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Abstract: This paper presents a control law based on Hybrid Dynamical Systems (HDS) theory
for electronic inverters. This kind of systems are very suited for the use of such theory since
they combine both kind of signals: continuous (voltages and currents) and discrete (on-off state
of switches). Unlike previous applications of HDS to power converters, the studied problem can
be considered as a tracking problem since the objective is to generate a desired ac voltage from
a dc source. The effectiveness of the resultant control law is validated by means of simulations
and experiments.
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1. INTRODUCTION

The control of power converters is characterized by the
fact that the input signals are discrete, since they are
the on-off state of switching devices, while the rest of
signals, including the ones to be controlled, are continuous.
Therefore, hybrid dynamical systems (HDS) framework is
suitable for modelling and controlling this kind of systems.
Nevertheless, there are still very few applications of HDS
to power converters. Most of the methods for the control
of power converters use an averaged model in which the
discrete signals are averaged during each sampling period
and, thus, are considered continuous signals. Based on
the averaged model, continuous control laws are obtained.
The resultant continuous control signals are discretized
using the so-called modulation stage, for which different
methods exist [Franquelo et al. 2008, Rodriguez et al.
2009]. Nevertheless, there exist other families of methods
that explicitly consider the discrete nature of the control
signals. These families include direct torque and flux
controllers for motor drives [Rodŕıguez et al. 2004], and
model predictive control [Kouro et al. 2009].

The HDS framework was firstly applied to electronic con-
verters in 2003 [Senesky et al. 2003] and after that more
applications have appeared [Sreekumar and Agarwal 2008,
Deaecto et al. 2010, Albea et al. 2015]. All these applica-
tions consider dc-dc converters, whose objective, from the
control theory point of view, is to stabilize an operating
point. Nevertheless, in other electronic converters is usual
to work with ac and thus, the problem is more involved.
When ac voltage is to be generated, as is the case of
inverters, the objective is to track a sinusoidal reference.

Likewise, the advantage of using this HDS framework is
to reduce switching frequency, while a optimality level is
guaranteed.

In this paper, the control of the half-bridge inverter is
addressed using HDS theory. The model is developed
in Sect. 2 while the hybrid control law is obtained in
Sect. 3. In Sect. 4 a procedure for parameter tuning is
presented in order to improve the converter performance.
Simulations are presented in Sect. 5, and experiment
results are presented in Sect. 6. The paper closes with a
section of conclusions and future work.

2. INVERTER MODEL

Let us consider a half-bridge converter dc-ac fed by a
constant voltage source, Vin, and composed of a load
filter, L,C0, a purely resistive load, R0, and a parasite
resistance, RLS , that encompasses the inductance and
switching energy dissipation. It is shown in Fig. 1. The
system differential equations can be written as

d

dt

[
iL(t)
vC(t)

]
=

−RLSL − 1

L
1

C0
− 1

R0C0

[ iL(t)
vC(t)

]
+

[
Vin
L
0

]
u (1)

where iL is the inductance current vC is the capacitor
voltage, and they are the two state variables. On the other
side, u = U1 − U2 ∈ {−1, 1} is the control input which
represents two operating modes. The first one, u = −1,
corresponds to U1 = 0 (U1 OFF) and U2 = 1 (U2 ON).
And the second one, u = 1, corresponds to U1 = 1 (U1

ON) and U2 = 0 (U2 OFF). Note, that due to the converter
topology vC and iL are alternating voltage and current,
respectively.



Assumption 1. Consider that the capacitors C1 and C2 are
large enough, such that the voltage ripples are negligible
and, therefore, they are not considered in system (1).

From a practical point of view, the general control objec-
tive of this class of inverter is to stabilize system (1) in a
desired oscillatory trajectory. That means, to control the
inverter such that its output voltage asymptotically tracks
a sinusoidal reference.

Fig. 1. Inverter half-bridge.

For this deal let us consider system (1) described by the
following state-space equation:

ẋ=Ax+Bu (2)

where x = [iL vC ]T are continuous-time variables repre-
senting the internal states and, u ∈ {−1, 1} is the discrete-
time variable depicting the control input.

