N

N

A preliminary study on hybrid dynamical systems to
control a N-paralleled boost converter

Carolina Albea-Sanchez, Camille Henrot

» To cite this version:

Carolina Albea-Sanchez, Camille Henrot. A preliminary study on hybrid dynamical systems to control
a N-paralleled boost converter. 2016. hal-01402888

HAL Id: hal-01402888
https://hal.science/hal-01402888

Preprint submitted on 25 Nov 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01402888
https://hal.archives-ouvertes.fr
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systems to control a N-paralleled boost
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Abstract: This paper addresses the control problem of driving N-paralleled boost converters
to a functioning mode by using hybrid dynamical theory, that accounts for the continuous and
discrete nature of these particular systems. The continuous dynamics correspond to the evolution
of the electrical signals and, the discrete dynamics correspond to the switch signals that decide
the converter configuration in every switching cycle. The hybrid control manages the switches,
with the advantage of reducing switching frequency as well as guaranteeing any optimality level.
The efficiency of the method is evaluated in simulation.
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1. INTRODUCTION

The advances of recent years in the field of materials and
components lead to converter topologies or structures with
many possibilities while improving performance. These op-
portunities allow us to consider complex converter topolo-
gies, such as the N-paralleled boost converter [Cid-Pastor
et al. 2011], which is generally used in telecommunication
power supplies, microprocessors and renewable sources.
This class of converters works in interleaving, it means
that the converters operate at an operation point at the
same constant switching frequency, with their switching
waveforms shifted in phase with respect to another by
27 /N over a switching period. Consequently, this class
of switched systems presents a main control difficulty,
which is to drive the converter to its functioning point. At
a second problem addresses to guarantee the interleaved
operation.

This N-paralleled boost converter has been addressed by
using averaging control methods such as neural networks
[Veerachary et al. 2003] or model predictive control [Babu
and Veerachary 2005]. This means that the authors have
used an averaged model for the switching dynamics. Some
efforts have been done considering both continuous dy-
namics of the electrical signals and, discrete dynamics of
the switches that decide the converter configuration in
every switching cycle. For example, in the work presented
in [Cid-Pastor et al. 2011], the authors control the par-
alleled boost converter by using sliding modes. Likewise,
the interleaving is guaranteed applying a method already
developed, as for example using a low-pass filter [Cid-
Pastor et al. 2011] or employing a coupled inductor [Gu
and Zhang 2013], among others.

In this work, we consider the continuous and discrete
dynamics, proposing a hybrid controller that follows the
hybrid framework presented in [Goebel et al. 2012]. With
this formalism, we get a relevant advantage, which is to

manage the switching frequency during transient state and
even during steady-state, while a prescribed optimality
level is achieved. This controller is then tested in simu-
lation and compared with the controller proposed in [Cid-
Pastor et al. 2011].

The rest of this paper is organized as follows: in Section II,
the problem statement is established. A hybrid controller
is presented in Section III. Next, Section IV deal with
to guarantee some optimality level. Some simulations are
presented in Section V. The paper ends with conclusions
and a discussion on the future works.

Notation: Through out the paper R denotes the set of
real numbers, R™ the n-dimensional euclidean space and
R™ ™ the set of all real m x n matrices. Likewise, we
consider N = {v € R" st Vi = 1,...,n,v; € {0,1}}, being

card(N) = 2™. The set S® denotes the set of symmetric
positive definite matrices of matrices R**",

2. N-PARALELLED BOOST CONVERTER MODEL
AND PROBLEM FORMULATION

A N-paralleled boost converter is composed of a constant
voltage source V;,, a capacitance C' and a purely resistive
load R. Moreover, it is composed of N inductances L
in series with a switch w; € {0,1} and with a parasite
resistance Rpg that models the energy dissipation in the
inductance and in the switch. The N switches (see Fig. 1)
makes that the converter presents 2V operating modes.
Assuming that all L and Rpg are the same and that
Ry s << R, the converter can be modelled as follows

= A,z + B,

z=Fux, (1)
where z € RV*! represents the state of the system and is
given by

T . ) . T N+1
xr =i ir2 ir,N v € RYTH

z € R denotes the output measurement and, v € N is the
control input. The matrices A, B and F' are given by
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Fig. 1. Schematic representation of a N-paralleled boost

converter.
RLS UT
L In A (N+1)x(N+1)
C " RC

v T

BT:[’l 0] € RV*!
L

F=[0 1] eRN.

