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Abstract

This paper presents an evolutionary battery impedance estimation method,

which can be easily embedded in vehicles or nomad devices. The proposed

method not only allows an accurate frequency impedance estimation, but also a

tracking of its temporal evolution contrary to classical electrochemical impedance

spectroscopy methods. Taking into account constraints of cost and complexity,

we propose to use the existing electronics of current control to perform a fre-

quency evolutionary estimation of the electrochemical impedance. The devel-

oped method uses a simple wideband input signal, and relies on a recursive local

average of Fourier transforms. The averaging is controlled by a single parame-

ter, managing a trade-off between tracking and estimation performance. This

normalized parameter allows to correctly adapt the behavior of the proposed

estimator to the variations of the impedance. The advantage of the proposed

method is twofold: the method is easy to embed into a simple electronic circuit,

and the battery impedance estimator is evolutionary. The ability of the method

to monitor the impedance over time is demonstrated on a simulator, and on a

real Lithium ion battery, on which a repeatability study is carried out. The ex-

periments reveal good tracking results, and estimation performance as accurate

as the usual laboratory approaches.

Keywords: battery monitoring system; electrochemical impedance

spectroscopy; frequency domain estimation; wideband identification; recursive

estimation algorithm.

Preprint submitted to Journal of LATEX Templates November 29, 2016



1. Introduction

The recent and future expansion of electric vehicles or nomad devices in-

evitably leads to the development of efficient battery management systems

(BMS). Such systems must continuously determine the state of the monitored

battery from several measurements. However, in order to preserve the battery5

integrity, only non invasive and non destructive measurement methods are used,

and most BMS measure external quantities such as the current flowing through

the battery, the voltage across its terminals and its surface temperature [1]

[2]. From these measurements, one way to obtain interesting information rep-

resentative of the current state of the battery is to estimate its electrochemical10

impedance [3]. Indeed this quantity describes the dynamic behavior of the bat-

tery and regularly changes with the evolution of its internal temperature, state

of charge (SoC) and state of health (SoH) [4]. Consequently, the electrochemical

impedance is used in many methods to estimate the internal temperature [5] [6]

[7], the SoC [8] [9] [10] and the SoH [10] [11] of the monitored battery. Usual15

procedures used to estimate a battery electrochemical impedance belong to the

class of active identification methods [12]: known variations are added to the

battery input, and the corresponding output variations are measured and used

to estimate the unknown impedance on a given frequency band. In the rest of

this paper, the battery impedance is estimated in galvanostatic mode: the cur-20

rent i(t) flowing through the battery is considered as the input and the voltage

u(t) across the battery terminals as the output. This choice can be justified by

the fact that the current can be easily driven by very simple and cheap elec-

tronic devices (such as a transistor for example), which is a strong requirement

for embedded systems for which this work is developed. Active identification25

methods rely on two main assumptions:

• Firstly, variations of the additional current used to estimate the impedance

are chosen sufficiently small for the battery to have a linear behavior with

respect to these variations. Under this assumption, the battery can be

considered as a linear system.30
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• Secondly, parameters on which the battery characteristics depend are as-

sumed to remain constant during the measurement process. Under this

assumption, the battery can be considered as a time-invariant system dur-

ing the measurement time.

Jointly, these two assumptions allow to consider the battery as a linear and35

time-invariant (LTI) system regarding the additive input-output variations and

during the measurement time. In that case, the battery admits a well defined

frequency response function, corresponding to its electrochemical impedance

Z(f) and verifying the following frequency relationship:

Z(f) =
Sui(f)

Sii(f)
if Sii(f) 6= 0. (1)40

In this equation, Sui(f) is the cross power spectral density (CPSD) between

voltage and current variations, while Sii(f) is the power spectral density (PSD)

of current variations only [13, 14]. Eq. (1) highlights the fact that Z(f) can only

be estimated in the frequency bands where the input current variations contain

power, i.e. where their PSD is different from 0.45

The validity of the LTI assumption for the battery and equivalently the validity

of Eq. (1) can be checked by using the notion of magnitude squared spectral

coherence [15] defined as:

Cui(f) =
|Sui(f)|2

Suu(f)Sii(f)
, (2)

where Suu(f) is the PSD of voltage variations.50

This frequency domain function is a statistical quantity normalized between 0

and 1, that can be interpreted as the magnitude squared correlation coefficient

between the spectral components of the voltage and the current around a given

frequency f . It gives a normalized measurement of how linearly the spectral

components of these two signals are related to each other. It has been shown55

for example in [15] that in case of low measurement noise, the identified sys-

tem can be considered as LTI in frequency bands where the magnitude squared

coherence is close to 1, while the LTI assumption can be rejected in frequency

bands where it remains close to 0. This quantity has been used to check the
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LTI assumption for batteries in [16].60

Several methods have been developed to estimate the impedance, such as the

time domain step response. The disadvantage of this approach is related to the

measured response to an impulse or step input that often have a small amplitude

in comparison to the noise, especially when the battery impedance is low. That

is why this technique requires extra-large inputs to reach good signal to noise65

ratios and finally good estimation performance. These large inputs often induce

non-linear behavior, explaining why this approach is not used in this study.

One of the authoritative methods for battery impedance measurements is the

narrowband electrochemical impedance spectroscopy (FFT-EIS) [17][18]. In this

method, a single sine wave with low amplitude and fixed frequency is used as70

input signal. Eq. (1) is then valid at the sine frequency only, and Z(f) can be

estimated at that particular frequency only, justifying the term ”narrowband”.

If Z(f) must be estimated for several frequencies, the same measurement pro-

cess has to be sequentially done for each desired frequency. An efficient way to

avoid this sequential implementation and estimate the impedance for a discrete75

set of frequencies at one time is to use a multisine approach [14]. In that case,

the input signal consists of a sum of sines which frequencies correspond to the

desired set.

For wideband method, input signals are wideband in the sense that their PSD

is different from 0 on a continuous frequency band. In that case, Eq. (1) is valid80

all over that frequency band, where Z(f) can be estimated whatever f . Several

options are available to choose a wideband input signal for system identification,

the most popular being swept sines, random noises and pseudorandom binary

sequences (PRBS) [14].

Eq. (1) and (2) clearly show that the estimation of Z(f) relies exclusively on ba-85

sic spectral quantities such as PSD and CPSD. A simple and efficient estimator

usually used for such quantities is the Welch modified periodogram [19]. The

signals are first divided into L consecutive blocks of same length by using a time

window. The discrete Fourier transform (DFT) of each block of data is then

computed by using a fast Fourier transform algorithm. Finally, the L obtained90
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DFTs are multiplied, averaged, and normalized correctly to obtain the desired

result. As an example, Eq. (3) gives the expression of the voltage-current CPSD

estimator Ŝui(f):

P̂uik(f) = AUk(f)Ik
∗(f), (3a)

Ŝui(f) =
1

L

L−1∑
k=0

P̂uik(f), (3b)95

where A is a normalization factor, ∗ denotes complex conjugation, and Uk(f)

(Ik(f) respectively) is the DFT of the kth block of voltage (current respectively)

signal.

In Eq. (3a), P̂uik(f) is the cross-periodogram of the kth blocks of voltage and

current signals, and Eq. (3b) clearly shows that the estimated CPSD is given by100

an arithmetic averaging of the L cross-periodograms obtained from the acquired

data. Obviously, same type of estimators can be obtained for the current and

voltage PSDs Ŝii(f) and Ŝuu(f) by using exclusively Uk(f) or Ik(f) in Eq. (3).

A simple impedance estimator Ẑ(f) is obtained by using Eq. (3) in the impedance105

definition given by Eq. (1).

