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Abstract

Condition monitoring methods based on electrical signals analysis have been used for me-
chanical and electrical fault detection for a while now. Moreover, the research focus has
shifted from single-phase signals analysis to three-phase signals approaches. The main
advantages of using three-phase approaches can be stated as separation of balanced and
unbalanced electrical quantities as well as better performances in terms of mechanical
faults detection. However, such approaches still have a low industrial penetration in part
due to their relatively higher complexity compared to single-phase approaches. The cur-
rent paper proposes an easy to implement method for condition monitoring of bearings,
which takes into account the whole three-phase electrical signals. After presenting the
theoretical development of the method, the algorithm for computing mechanical faults
indicators is given. Moreover, the paper presents experimental results of the proposed
approach, using electrical signals acquired on a dedicated test bench.

1 Introduction

Three-phase rotating machines are used in a wide range of configurations of electro-
mechanical systems for different industries. Thus, they are affected by both mechanical
and electrical faults. In this paper the focus is set on the signature of mechanical faults in
the three-phase electrical signals.

Models for mechanical faults signature in electrical signals have been developed through-
out the years. A model for bearing fault signature was proposed in (1) based on the fact that
such faults trigger air-gap eccentricities related to the faults. Such models have been later
improved (2) and it was shown that bearing faults may induce torque variations as well as
eccentricity. Thus, they can trigger phase and/or amplitude modulations in the electrical
signals at well defined frequencies for each case. Later the models were extended for any
type of mechanical faults (3,4), not just the bearings.

Methods to detect mechanical faults (4) using electrical signals have initially focused on
single phase stator currents and they are generically known as motor current signature
analysis (MCSA) (5). More recently the focus has shifted towards three-phase approaches.
Most often these methods rely on the use of a three-phase transform, like the Fortes-
cue transform (6) or the Clarke/Concordia transform (7), to combine the information in the
three-phases and obtain the symmetrical components. Afterwards the obtained signals



are demodulated (8,9,10,11,12) in order to study the presence of fault-related modulations.
However, these demodulation techniques are based on the assumption that the obtained
symmetrical components can be approximated to be an analytic signals which is not al-
ways the case.

Previous works (13) (14) have proposed a method for condition monitoring of both mechan-
ical and electrical faults that is based on correctly demodulating the symmetrical compo-
nents corresponding to the electrical signals. The proposed method for mechanical fault
detection is limited to modulations of frequencies lower than the fundamental frequency
of the electrical signals. The current paper extends the approach to high-frequency modu-
lations. The next section presents the proposed approach for mechanical faults detection.
The section starts with the description of mechanical faults signatures in three-phase sig-
nals and then gives the proposed algorithm for obtaining mechanical fault indicators able
to detect such faults. The third section of this article validates the proposed method using
experimental signals acquired on a dedicated test bench. The last section of the article
gives the conclusions and perspectives of the presented work.

2 Three-phase electrical signals analysis method for mechanical fault
monitoring

In this section the content of electrical quantities in the presence of the signature of me-
chanical faults is presented. The expected behaviour of this signatures in the three-phase
electrical signals is described and in the end mechanical fault indicators are proposed.
Throughout the section the discussion is based on the three-phase currents. However, the
same analysis can be preformed on the voltages.

2.1 Mechanical fault signature in instantaneous symmetrical components

The instantaneous symmetrical components (ISCs) are obtained from the phase currents
by applying the inverse Fortescue transform:
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where a = ej 2π

3 , F−1 denotes the inverse of the Fortescue matrix (6), and the ISCs of the
original three-phase signal are: the positive-sequence ISC (i+(t)), the negative-sequence
ISC (i−(t)) and the zero-sequence ISC (i0(t)). In the rest of this paper, the transform
defined in Equation (1) is referred to as ISC transform.

As long as the effects of the mechanical faults are present (torque variations and/or eccen-
tricity) the fault signatures would be visible in the electrical quantities as modulations (2).
When comparing the value of the modulating frequency to the carrier frequency we can
either have low-frequency modulations or high-frequency modulations. Figure 1 shows
the expected signatures for both low-frequency modulations and high-frequency modu-
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lations in ISCs for real-valued signals for which only the balanced components of the
signals are modulated. There are three considerations that need to be made regarding this
figure:

1. Firstly, there is a spectral redundancy in the ISCs. However, a full spectral analysis
can be performed by only considering the modulations around + f0 and this would
be the case throughout the paper.