Note that System (1) is a switched affine system, that
can be controlled following the hybrid formalism given
in [Albea et al. 2015] with the deal to guarantee suitable
convergence of x to a desired equilibrium from arbitrary
switching. A necessary and sufficient condition characteriz-
ing this desired equilibrium is represented by the following
assumption (see [Deaecto et al. 2010, Liberzon and Morse
1999)).

Assumption 1. There exits an equilibrium z. such that

ie- 1V . Vi . Vin
e — € esVe) ' 75 5 < e < y
’ { ve } o) R Rus =% = Rus
v? + RRpgi? — NV, Ri. = 0}.
There also exists Ao = [Ae1,Ae2, .05 A on] satisfying
Zie N Ae,i = 1, such that the following convex combination
holds:
Z Ae,iAize + B =0. (3)
iEN

Note that this Assumption 1 is necessary and sufficient
in order to guarantee that z., achieved by a suitable
switching signal, is forward invariant, understanding so-
lutions in the generalized sense of Krasovskii or Filippov.
Indeed, under (3), this equilibrium is a periodic sequence
of arbitrary period T', with a time equal to A. ;7" in mode ¢.
Conversely, if Assumption 1 does not hold, this signal does
not exist because there is not an arbitrary switching signal
corresponding to a convex combination of every mode ¢ in
(3) that can only generate an equivalent action on .

Problem 1. The objectives of this paper are two folds:

e To propose a suitable hybrid dynamic formalism to
account for the continuous and discrete dynamics of
the converter (1), in order to generate a switching
signal u that stabilizes an equilibrium z. satisfying
Assumption 1.

e To introduce a degree of freedom in the control law
to tune the switching frequency.

In the next section, a hybrid formalism is proposed to
provide a solution to Problem 1. To this end, we invoke
the property already given in [Albea et al. 2015, Deaecto
et al. 2010] to assume the existence of a set of matrices P
and @ as well as u € N.

Property 1. There exists a matrix P, Q € SN*!, satisfying
ALP + PA, +2Q <0, (4)
for all u € N, where A, is given in (2).

Note that this property is reasonable from a converter
modelled with (1) and (2).

In Section 4, we will discuss of the selection of matrices P
and @ as wall as u € N satisfying Property 1, following
an optimization-based procedure that guarantees stability
and optimality.

3. HYBRID MODEL AND CONTROL DESIGN

We deal here with the Problem 1 trough the hybrid
dynamical system formalism proposed in [Goebel et al.
2012], wherein continuous-time behavior is similar to the
evolution in (1), and the discrete-time behavior aims at
representing the rapid change in the functioning mode
of the converter. We represent the global dynamics as a
hybrid dynamical system given by

i e @uee
H: s (5)
recw.  wwen,

where the set valued map G and f are

fo,u) = [Auato—l— B}
x (6)
G(z) = [argmin (x — x.)T P(Asx + B)
iEN

and where the “flow” and “jump” sets C and D are given
by

C:={(x,u): #T P(Ayz + B) < —niT Qz} (7)

D:={(x,u) : #* P(A,x + B) > -1z’ Q7} (8)
where £ = = — z. and scalar n € (0,1) is a design
parameter that will be introduced to provide a trade-off
between reducing the switching and optimality level in the
transient-state.

The next lemma is fundamental to prove uniform global
asymptotic stability (UGAS) of the converter in Theo-
rem 1 below.