The practical objective mentioned above means to control
the inverter to impose a desired trajectory on vC defined
by

vCd
(t) = Vmax sin(ωt). (3)

A simple circuit analysis shows that if in steady state
vC = vCd

, the current iL in the inductance is given by

iLd
(t) = C0ωVmax cos(ωt) +

Vmax
R0

sin(ωt). (4)

Vmax is the desired amplitude of the voltage through the
load R0. To impose such a behavior, let us drive system (2)
by an exogenous input z ∈ R2 generated by the next stable
time-invariant exosystem:

ż =

[
0 −ω
ω 0

]
z = Θz z(0) =

[
0

Vmax

]
. (5)

Remark 1. From (5) it is simple to see that for all t

z2
1(t) + z2

2(t) = V 2
max.

Define the compact set

Φ = {z2
1 + z2

2 = V 2
max, (z1, z2) ∈ R}.

The dynamics of the overall system is defined by

ẋ=Ax+Bu,
ż = Θz,
e=Cx+Dz = x−Πz,

(6)

where e ∈ R2 is the tracking error, C ∈ R2 is the identitiy
matrix, D = Π being Π defined from (3) and (4) as:

Π =

[
ωC0

1

R0
0 1

]
.

Let us denote as Γ the solution of the following algebraic
equation

AΠ +BΓ = ΠΘ. (7)

A simple calculation shows that

Γ =

[
ωL

R0Vin
+
wRLSC0

Vin

(
1

L
− C0ω

2 +
RLS
LR0

)
L

Vin

]
.

Remark 2. Equation (7) is the well known“regulator equa-
tion”, [Francis 1977, Serrani et al. 2001]. In addition, we
remark that we have

CΠ +D = 0.

Then, from (6) and following (7), the tracking error
dynamic is given by

ė = ẋ−Πż = Ax+Bu−ΠΘz

= Ax+Bu−AΠz −BΓz

= Ae+Bv. (8)

where
v = u− Γz. (9)

Assumption 2. z2 is supposed to be measurable as a refer-
ence in such a way that the inverter will produce a voltage
with the same amplitude, frequency and phase. Then, z1

can be internally reconstructed, as it is shown in Fig. 2.

Fig. 2. Block diagram of the controlled inverter.

The problem in this paper can now be stated.

Problem 1. To design a control law v (or equivalently u)
such that for any initial condition e(0) ∈ R2:

• the trajectory of (8) is bounded,
• and

lim
t→∞

e(t) = 0.

To solve Problem 1, we will use the main idea proposed
in [Albea et al. 2015], formulating the problem under an
hybrid dynamical framework following the theory given
in [Goebel et al. 2012], wherein continuous-time behavior
follows the evolution of the voltage and current in (1),
and the discrete-time behavior captures the switch of the
control signal u. Likewise, we remark that the problem is
an output regulation problem and the idea here is also
inspired by the work in [Francis 1977, Serrani et al. 2001].

3. HYBRID MODEL AND PROPOSED CONTROL
LAW

Let us recall that error dynamics are described by

ė=Ae+Bv,
ż = Θz,

(10)

where the available input v given in (9) is composed of a
continuous-time signal Γz and a switching signal u, which
can achieve a logical mode between 2 possible cases

u ∈ {−1, 1}.

This paper focuses on the design of a control law for the
switching signal u, in order to ensure suitable convergence



properties of the inverter error variable e to 0. Following
the works shown in [Albea et al. 2015, Deaecto et al.
2010, Liberzon and Morse 1999], we represent in the
following assumption a necessary and sufficient condition
that characterizes the existence of a suitable switching
signal inducing e = 0.

Assumption 3. Given a matrix Q = QT > 0, there exists
a matrix P = PT > 0 such that:

• the matrix A verifies

ATP + PA+ 2Q < 0, (11)

• there exist two scalar λ1, λ−1 ∈ [0, 1] satisfying
λ1,+λ−1 = 1, such that for a given z ∈ R2

λ1 − λ−1 − Γz = 0. (12)

Note that the existence of e = 0 for (10) is given in
Assumption 3, allowing to be v = 0 through a convex
combination of the two operating modes of u as follows

v = 1 · λ1 + (−1) · λ−1 − Γz.