2. Secondly, if the negative-sequence ISC would also contain modulations, their am-
plitude would be really small. The amplitude of the modulations depends on the
amplitude of the fundamental and for a functioning three-phase system, the am-
plitude of the negative-sequence ISC is very small. Thus, for mechanical faults
detection throughout this paper, only the positive-sequence ISC would be consid-
ered.

3. Thirdly, the modulating frequency is assumed to be known. Indeed, this frequency
can be easily determined using the kinematics of the system and the known op-
erating conditions, like the rotating speed of the shaft. In the current paper, this
frequency would be considered as an input of the algorithm.
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(a) Low-frequency modulations
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(b) High-frequency modulations

Figure 1: Frequency modulations in ISCs due to mechanical faults

Previous works (13,14) have dealt with the case of low-frequency signatures of mechani-
cal faults. An algorithm for extracting mechanical faults indicators by demodulating the
electrical quantities has been proposed. The next section proposes an algorithm for the
high-frequency case presented in Figure 1b. In this case, the modulating frequency is not
negligible compared to the fundamental frequency. The algorithms will take into account
the three-phase signal model as well as the previous observations. Thus, only modula-
tions around the positive fundamental frequency + f0 of the positive-sequence ISC will
be analysed.
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2.2 Algorithm for mechanical faults detection

The case of mechanical faults which have high-frequency signatures needs to be consid-
ered separately from the low-frequency one. Figure 1 depicts the two expected behaviours
for these two cases. If the modulating frequency is higher than the fundamental frequency
of the electrical quantities, as in Figure 1b, different aspects have to be taken into account:

1. The Hilbert demodulation technique previously used cannot be implemented as the
necessary conditions are no longer fulfilled. In other words, the positive-sequence
ISC cannot be assumed to be an analytic signal. For demodulated quantities of
the positive-sequence ISC there was a single frequency band B centred around the
fault characteristic frequency fm considered for the fault indicator computation. For
non-demodulated signals two frequency bands are to be considered Bl (the left-hand
side band) and Br (the right-hand side band). These bands will be centred around
f0± fm. Figure 2 graphically indicates the considered bands.

2. As the literature explains (15) and the existing experimental data within the KAStrion
project confirms, bearing faults characteristic frequency may vary by ±2%. While
for low-frequency faults this variation may be negligible, for high-frequency faults
this aspect needs to be taken into account when computing the fault indicator. In
case of really high frequencies, for example 200 Hz, this leads to a rather wide fre-
quency band that needs to be considered, i.e. the corresponding band [196 204] Hz
is 8 Hz wide.
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Figure 2: High-frequency modulation bands

The ±2% variation aspect is specific to bearing faults and the calculation of fault char-
acteristic frequency bands for each possible mechanical fault is beyond the scope of this
paper. However, what is important to consider is that the proposed algorithm for me-
chanical fault indicator computation must be robust with respect to the width of the fault
characteristic frequency band.

Figure 3 gives the general structure of the algorithm for computing mechanical fault in-
dicators for faults which have a high-frequency signature. This structure is very similar
to the one proposed for the low-frequency mechanical faults indicators. This simplified
version of the algorithm structure has removed the demodulation step and the PSD is esti-
mated directly for the positive-sequence ISC. Afterwards, the fault indicator is computed
considering the two corresponding frequency bands. The next sub-sections will give more
details into the proposed indicators. Indeed, several indicators are to be computed, not just
one. The following indicators are not assumed to be optimal. However they are easy to
implement and remain efficient in detecting the eventual faults.
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Figure 3: Structure of the algorithm for high-frequency mechanical fault indicators
computation

2.2.1 Fault indicators based on the signal energy

Fault indicator 1 A mechanical fault indicator has been proposed in (14) for mechanical
faults inducing low-frequency modulations. The corresponding indicator is to be com-
puted over a narrow frequency band using demodulated signals and is expressed as:

m =

∫
(B) S( f )d f
∫
(B) Sh( f )d f

, (2)

where B denotes the considered frequency band, Sh( f ) denotes a reference PSD obtained
for a healthy system and S( f ) is the current PSD.