Proposition 1. The hybrid dynamical system (5)—(8) sat-
isfies the basic hybrid conditions [Goebel et al. 2012, As-
sumption 6.5], which guarantees the well-possessedness of
the system.

Proof. To prove the hybrid basic conditions we see that
the sets C and D are closed. Moreover f is a continuous
function, thus trivially satisfying outer semicontinuity and
convexity properties. The map G is closed, therefore it
also is outer semicontiunuous [Goebel et al. 2012, Lemma



5.1]. In addition, f and G are locally bounded. Finally, the
second conclusion of the proposition comes from [Goebel

et al. 2012, Theorem 6.30]. O
Lemma 1. Consider matrices P € SV*! and @Q € SV+!
satisfying Property 1, a point z! € RN*! satisfying
Assumption 1. Then, for any 27 € RN*1,
min 77 P(A;x + B) < min -7 Q#. (9)
ieN iEN
O

Proof. First notice that the left hand side of (3) is linear
in the components of A.. Moreover, A. belongs to the

compact set A = {/\n € [0, 1]V | Zf;l Ani = 1}. Then,
the following minimum is obtained at the extreme points:

min 77 P(A,z + B)
ueN

= min #7 P
An €A

Z AnuAuz + B

ueN

. T ~ | ~T
= Pi Ani Ay P g A Ay B
/\riner}\ T 2 ni AT+ 2 n,iAiTe +
1€ US

<E'PY Aeidii + 3P D Aeidize + B
ieN ieN
S _i'Tij

where in the last step we used relations (3) and (4) . O

The switching signals u generated by our solution depend
on Lemma 1. Indeed, Property 1 with (7) shows that
unless = 2+ = 0 (which means that the system at the
equilibrium = = z.), the solution always jumps to the
interior of the flow set C because
—i1Qx < —nit Qx,
and 7 < 1. This fact, together with stability (ensuring
boundedness of solutions) and the sector growth condition
2| = || < [Au(® — ze)| + [Auze + B| < K1]Z] + K2

with constants k1, ke > 0, coming from the flow dynamics
(1), implies that between each pair of consecutive resets
before solutions approach z = x., there exists a uniform
lower bound on the dwell time. Note that, as in other cases,
(see [Deaecto et al. 2010], for instance) the equilibrium
T = x, is achieved with an arbitrarily fast switching. The
notably difference in our approach is that during transient
time the solution may be characterized by a relative
reduction the switching adjusted by 7). In [Theunisse et al.
2015] it is shown the same paradigm using very similar
techniques, but applied to different class of systems.

Following up, we will establish uniform stability and con-
vergence properties of the hybrid system (5)—(8) to the
compact attractor

A:={(z,u): 2 =2,u€ N} (10)

Theorem 1. Under Assumptions 1 and Property 1 the
attractor (10) is uniformly globally asymptotically stable
(UGAS) for hybrid system (5)—(8).

Proof. Let us take the candidate Lyapunov function

1
V(z) = 5icTPj.
Note, that in the flow set, C, using its definition in (7), we
(VV(,2), f(z,u)) = &' P(Ayz + B) < —i" Q% (11)

Across jumps we trivally get:

V(Et) - V() = % {#"Pi—-3i"Pz} =0.

—Te =T — Te = T.

UGAS is then shown applying [Prieur et al. 2014, Theorem
1]. Indeed, since the distance of z to the attractor (10) is
defined by |z|4 = |Z|, we have that [Prieur et al. 2014,
eq. (6)] holds from the structure of V' and from (11) and
(12). [Prieur et al. 2014, Theorem 1] also requires building
a restricted hybrid system Hsa by intersecting C and D
with the set
Ss.a={(Z,u): || >6 and |Z] <A}

and then (semi-global) practical persistence flow for Hs a
is provided, for each fixed pair values of (4, A). More
precisely, practical persistent flow is got showing that there
exists v € Ko and M > 0, such that, all solutions to Hs a
satisfy