Likewise, we remark that e = 0 allows a Krasovskii solu-
tion and even a Fillipov solution, because (12) means that
in e = 0 the signal is a periodic sequence of arbitrarily
small period T , spending a time equal to λ1T in mode
u = 1, and λ−1T in mode u = −1. Likewise, if Assump-
tion 3 does not hold, such a signal does not exist because
any arbitrary switching signal can only generate an equiv-
alent action on ė corresponding to a convex combination
obtained with each mode (namely, equation (12)).

In order to present the proposed control law, consider the
following HDS model:

H :



[
ė
ż
v̇

]
= f(e, z, v), (e, z, v) ∈ Ce+

z+

v+

 ∈ G(e, z), (e, z, v) ∈ D,
(13)

where G is a set-valued map representing the switching
logic:

f(e, z, v) :=

[
Ae+Bv

Θz
−ΓΘz

]

G(e, z) :=


e
z(

argmin
u∈{−1,1}

eTP (Ae+B(u− Γz))

)
− Γz


(14)

and where the flow and jump sets C and D encompass,
respectively, the regions in the (extended) space (e, z, v)
where our switching strategy will continue with the current
mode v when the states are in set C or will be require to
switch to a new mode when the states are in set D. If
(e, z, v) ∈ D then u will switch according to G in (14)
given the value of v = u− Γz.

Based on the parameters P and Q introduced in Assump-
tion 3, we select the following flow and jump sets:

C := {(e, z, v) : eTP (Ae+Bv) ≤ −ηeTQe} (15)

D := {(e, z, v) : eTP (Ae+Bv) ≥ −ηeTQe}, (16)

where η ∈ (0, 1) is a useful design parameter allowing to
achieve a trade-off between optimality level and switching
frequency, as characterized below in Theorem 2.

Proposition 1. The hybrid dynamical system (13)–(16)
satisfies the basic hybrid conditions [Goebel et al. 2012,
Assumption 6.5], then it is well-posed.

Proof. To prove the hybrid basic conditions we see that
the sets C and D are closed. Moreover f is a continuous
function, thus it trivially satisfies outer semicontinuity and
convexity properties. The map G is closed, therefore it also
is outer semicontiunuous [Goebel et al. 2012, Lemma 5.1].
And, f and G are locally bounded. Finally, the second
conclusion of the proposition comes from [Goebel et al.
2012, Theorem 6.30]. �

Now, we evoke Lemma in [Albea et al. 2015, Lemma 1],
which is fundamental to stablish Theorem 1.

Lemma 1. Consider that all conditions of Assumption 3
are satisfied. Then, for each e ∈ R2,

min
u∈{−1,1}

eTP (Ae+B(u− Γz)) ≤ −eTQe. (17)

2

Proof. Define the compact set

Λ = {λ−1, λ1 ∈ [0, 1] : λ−1 + λ1 = 1} .
Then, the following minimum is obtained at the extreme
points:

min
u∈{−1,1}

eTP (Ae+Bu−BΓz)

= min
λ1,λ−1∈Λ

eTP (Ae+Bλ1 −Bλ−1 −BΓz) ≤ −eTQe,

where in the last step we used relations (11) and (12) .

�

The switching signals generated by our solution will de-
pend on Lemma 1. Indeed, Assumption 3 with (15) shows
that unless e = e+ = 0, the solution always jumps to the
interior of the flow set C because

−eTQe < −ηeTQe,
and η < 1. This fact, together with stability (ensuring
boundedness of solutions) and the sector growth condition

|ė| = |ẋ| ≤ |Ae|+ |Bv| ≤ κ1|e|+ κ2

with κ1 and κ2 positive constants, coming from the flow
dynamics (10), implies that there is a uniform lower
bound on the dwell time between each pair of consecutive
resets before solutions approach e = 0. Note that, as in
other cases, (see [Deaecto et al. 2010], for instance) the
desired behaviour e = 0 is achieved with an arbitrarily
fast switching. The essential difference in our approach is
that during transient time the solution is characterized
by relatively slow switching adjusted by η. The same
paradigm was followed in [Theunisse et al. 2015] using very
similar techniques but we focus here on a different class of
systems.