This first indicator proposed for the high-frequency modulations is an extension of the in-
dicator for low frequency given in Equation (2). Instead of considering just the frequency
band B, both frequency bands (Bl and Br) modulating the fundamental frequency f0 are
considered. The expression of this new indicator is given in (3).

m1 =

∫
(Bl)

S( f )d f +
∫
(Br)

S( f )d f
∫
(Bl)

Sh( f )d f +
∫
(Br)

Sh( f )d f
, (3)

where Bl and Br denote the left and right frequency bands, Sh( f ) denotes a reference PSD
obtained for a healthy system and S( f ) is the current PSD obtained for the system in an
unknown state. In the case of an healthy condition, such an indicator stays obviously
close to one, and tends to increase if faulty components appear in the signals.

In case of wide frequency bands (Bl and Br), the contribution of two new peaks (one on
each side) might be hard to detect in an incipient stage. Indeed, this indicator might not
be sensitive enough to new peaks regardless of the frequency bands width.

Fault indicator 2 The second indicator proposed is an improvement of the first. Instead
of using the whole energy in the given frequency bands Bl and Br, the indicator can be
computed using the amount of energy higher than the noise floor.

The first step in computing this indicator is to estimate the noise floor in each of the bands.
The noise level can be estimated using a median filter over S( f ) for f ∈ (Bl ∪Br). The
obtained estimations are denoted Sn( f ) and they only exist over Bl and Br. Afterwards, a
difference between the PSD S( f ) and the noise floor is computed. The quantity is denoted
Sd( f ) and is obtained as:

Sd( f ) = S( f )−Sn( f ), for f ∈ (Bl ∪Br) (4)
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If the quantity Sd( f ) is greater than 0 then the current spectrum contains energy that is
higher than the noise level. Thus, the proposed indicator only considers this amount of
energy and is expressed as:

m2 =

∫
(Bl∪Br)

Sd( f )
∣∣
Sd( f )>0 d f

∫
(Bl∪Br)

Sd
h( f )

∣∣
Sd

h( f )>0 d f
, (5)

This indicator is normalised by the amount of energy computed for the healthy case.

2.2.2 Fault indicator based on frequency values
Fault indicator 3 The third proposed indicator uses the fact that there are two frequency
bands that are symmetrical with respect to the fundamental frequency. In this case, a
frequency will be obtained for each of the bands corresponding to the maximum differ-
ence between S( f ) and Sh( f ) in the given band. Thus, fl corresponds to the frequency
for which (S( f )−Sh( f ))|(Bl)

has the maximum value and consequently fr denotes the
frequency for which (S( f )−Sh( f ))|(Br)

reaches maximum. The electrical fundamental
frequency denoted f0 corresponds to the maximum in S( f ). Considering that mechanical
faults induce modulations, the interest is to determine whether the differences correspond
to modulations. Thus, two new quantities are computed:

fml = | fl− f0| fmr = | fr− f0| (6)

Based on the two frequencies indicating the distance between the fundamental frequency
and the frequencies of the maximal differences, a fault indicator is computed as:

m3 = | fml − fmr | (7)

In case the two maxima differences correspond to a modulation of the fundamental fre-
quency, the indicator m3 would be null. A threshold can be set as the spectral resolution
in order to ensure no detection is missed due to precision. In case the indicator is null, fml

and fmr indicate the modulating frequency itself.

This indicator is not very robust with respect to the content of the characteristic frequency
bands. Indeed, it relies on the assumption that the modulation due to a mechanical fault
represents the highest change with respect to the estimated healthy condition. This as-
sumption is not necessarily true in all practical cases. For example one of the bands might
present its highest change at a frequency location corresponding to a different modulation
of a harmonic. The wider the bands the higher the chance is for them to also contain other
components besides modulations of the fundamental frequency.
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3 Experimental results

3.1 Experimental set-up

These indicators were tested using experimental data coming from a test-bench purposely
designed and developed in the CETIM laboratory (Senlis, France) (16). The bench emu-
lates the structure and behaviour of a wind turbine, with an electrical motor replacing the
wind turbine rotor, followed by a low speed shaft with the main bearing, a gearbox, high
speed shaft and three-phase electrical generator. The operating conditions are determined
by the speed of the low speed shaft. For the experiment considered in this paper a radial
load force was applied on the output bearing (located on the high-speed shaft) leading to
an accelerated deterioration of this bearing.