(12)

because zt =zt

t>q()-M, vte |J I x{j}
jE€dom; &

(see [Prieur et al. 2014] for details). To establish (13),
notice that after each jump, from the definition of G in

(6) and from property (9) (in Lemma 1), we have

i (Ayrz+ B) < —3TQi < —ni' Qz, (14)
where we used the fact that n < 1 and that (0,u) ¢ Ssa.
Therefore, if any solution to Hs;a performs a jump from
Ss,A, it will remain in S5 A (because Z remains unchanged)
and then, from (8) and (14), it jumps to the interior of
the flow set C NS5 a. Moreover, from the strict inequality
n (14), then all non-terminating solutions must flow for
some time and since CNSs A is bounded, there is a uniform
dwell-time p(d, A) between each pair of consecutive jumps.
This dwell-time (0, A) clearly implies [Prieur et al. 2014,
eq. (4)] with the class Ko function v(j) = p(0,A)j and
M = 1. Then, all the assumptions of [Prieur et al. 2014,
Theorem 1] hold and UGAS of A is concluded. O
Corollary 1. The hybrid dynamical system (5)—(8) is
UGAS and is robust with respect to the presence of
small noise in the state, unmodeled dynamics, and spatial
regularization to relax the rate of switching, because the
attractor (10) is compact.

(13)

Proof. From Theorem 1, we prove that the hybrid dynamic
system is UGAS, and from Proposition 1 we see that it
is well-posed. Moreover, as the attractor (10) is compact
then it is robustly KL asymptotically stable in a basin of
attraction. g

Remark 1. Note that, according to Theorem 1, system
(5)—(8) may exhibit a Zeno behaviour when z € R —
0, and consequently an infinitely fast switching may be
expected, which is not acceptable in practice. This will
be practically avoided later introducing an additional
dwell-time logic to obtain a temporal-regularisation of the
dynamics, thereby weakening asymptotic will convergence
into practical convergence.



4. OPTIMALITY AND PARAMETERS TUNING

Once that UGAS of the attractor is established for our
solution, we focus on providing a suitable performance
guarantee as reducing the energy cost, current peaks and
response time, for instance. For this goal we apply the same
paradigm shown in Albea et al. [2015] for a hybrid context
applied to affine switched systems.

Following the hybrid theory given in [Goebel et al. 2012],
we consider that the domain of a a solution £ corresponds
to a finite or infinite union of intervals defined as

dom¢ = |J P x{j}, (15)
j€dom; &
with I = [t;,t;41] being a bounded time interval of

the ordinary continuous time ¢ and having the discrete-
time (or “jump times”) t; as extremes, where j represents
the number of switches; or IY = [t;,+00) being a last
unbounded interval.

Let adapt the notation dom;¢ = {j € Z : (t,j) €
dom¢, for somet € R}. Let us also represent an LQ
performance metric focusing on the flows of the inverter,
using the expression

tet1
J(§) = / T FT Fadr, (16)
kedom, £ 7tk

where ¢ = (z,u) : dom¢ — RN x N is a solution
to hybrid system (5)-(8), Z(t,j) = Fyu,jZ(t,j) for all
(t,j) € dom¢.

The following theorem guarantees the performance cost
(16) for our hybrid system.

Theorem 2. Consider hybrid system (5)—(8) satisfying As-
sumption 1 and Property 1. If
FTF<Q, (17)
then the following bound holds along any solution & =
(z,u) of (5)—(8):
J(§) <0~ 'E(0,0)" PE(0,0),
— &g, for all (¢,j) € dom(€).