Following up, we will establish uniform stability and con-
vergence properties of the hybrid system (13)–(16) to the
compact attractor

A := {(e, z, v) : e = 0, z ∈ Φ, u ∈ {−1, 1}}, (18)

where the set Φ is defined in Remark 1.



Theorem 1. Under Assumptions 2,3 the attractor (18)
is uniformly globally asymptotically stable (UGAS) for
hybrid system (13)–(16).

Proof. Let us take the Lyapunov function candidate

V (e, z) =
eTPe

2
.

In the flow set, C, using its definition in (15), we have

〈∇V (e, z), f(e, z, v)〉 = eTP (Ae+Bv) ≤ −ηeTQe (19)

Across jumps we trivally get:

V (e+)− V (e) =
1

2

{
eTPe− eTPe

}
= 0. (20)

because e+ = e.

Uniform global asymptotic stability is then shown apply-
ing [Prieur et al. 2014, Theorem 1]. In particular, since the
distance of e to the attractor (18) is defined by |e|A = |e|,
we have that [Prieur et al. 2014, eq. (6)] holds from the
structure of V and from (19) and (20). [Prieur et al. 2014,
Theorem 1] also requires building the restricted hybrid
system Hδ,∆ by intersecting C and D with the set

Sδ,∆ = {(e, z, v) : |e| ≥ δ and |e| ≤ ∆}
and then proving (semi-global) practical persistence flow
for Hδ,∆, for each fixed values of (δ,∆). In particular,
practical persistent flow amounts to showing that there
exists γ ∈ K∞ and M ≥ 0, such that, all solutions to Hδ,∆
satisfy

t ≥ γ(j)−M, ∀t ∈
⋃

j∈domj ξ

Ij × {j} (21)

(see [Prieur et al. 2014] for details). To establish (21),
notice that after each jump, from the definition of G in
(14) and from property (17) (in Lemma 1), we have

eT (Ax+Bv+) ≤ −eTQe < −ηeTQe, (22)

where we used the fact that η < 1 and that (0, z, v) /∈ Sδ,∆.
Therefore, if any solution to Hδ,∆ performs a jump from
Sδ,∆, it will remain in Sδ,∆ (because e remains unchanged)
and then, from (16), it jumps to the interior of the flow
set C ∩ Sδ,∆. Moreover, from the strict inequality in (22),
then all non-terminating solutions must flow for some time
and since C ∩ Sδ,∆ is bounded, there is a uniform dwell-
time ρ(δ,∆) between each pair of consecutive jumps. This
dwell-time (δ,∆) clearly implies [Prieur et al. 2014, eq. (4)]
with the class K∞ function γ(j) = ρ(δ,∆)j and M = 1.
Then, all the assumptions of [Prieur et al. 2014, Theorem
1] hold and UGAS of A is concluded. �

Corollary 1. The hybrid dynamical system (13)–(16) is
UGAS and is robust with respect to the presence of
small noise in the state, unmodeled dynamics, and spatial
regularization to relax the rate of switching, because the
attractor (18) is compact.

Proof. From Theorem 1, we prove that the hybrid dynamic
system is UGAS, and from Proposition 1 we see that it
is well-posed. Moreover, as the attractor (18) is compact
then it is robustly KL asymptotically stable in a basin of
attraction. �

Remark 3. Note that according to Theorem 1 system
(13)–(16) may exhibit a Zeno behaviour when e → 0,
and consequently an infinitely fast switching may be

expected, which is not acceptable in practice. This will
be practically avoided later introducing an additional
dwell-time logic to obtain a temporal-regularisation of the
dynamics, thereby weakening asymptotic convergence into
practical convergence.