This experiment has run for ≈ 900 hours. At the end, the output bearing was dismounted
and it was visually inspected. The visual inspection showed there was no flaking, but a
distributed wear over half the outer race (remained smooth but cracked). There were also
traces on the bore of the inner ring which show that this ring has rotated on the axis and
therefore was not mounted sufficiently tight. Unfortunately, no pictures are available for
this damaged bearing.

Table 1 gives the considered frequency band for the considered outer race fault, allowing
2% variations for ball-pass frequency - outer race (BPFO). The value for the BPFO was
obtained using the kinematics of the system and the known rotating speed of the shaft.
When analysing the electrical quantities the modulations will be expected in the left and
right bands with respect to the fundamental frequency. Indeed, the bands of interest for
the electrical quantities are located at Bl = f0−BPFOband and Br = f0 +BPFOband.

Table 1: Fault characteristic frequency bands for Exp. B

LSS speed [rpm] BPFO [Hz] BPFO ±2% band [Hz]
20 223.03 [218.57 227.49]

3.2 Mechanical fault detection using electrical quantities

The computation of mechanical fault indicators is based on the estimated PSDs. For the
considered experimental data the PSDs estimations are obtained with Welch averaged
periodograms using a Hanning window of 212 samples, leading to a spectral resolution of
approximately 0.95 Hz. Indeed, the spectral resolution is rather poor. However, it was
chosen accordingly because the fault indicator is computed over a wide frequency band
and there is not a real interest in precisely detecting any given peak.

Figure 4 depicts a zoom in on the frequency bands of interest (the left-hand side band
Bl and the right-hand side band Br) in the PSDs of the current signal on phase 1 and
the positive-sequence ISC. The figure shows that i+(t) has a better signal-to-noise ratio
than the current i1(t). Also, after 350 hours into the experiment new peaks appear in
these bands. This can be clearly seen in the PSD of i+(t) and it is less clear for i1(t).
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Nonetheless, one of the datasets acquired after the 350 hours does not present any new
peaks. The PSDs of the other two current signals are similar to that of i1(t).
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(a) PSD of the current in phase 1
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(b) PSD of i+(t)

Figure 4: PSDs of the current signals

Based on the PSDs of the electrical signals in the frequency bands of interest, the me-
chanical fault indicators were computed. The indicators were computed for both currents
and voltages, for the positive-sequence ISCs as well as for the phase signals by applying
the same algorithm. This approach allows the comparison in terms of detection capabil-
ities between single-phase and three-phase methods. For all indicators, the healthy case
estimation Sh was considered to correspond to the first dataset acquired.

3.2.1 Fault indicators based on signal energy
Figure 5 depicts the results obtained for the first mechanical fault indicator denoted m1
and expressed in (3). There are several aspects highlighted in this figure. Firstly, the
indicators computed using positive-sequence ISCs provide better results than the ones
using the single-phase quantities. The higher amplitudes of the indicator towards the end
of the experiment are more clearly distinguishable from the lower values at the beginning.
Secondly, the voltage signals provide better results than the current signals. This might
be explained by the fact that the voltage signals have higher amplitudes than the currents
around the fundamental, thus the amplitudes of the modulations are also higher. Another
aspect contributing to this result is that for this test bench the generator output is not
directly connected to the grid, thus its voltage amplitude and fundamental frequency is
allowed to vary and are not imposed by the grid. Regarding the absence of the bearing
fault signature in the signals acquired right before 800 hours, one possible reason could
be the fact that the bearings were not tightly fixed. In this case the fault position might
change with respect to the load area and this might lead to a difference or temporary
absence of the signature.

All in all, using the indicator m1 computed for v+(t) and by setting an correct threshold
the signature of the mechanical fault can be detected from the beginning of its apparition.
However, this indicator performs rather poorly when applied to all other signals. This
was expected considering the wide band (2 times 8.92 Hz) over which it was computed.
The contribution added by the two new peaks is small compared to the total sum over the
≈ 18 Hz.