(18)
where Z(t, j) = z(t, §)

Proof. To prove the optimality property in (18), consider
any solution £ = (z,u) to H. Then for each (¢,j) € dom¢
and denoting ¢t = t;4; to simplify notation, we have from

(11)

V(@(t, 7)) - V(2(0,0))

I
TTMu ﬁMw M-

V(i.(t]v%l» k)) - V(‘%(tkv k))

k+1

CE T k)),f(.’)?(T, k),u(T, k))>d7—

IN

—nzT (1, k)Qx(r, k)dr

tk+1
< —nZ/tk

k=0
where the last inequality comes from applying (17). Now,
considering §(7,k) = Fz(t, k), taking the limit as ¢ +

YA
s

# (1, k)FTFa(r, k)dr, (19)

j — +oo and using the fact that UGAS established in
Theorem 1 implies limy4 400 V(Z(t, j)) = 0, we get from
(19)

nJ(€) < V(#(0,0)) = #(0,0)" Pz(0,0),
as to be proven. O

Remark 2. Note that for a given P and ) matrices that
satisfies (17), the guaranteed performance level is propor-
tional to the inverse of n € (0,1). That means that large
values of 7 (as close as possible to 1) in transient time
are expected to drive to improved LQ performance along
solutions.

On the other hand, note from the flow and jump sets in
(7) and (8), that larger values of 7 (close to 1) correspond
to strictly larger jump sets (and smaller flow sets), which
reveals that solutions with larger values of 7 exhibit
a larger switching frequency. In other words, through
parameter 17 we can find a trade off between switching
frequency and performance along solutions in transient
time, affecting the level of guaranteed optimality given in
(18).

4.1 Computation of P and Q

Now, we address the problem of the computation of
parameters P, @, following any class of optimization that
reduces as much as possible the right hand side in bound
(18). To this end, we select

Q=F'F+uI, (20)
where v > 0 is a positive constant small enough, which
must be selected different to zero if FTF > 0 (as happens

in our case in (20)), ensuring @ > 0 as well as restriction
(17).

Once @ is selected, and noting that matrix A, is Hur-
witz, the following convex optimization expressed by the
following linear matrix inequality always leads to a feasible
solution:

min (21)

TraceP, subject to:
P=PT>0

ATp 4+ PAT < —2Q,

and this optimal solution clearly satisfies (4).
5. SIMULATIONS

The hybrid control scheme for a ring converter is tested in
a circuit composed of N=3 boost converters. We select the
cost function J in (16) as follows:

tht1 p
i H\Ye 7k
min Z /t R(v (1, k)
kedom, (&) / tk

—ve)?+Rps(ip (1, k)—ic)?dr
where p is a positive scalar. Note that the constant
parameters of each term express the weighted sum of the
energy of the error signal of each state variable.

Following (20), we take

Q = diag{Rrs, Rrs, RLs, %}-

We take the parameters given in [Cid-Pastor et al. 2011] for
comparison with the switched control algorithm presented
therein. The considered nominal values are: V;, = 20V,



R = 209, L = 7T0puH, C = 220puF and Rps = 0.1Q.
Moreover, we take a sampling time Ty = 1us and p = 1000.
Note that, we give more weight to the voltage than to
the current, expecting to obtain a voltage convergence
faster at the expense of a larger current peak. Simulations
are performed in MATLAB/Simulink by using the HyEQ
Toolbox [Sanfelice et al. 2013].

The simulation parameters chosen are:

ze =27 27 27 40",

6.8 006 006 01

006 68 006 01| .,

P=1006 006 68 01| 19"
0.06 006 0.06 22

Note that Assumption 1 and Property 1 are satisfied.
Figure 2 shows the voltage and current evolutions of the
3-paralleled boost converter controlled by our proposed
hybrid dynamic control scheme and compared by the
switched control proposed in [Cid-Pastor et al. 2011], for
different values of 7. Note that the voltage response-time
are similar, being in less than 5ms with a maximum
current peak near to 3.24 of magnitude.