4. OPTIMALITY AND PARAMETERS TUNING

Once that UGAS of the attractor is established for our
solution, we focus on providing a suitable performance
guarantee by reducing the energy cost, current peaks and
response time, for instance. For this goal we apply the same
paradigm shown in Albea et al. [2015] for a hybrid context
applied to switched systems.

Following the hybrid theory given in [Goebel et al. 2012],
we consider that the domain of a a solution ξ corresponds
to a finite or infinite union of intervals defined as

dom ξ =
⋃

j∈domj ξ

Ij × {j}, (23)

with Ij = [tj , tj+1] being a bounded time interval of
the ordinary continuous time t and having the discrete-
time (or “jump times”) tj as extremes, where j represents
the number of switches; or Ij = [tj ,+∞) being a last
unbounded interval .

Let adapt the notation domj ξ := {j ∈ Z : (t, j) ∈
dom ξ, for some t ∈ R} and represent an LQ performance
metric focusing on the flows of the inverter, using the
expression

J(ξ) :=
∑

k∈domj ξ

∫ tk+1

tk

xTCTCxdτ, (24)

where ξ = (x, z, v) = (e, z, v) : dom ξ → Rn × Rn × Rn
is a solution to hybrid system (13)–(16), Ce(t, j) for all
(t, j) ∈ dom ξ.

The following theorem guarantees the performance cost
(24) for our hybrid system.

Theorem 2. Consider hybrid system (13)–(16) satisfying
Assumption 2,3. If

CTC ≤ Q, (25)

then the following bound holds along any solution ξ =
(e, z, v) of (13)–(16):

J(ξ) ≤ η−1e(0, 0)TPe(0, 0), (26)

where e(t, j) = x(t, j)− xss, for all (t, j) ∈ dom(ξ).

Proof. To prove the optimality property in (26), consider
any solution ξ = (e, z, v) toH. Then for each (t, j) ∈ dom ξ
and denoting t = tj+1 to simplify notation, we have from
(19)



V (e(t, j))− V (e(0, 0))

=

j∑
k=0

V (e(tk+1, k))− V (e(tk, k))

=

j∑
k=0

∫ tk+1

tk

〈∇V (e(τ, k)), f(x(τ, k), u(τ, k))〉dτ

≤
j∑

k=0

∫ tk+1

tk

−ηeT (τ, k)Qe(τ, k)dτ

≤ −η
j∑

k=0

∫ tk+1

tk

eT (τ, k)CTCe(τ, k)dτ, (27)

where the last inequality comes from applying (25). Now,
considering ỹ(τ, k) = Ce(t, k), taking the limit as t +
j → +∞ and using the fact that UGAS established in
Theorem 1 implies limt+j→+∞ V (e(t, j)) = 0, we get from
(27)

ηJ(ξ) ≤ V (e(0, 0)) = e(0, 0)TPe(0, 0),
as to be proven. �

Remark 4. Note that for a given P and Q that satisfy
(25), the guaranteed performance level is proportional to
the inverse of η ∈ (0, 1). That means that large values of
η (as close as possible to 1) in transient time are expected
to drive to improved LQ performance along solutions.

On the other hand, note from the flow and jump sets
in (15) and (16), that larger values of η (close to 1)
correspond to strictly larger jump sets (and smaller flow
sets), which reveals that solutions with larger values of
η exhibit a larger switching frequency. In other words,
through parameter η we can deal with a trade off between
switching frequency and performance along solutions in
transient time, affecting the level of guaranteed optimality
given in (26).

4.1 Computation of P and Q

Now, we address the problem of the computation of
parameters P , Q, following any class of optimization that
reduces as much as possible the right hand side in bound
(26). To this end, we select

Q = CTC + νI, (28)

where ν > 0 is a positive constant small enough, which
must be selected different to zero if CTC ≥ 0 (as happens
in our case in (2)), ensuring Q > 0 as well as restriction
(25).

Once Q is selected, and noting that matrix A is Hurwitz,
the following convex optimization expressed by the fol-
lowing linear matrix inequality always leads to a feasible
solution

min
P=PT>0

TraceP, subject to: (29)

ATP + PAT ≤ −2Q,

and this optimal solution clearly satisfies (11).