The poor performance of the first indicator justifies the need for improvement, thus the
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(a) Fault indicator using the currents
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(b) Fault indicator using the voltages

Figure 5: Mechanical fault indicator m1 considering both left and right fault carac-
teristic frequency bands

definition of the second indicator named m2 given in Equation (5). The order of the
median filter used to estimate the noise is set as five times the spectral resolution. Figure 6
explains how this indicator is computed by depicting the right-hand side modulation band
Br for the first and last i+(t). In this figure the median for each of these two PSDs is also
depicted while the gray area indicates the quantities used to compute the indicator m2.
For the first dataset, also considered healthy, the gray area is small. For the last dataset a
new peak is visible and the gray area under it is large compared to the healthy case.
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(a) PSD of the first dataset

 

 
S(f)

Sn(f)

286 287 288 289 290 291 292 293 294
−30

−25

−20

−15

Frequency [Hz]

[d
B

]

 

 

(b) PSD of the last dataset

Figure 6: Right-hand side modulation band for i+(t)

Figure 7 shows the mechanical fault indicator m2. The indicator computed using single-
phase current signals is still not capable to clearly separate the values before and after
the fault. This result is expected to be poor, considering for example the PSD of i1(t)
presented in Figure 4 which shows that the phase signal has a poorer SNR than i+(t).
More so, the modulations in the left-hand side band of the currents PSDs are not visible
for most of the single-phase signals. The results provided by this indicator enables the
detention of the fault starting before 400 hours using all voltage signals and the positive-
sequence ISC for the currents.

3.2.2 Fault indicators based on frequency values
Figure 8 shows the frequencies for the maximum difference between each given PSD and
the one that was estimated for the first dataset considered healthy. These frequency values
pairs correspond to fml and fmr from Equations (6). At the beginning of the experiment
these values vary all over the frequency band which corresponds to the bearing outer race
fault. After 350 hours the left and right frequency value both converge towards the same
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(a) Fault indicator using the currents
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(b) Fault indicator using the voltages

Figure 7: Mechanical fault indicator m2

value for all the voltages and for i+(t). This suggests that the actual modulating frequency
is between 221 and 222 Hz, and not precisely equal to the theoretical value of 223 Hz.
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(a) Frequencies fml and fmr for the currents
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(b) Frequencies fml and fmr for the voltages

Figure 8: Frequencies for the maximum difference between the PSDs

Figure 9 shows the indicator m3 obtained using the two above frequencies. If the value
of this indicator is lower than the spectral resolution of 0.95 Hz the results suggests that
there is a modulation of the fundamental frequency present in the frequency bands corre-
sponding to BPFO. Thus this indicator is able to detect the appearance of the modulation
using all three phase voltage signals as well as v+(t). Regarding the currents, the indica-
tor can detect the presence of the modulation using i+(t) but the fault is still not properly
detected using the single-phase currents.
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(a) Fault indicator using the currents
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(b) Fault indicator using the voltages

Figure 9: Mechanical fault indicator m3

If only random noise is present in the corresponding bands the current algorithm still
returns a frequency value for each band. Thus the probability of false alarm is rather high
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in this case as randomly the maximum difference between the noises in the bands can
falsely indicate a modulation as is the case for the value for i+(t) right after 200 hours.
This indicator can be improved by only providing values for fml and fmr when peaks are
present.

4 Conclusions

In this paper a method for condition monitoring of mechanical components has been
proposed. The method relies on the use of three-phase signals and more specifically their
positive-sequence instantaneous symmetrical component. Using this quantity two kinds
of mechanical fault indicators have been proposed based on the signal energy and on
the frequency values of components located in the frequency bands corresponding to the
faults. The proposed method has been validated using experimental results. Throughout
the presentation of the experimental results the three-phase approach has been compared
to the single-phase one showing that the use of the positive-sequence ISC is justified by
its better performance in detecting mechanical faults. Indeed, the proposed mechanical
fault indicators computed using the positive-sequence ISC were able to detect the outer
race bearing fault that generated high-frequency modulations.

As future developments of this work, the mechanical fault indicator that relies on the
frequency values can be further improved. By only computing the modulating frequency
value for detected peaks the number of false alarms triggered by this indicator can be
reduced.

Acknowledgements

This research has been partly supported by KIC InnoEnergy, a company supported by
the European Institute of Innovation and Technology (EIT), through KAStrion European
project.

The authors would like to thank CETIM (Centre Technique des Industries Mécaniques)
for providing the test-bench and experimental data.

