patch. Fourthly, we solve a local problem on that patch by fixing the temperature at its boundaries.
Then, we check if we improve significantly value of the potential locally by refining the mesh in patch.
If so, we refine the patch in the global mesh. Finally, we solve whole problem again on the new mesh
obtained. We repeat the procedure till we get a solution of required precision.

2 Variational Formulation

If we are dealing in 1D, the strong form reads :

k
d2T
dx2 + r = 0 (1)

with boundary conditions :

T (x = 0) = T 0

T (x = L) = T 1

(2)

This can be reformulated as a variational problem. The solution for steady thermal problem is then found
by minimizing the following convex potential :

φ(T (x)) =
∫

Ω

1
2

k
−−→
gradT ·

−−→
gradT dΩ−

∫
Ω

rT dΩ (3)
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where k is the thermal conductivity, r the internal heat source, T the temperature field and Ω the domain.
Indeed,the first variation of equation 3 gives :

< DΦ,δT >=
∫

Ω

k
−→
( grad)T

−→
( grad)δT dΩ−

∫
Ω

rδT dΩ = 0 (4)

which is the weak form of equation 1. Now, we know that,

Φ(Th)≥Φ(Tanalytical) (5)

Where, Th is the finite element discretization. Now, we solve the local problem on one 1-D element by
fixing temperature on end nodes of element and by adding a node in the middle of element. If the local
imrovement in the potential is significant, we add the node to global mesh. After looping over all the
1-D elements, we have a new global mesh. We solve the global problem on this mesh. We follow this
procedure till we get solution of required precision. In the variational technique of mesh adaptation, the
idea is that we follow a sequence of meshes such that :

Φ(Th1)≥Φ(Th2)≥Φ(Th3)≥ . . .Φ(Th∞) = Φ(Tanalytical) (6)

We follow this sequence until we get a mesh that gives result of required precision. (Note : Variational
form for transient case is not developed here but it will be presented in the conference.)

3 Applications

Now, we try to apply this theory to thermal stationary problem.

3.1 Analytical solution

We need to solve 1 analytically. We take,

r = xq

T 0 = 0

T 1 = 0

(7)

Where, q is a constant. Therefore, the analytical solution of the problem can be given as follows :

T =
Lq+1x

(q+1)(q+2)
− xq+2

(q+1)(q+2)
(8)

The energy potential is given by,

U =
k
2

L2q+3(
1

(q+1)2(2q+3)
− 1

(q+1)2(q+2)2 )−L2q+3(
1

(q+1)(q+2)2 −
1

(q+1)(q+2)(2q+3)
)

(9)
By taking q = 51, we can represent the analytical solution graphically as shown in figure 1. From figure
1, one can observe the sharp gradient of the field on the extreme right part of the bar.

3.2 Numerical solution

We solved the problem numerically by taking q = 51. The solution can be represented as shown in
figure 4. From figure 4, one can observe that on the right hand side, where we have sharp gradient, we
have greater number of elements to capture solution better. However, in the remaining part, algorithm
puts fewer elements which are sufficient to represent the solution.
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FIGURE 1 – representation of analytical solu-
tion.

FIGURE 2 – representation of numerical solu-
tion on initial mesh.

FIGURE 3 – representation of numerical solu-
tion on intermidiate mesh.

FIGURE 4 – representation of numerical solu-
tion on final mesh.

3.3 Analysis

In order to assess the usefulness of this algorithm, we plot the error in calculated solution with respect
to the number of nodes in log-log scale. We consider 3 cases. In the first case, we plot the error at each
refinement iteration in variational adaptive mesh algorithm with respect to the cumulative number of
nodes. We accumulate the number of nodes in this case because it will give us idea of not only the cost
of calculating result on a particular mesh, but also it adds the cost of reaching to this particular mesh. In
the second case, we plot error at each refinement iteration in adaptative mesh algorithm with respect to
the number of nodes in the mesh and in the third case, we plot error in uniform mesh refinement with
respect to the number of nodes of each case. Figure 5 shows this plot for L2 norm of error in temperature
field and figure 6 shows plot for error in energy norm error in the energy like potential.
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FIGURE 5 – L2 norm error in temperature field
with respect to number of nodes.

FIGURE 6 – energy norm error in energy like
potential with respect to number of nodes.

4 Conclusions

In this work, we explained a variational approach for mesh refinement. Then we applied our hypoth-
esis on a 1-D thermal problem.

In figures 5 and 6, we plotted L2 error norm in temperature field vs. number of nodes and energy
error norm in energy vs. number of nodes respectively. In these graphs, we have also plotted the error
vs. uniform refinements. The idea is that when mesh adaptation curve lies below the curve of uniform
refinement, we have a better algorithm.(Less cost with equal or better precision.) Therefore, we plotted
one curve with number of nodes accumulated and another with number of nodes. If we consider energy
error as in figure 6, we see that variational algorithm is always better. However, if we consider error in
temperature 5, the curve with non-accumulated nodes lies below the curve of refinement. But, the curve
in which we accumulate the number of nodes, is first above the curve of uniform refinement, and as
the algorithm progresses, it goes below. This behavior is logical because, the regions where variational
adaptation curve is above the curve of uniform refinement, the mesh is too coarse.

Finally, we show that the variational mesh adaptation algorithm costs us less than a uniform mesh
and still gives us better results.

The next part in this work is to apply this technique to the transient thermal problem.(Results of this
part will be shown in conference.) Then, we should try to use the approach on coupled thermo-mechanical
problem. Finally, we should extend this approach in 2D and 3D.
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