5. SIMULATION

In this section, we validate in simulation the hybrid con-
troller designed in this paper for the inverter given in (1).

Following the optimality and parameters tuning given in
[Albea et al. 2015, Section IV], we select the cost function
J as follows:

min
u

∑
k∈domj(ξ)

∫ tk+1

tk

ρ

R0
(vC(τ, k)−vCd

)2+RLS(iL(τ, k)−iLd
)2dτ,

where ρ is a positive scalar. Note that the constant
parameters of each term express the weighted sum of the
energy of the error signal of each state variable.

Likewise, we take Q =

[
RLS 0

0
ρ

R0

]
.

Table 1. Simulation parameters

Parameter Convention Value Units

DC input voltage Vin 96 V

Rererence peak voltage Vmax 220
√

2 V
Nominal angular frequency ω 2π (50) rad/s

Inductor L 50 mH
Output capacitor C0 200 µF
Load resistance R0 220 Ω

Estimated series resistance RLS 2 Ω

Now, from parameters given in Table 1 and from (3) and
(4) we got the following desired behaviour

xd =

[
vcd
iLd

]
=

[
220
√

2 sin(2π50t)
19.5 sin(2π50t+ 86◦))

]
,

where it was applied the trigonometric relationship:
a cos(x) + b sin(x) =

√
(a2 + b2) sin(x − atan( ba ) + π

2 ).

Moreover, we take a sampling time Ts = 10−6s, ρ = 1000
and

P =

[
9 0.07

0.07 0.04

]
.

Simulations are performed in MATLAB/Simulink by using
the HyEQ Toolbox [Sanfelice et al. 2013].

First, note that condition (11) is satisfied. Moreover,
considering that Assumption 2 is satisfied (the voltage
of the network is measured) we get to stabilize x in
xd in simulation, satisfying condition (12). Thus, from
Theorem 1 the attractor (18) of the inverter guarantees
UGAS. These properties can be appreciated from the
simulations of Fig. 3 that shows the voltage and current
evolutions of the controlled inverter with different values
of η. Likewise, Fig. 4 shows the normalized switching
frequency and cost function J to the maximum valued
obtained in simulations in a time slot of the transient as
a function of η. Note that, the cost function is reduced
with larger values of η, on the contrary, the trend of the
switching frequency is to grow with larger values of η.
Thus we may give up a little on the level of optimality
and suitably adjust the switching frequency, finding a
satisfactory trade off between performance and switching
frequency in η = 0.4, which corresponds at the intersection
between the switching curve and the cost function for any
given initial condition.

On the other hand, in Remark 3 we note that there is
infinitely fast switching in the steady-state. In practice,
this is not desired in terms of energy efficiency and relia-
bility, since every switch dissipates energy and reduces the
switch lifespan. This is not appreciated in Fig. 3 because
we used a sampling time. If we want to avoid this infinitely
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Fig. 3. Voltage and current evolution of the inverter.
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Fig. 4. Evolution of the normalized switching frequency
(solid) and cost function J (dashed) w.r.t. η for
different initial conditions in the inverter.

fast switching without the need to introduce a sampling
time, we propose a space-regularisation through a dwell-
time that separates the regions (15) and (16). For this aim,
the flow and jump sets are

C := {(e, z, v) : eTP (Ae+Bv) ≤ −ηeTQe or V (e) ≤ η2}
(30)

D := {(e, z, v) : eTP (Ax+Bv) ≥ −ηeTQe & V (e) ≥ η2},
(31)

being η2 > 0 small enough and η ∈ (0, 1). With these flow
and jump maps, it is expected to achieve a reduction of
switching in the steady-state as η2 increase.

Some simulations are given in Fig. 5 with the practical hy-
brid system (13)–(14) with (30)–(31) and compared with
the main hybrid system (13)–(16), which are equivalent
with η2 = 0. Note that the voltage evolution is essentially
the same for different values of η2. On the other hand, as
was mentioned above, note that as η2 is increased, it is
expected a reduction of the switching frequency, which is

consistent with the upper two plots of Fig. 6. For these
simulations we chose η = 0.4.
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Fig. 5. Voltage and current evolution of the inverter and
η = 0.4.
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Fig. 6. Zoom of u in the inverter with η = 0.4.