References

1. R. Schoen, T. Habetler, F. Kamran, and R. Bartfield, “Motor bearing damage detec-
tion using stator current monitoring,” IEEE Transactions on Industry Applications,
vol. 31, no. 6, pp. 1274–1279, Dec. 1995.

2. M. Blodt, P. Granjon, B. Raison, and G. Rostaing, “Models for Bearing Damage
Detection in Induction Motors Using Stator Current Monitoring,” IEEE Transactions
on Industrial Electronics, vol. 55, no. 4, pp. 1813–1822, Apr. 2008.

3. M. Blodt, J. Regnier, and J. Faucher, “Distinguishing load torque oscillations and ec-
centricity faults in induction motors using stator current wigner distributions,” IEEE
Transactions on Industry Applications, vol. 45, no. 6, pp. 1991–2000, 2009.

11



4. M. Blodt, P. Granjon, B. Raison, and J. Regnier, “Mechanical fault detection in in-
duction motor drives through stator current monitoring - theory and application ex-
amples,” in Fault Detection, W. Zhang, Ed. InTech, 2010, pp. 451–487.

5. H. A. Toliyat, S. Nandi, S. Choi, and H. Meshgin-Kelk, Eds., Electric machines:
modeling, condition monitoring, and fault diagnosis. CRC Press, 2013.

6. C. L. Fortescue, “Method of symmetrical co-ordinates applied to the solution of
polyphase networks,” Transactions of the American Institute of Electrical Engineers,
vol. XXXVII, no. 2, pp. 1027–1140, July 1918.

7. E. Clarke, Circuit Analysis of A-C Power Systems. New York : J. Wiley & Sons,
Inc., 1943.

8. J. L. H. Silva and A. J. M. Cardoso, “Bearing failures diagnosis in three-phase induc-
tion motors by extended Park’s vector approach,” in 31st Annual Conference of IEEE
Industrial Electronics Society, 2005. IECON 2005., Nov 2005, pp. 6 pp.–.

9. B. Trajin, M. Chabert, J. Regnier, and J. Faucher, “Hilbert versus Concordia trans-
form for three-phase machine stator current time-frequency monitoring,” Mechanical
Systems and Signal Processing, vol. 23, no. 8, pp. 2648–2657, Nov. 2009.

10. Y. Amirat, V. Choqueuse, and M. E. H. Benbouzid, “Wind turbines condition mon-
itoring and fault diagnosis using generator current amplitude demodulation,” in En-
ergy Conference and Exhibition (EnergyCon), 2010 IEEE International, Dec 2010,
pp. 310–315.

11. V. Choqueuse, M. E. H. Benbouzid, Y. Amirat, and S. Turri, “Diagnosis of three-
phase electrical machines using multidimensional demodulation techniques,” IEEE
Transactions on Industrial Electronics, vol. 59, no. 4, pp. 2014–2023, 2012-04.

12. E. H. El Bouchikhi, V. Choqueuse, M. Benbouzid, and J. A. Antonino-Daviu, “Stator
current demodulation for induction machine rotor faults diagnosis,” in Green Energy,
2014 International Conference on, March 2014, pp. 176–181.

13. G. Cablea, P. Granjon, and C. Bérenguer, “Method for computing efficient electrical
indicators for offshore wind turbine monitoring,” Insight - Non-Destructive Testing
and Condition Monitoring, vol. 56, no. 8, pp. 443–448, Aug 2014.

14. G. Cablea, P. Granjon, C. Bérenguer, and P. Bellemain, “Online condition monitoring
of wind turbines through three-phase electrical signature analysis,” in CD proceed-
ings of the Twelfth International Conference on Condition Monitoring and Machinery
Failure Prevention Technologies, June 2015.

15. R. B. Randall and J. Antoni, “Rolling element bearing diagnostics—A tutorial,” Me-
chanical Systems and Signal Processing, vol. 25, no. 2, pp. 485–520, Feb. 2011.

16. N. Bédouin and S. Sieg-Zieba, “Endurance testing on a wind turbine test bench. A
focus on slow rotating bearing monitoring,” in CD proceedings of the Twelfth In-
ternational Conference on Condition Monitoring and Machinery Failure Prevention
Technologies, June 2015.

12