On the other hand, the voltage evolutions are essentially
the same for different values of n. However, we insist that
choosing a smaller value of 7, the switching frequency
can be reduced. In particular, Fig. 3 shows the switching
frequency in a time slot of the transient for different
values of 7. From the figure it appears that using n =
0.99 we are closer of a similar frequency as the one
obtained with the switched control proposed in [Cid-Pastor
et al. 2011]. Nevertheless, according to Remark 2, as 7 is
reduced, a reduced switching frequency is expected, which
is consistent with the upper two plots of Fig. 3. This trend
of the switching frequency with respect to 1 can be well
appreciated in Fig. 4 that shows the normalized switching
frequency as a function of n (different curves correspond
to different initial conditions) and the normalized cost
function J. The curves are normalized to the switching
frequency experienced with the method of [Cid-Pastor
et al. 2011]. As expected, for large values of n, we recover
a closer frequency as the one in [Cid-Pastor et al. 2011],
but reducing n we may give up a little on optimality level
and suitably adjust the switching frequency. In particular,
for n = 0.07 we see that can obtain a trade-off between
switching frequency and optimality level in the simulated
time slot.

In Remark 1, we note that there is infinitely fast switching
in the steady-state. In practice, this is not desired in
terms of energy efficiency and reliability, since every switch
dissipates energy and reduces the switch lifespan. This
is not appreciated in Fig.2 because we used a sampling
time. If we want to avoid this infinitely fast switching
without the need to introduce a sampling time, we propose
a space-regularisation through a dwell-time that separates
the regions (7) and (8). For this aim, the proposed flow
and jump sets are
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—-—Control in [Cid et al. 2011]
I I
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t(s) x107°

Current (A)

— HD Control 7=0.01

— HD Control 7=0.25

— — HD Control 7=0.99
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Fig. 2. 3-paralleled boost converter with 7, = 0.
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Fig. 3. Zoom of U = [1 2 4Ju™ 41 in the 3-paralleled boost
converter with ne = 0.

C:={(&,u): 2T P(Ayz+ B) < —12T Q% or V(z) < 77(22}2)
D:={(&,u) : 7" P(Ayz + B) > —ni" Q& & V(%) > na},
(23)

being 12 > 0 small enough and 7 € (0,1). With these flow
and jump maps a reduction of switching in the steady-state
is expected as 72 increases.

Some simulations are given in Fig. 5 with the practice
Hybrid system (5)—(6) with (22)—(23) and compared with
the main Hybrid system (5)—(8), which is equivalent to
12 = 0. Note that the voltage evolution is essentially the
same for different values of 72. On the other hand, as
was mentioned above, note as 7y is increased as reduced
switching frequency is expected, which is consistent with
the upper two plots of Fig. 3. For these simulations we
chose the value of n = 0.07.
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6. CONCLUSIONS AND FUTURE WORK

In this article, a paralleled boost converter is controlled by
using an hybrid control scheme, which is based on a hybrid
modelling. In comparison with the work presented in [Cid-
Pastor et al. 2011], we got to take into account a dissipative
resistance of the inductances and, to manage the switching
frequency with the knowledge of the states and of an
optimality level. The potential of considering a hybrid
representation is to obtain two design parameters: 7, that
adjusts a trade-off between performance and switching
frequency in the transient-state and 72, that can reduce
the switching in the steady-state. In future work, we will
stablish that the compact attractor

A, = {V(Z) < m2,u € N}, (24)

is UGAS for Hybrid system (5)—(6) with (22)—(23), and
global practical asymptotic stability of the attractor (10)
with respect to 7y. Other future work is to consider the
interleaved operation in the hybrid dynamical schema.
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6 4
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B 1

0

1

L . . . . J
0.011965 0.01198  0.011985  0.01199  0.011995 0.012
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T

8F T T T T =
GW
or ]
32 i
0
1

0.011965

I I
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Fig. 6. Zoom of U = [1 2 4Ju™ + 1 in the 3-ring converter
with n = 0.07.

This constitutes the main an important direction for future
researches.
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