6. EXPERIMENTAL RESULTS

In order to validate the proposed control, a scale labo-
ratory prototype was built using parameters in Table 2.
The nominal frequency of 400 Hz was selected considering
its use in aircraft applications while the scale voltages
was selected in order to have an inductor current simi-
lar to the case presented in simulation results. The half
bridge uses two MOSFET IRFZ44 triggered using photo-
coupled MOSFET drivers TLP350, one isolated closed-
loop hall-effect transducer LV-20P measuring the output
voltage and one isolated closed-loop hall-effect transducer
CAS 15-NP measuring the inductor current, both sen-
sors conditioning using analogue circuitry. The control
algorithm was embedded in a Digital Signal Processor
(DSP) TMS32028335 running with an externally gener-
ated sampling frequency of 51.2 kHz (128 times the output
frequency).

From the parameters given in Table 2 and following (3) and
(4), the two required synchronized references are given by:



Table 2. Experimental prototype parameters

Parameter Convention Value Units

DC input voltage Vin 5 V
Rererence peak voltage Vmax 15 V

Nominal angular frequency ω 2π (400) Rad/s
Input capacitors C1,2 22 mF

Inductor L 1.05 mH
Output capacitor C 150 µF
Load resistance R0 120 Ω

Estimated series resistance RLS 1 Ω

xd =

[
vCd

iLd

]
=

[
15 sin (2π400t)

5.65 sin (2π400t+ 83◦)

]
(32)

Note that Assumption 1 is satisfied by the values of
C1,2. Moreover, the gains introduced by measurements and
conditioning circuits are compensated internally into the
DSP device. The selected value of η2 for these experiments
was 0.01 and η = 0.04. The matrices P and Q were
computed as follows:

P =

[
4 −0.05

−0.05 10

]
, Q =

[
1 0
0 4.54

]
. (33)

The experimental set-up is composed by one oscilloscope
Tektronix MSO2014B with conventional voltage probes,
one differential voltage probe, and one isolated current
probe Fluke i30s, one function generator Gwinstek AFG-
2025 which is used to produce the sampling frequency
of the DSP, one programmable DC source BK precision
XLN6024 which is used to provide the input voltage of the
converter and one power source BK Precision 1672 feeding
the sensors and auxiliary circuitry. The Fig. 7 shows the
prototype assembled with the measurement set-up.

Fig. 7. Laboratory prototype and experimental set-up

As it is depicted in Fig. 8a, the output voltage reaches
the stationary-state in frequency, phase and amplitude
in less than five cycles (12.5 ms) showing the expected
tracking of the sinusoidal reference. In Fig. 8b, the output
voltage, inductor current and control signals captured with
the oscilloscope are depicted. It is possible to observe the
expected delay between the current and voltage waveform
measured as θ ≈ 82.6.

7. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a controller following a HDS
framework for a dc-ac converter composed of continu-
ous variables (current and voltage) and discrete variables

Fig. 8. Oscilloscope captures of the inverter signals: a)
Signals at the start-up and synchronization interval;
b) Signals at the stationary state

(state of switches), whose main problem is to track a
sinusoidal reference. The main advantage of this method
is to manage the switching frequency in the transient-
state and guarantee a prescribed optimality level. Some
simulations and experimental results validate our proposed
hybrid control. Likewise, we shown that the switching
frequency in the steady-state can be managed. In future
work, we will establish that the compact attractor

Aη2 =: {V (e) ≤ η2, z ∈ Φ, v ∈ {−1, 1}}, (34)

is UGAS for Hybrid system (13)–(14) with (30)–(31), and
global practical asymptotic stability of the attractor (18)
with respect to η2. Another future work is to use this
inverter to inject energy in the power grid, what means
to synchronize the inverter in amplitude, frequency and
phase with the power grid.
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