Ẑ(f) =
Ŝui(f)

Ŝii(f)
where Ŝii(f) 6= 0. (4)

Following the same principle, Eq. (3) used in Eq. (2) leads to the estimator of

the magnitude squared spectral coherence between battery voltage and current:

110

Ĉui(f) =
|Ŝui(f)|2

Ŝuu(f)Ŝii(f)
. (5)

Therefore, Eq. (3), (4) and (5) form together the battery identification algo-

rithm:

• Eq. (3) and (4) give access to the battery impedance estimate in the

frequency band of interest,115

• Eq. (3) and (5) can be used to check the validity of the LTI assumption

for the battery behavior, or equivalently the validity of the estimated

impedance.
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The performance of this identification strategy has been studied in numerous

general books such as [12], [14] and [15], and in more specific works such as [16]120

[20] for battery impedance estimation. It has been shown that on the one hand,

the variance of the impedance estimator is inversely proportional to the number

L of averaged periodograms in Eq (3), which is a quite intuitive result. On the

other hand, this variance is also proportional to 1−Cui(f)
Cui(f)

showing that the best

estimation performance will be reached when Cui(f) is close to 1, that is for125

true LTI systems and small measurement noises.

While single sine and multisine FFT-EIS reach very accurate estimation

performance [14], the set of frequencies at which Z(f) is estimated depends on

the chosen input signal. In other words, each time Z(f) must be estimated130

at slightly different frequencies, a new input signal must be designed and the

whole measurement process must be repeated. Moreover, the generation of sine

waves with different frequency or multisine signals requires advanced electronic

generators. These disadvantages concern both EIS based on phase sensitive de-

tector [21] and FFT-EIS. Even if the generation of input signals is much easier135

for square current EIS [22], this method only allows to estimate the impedance

for a small discrete set of frequency: the fundamental frequency of the square

wave and its odd harmonics.

Wideband methods relying on PRBS signals are more suitable for embedded sys-

tems. Indeed, such two-level signals can be generated with very simple electronic140

circuits. PRBS signals reach good estimation performance for electrochemical

impedance of batteries [16], although it leads to slightly less accurate results

than multisine signals [14]. Moreover, the same measurement data set can be

used to estimate Z(f) whatever f in the frequency band of the chosen input

signal.145

However, a joint property of these identification strategies limits their ap-

plication to embedded systems: they only lead to one estimate of Z(f) per

measurement. Consequently, each time a new estimate of Z(f) is needed, the
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whole measurement process must be repeated, strongly limiting the capacity150

to follow the time evolution of Z(f) that can be significant in case of strongly

varying operating conditions.

The method detailed in the next section is able to efficiently track the varia-

tions of Z(f) over time thanks to a recursive implementation of the wideband

approach.155

In this context, this work aims at developing a method dedicated to battery

electrochemical impedance estimation and tracking, which is sufficiently effi-

cient to precisely track the temporal variations of this quantity, and suitable to

be embedded in a vehicle or a nomad device. The proposed method and the cor-160

responding results are presented in this paper with the following organization.

Section 2 presents the proposed algorithm based on a local averaging strategy

recursively implemented in the frequency domain, and the influence of its main

parameters. This algorithm is tested on a simulator and on an experiment con-

ducted on a real battery. The section 3 describes the protocol used in each case.165

The section 4 details and discusses both the simulate and experimental results.

2. General principle

2.1. Time-varying impedance spectroscopy

The goal of this study is to obtain a time-dependent estimator of the bat-

tery electrochemical impedance. This estimator must be sufficiently accurate170

to give exact estimates of Z(f), but must also have tracking capabilities to fol-

low its eventual variations over time. One possibility is to use the wideband

principles previously detailed, and adapt them to the time-varying case. In the

wideband approach, the impedance estimation entirely relies on the Welch mod-

ified periodogram summarized in Eq. (3). More particularly, Eq. (3b) shows175

that this spectral estimator is based on a global average of the whole set of

pediodograms obtained from the acquired data. The main idea behind the pro-

posed method is to replace this global average with a local average, leading
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to time-dependent estimators for the different spectral quantities, and conse-

quently for the impedance. In the next paragraph, two recursive local averaging180

strategies are detailed and compared.

2.2. Local averaging strategies

Among all averaging strategies, the ones that can be implemented recur-

sively are particularly suitable for embedded systems. In this section, only the

two simplest ones are detailed and compared: sliding window averaging, and185

exponential averaging.

The time-varying spectral estimator obtained with a sliding window averaging

consists in the average of the N last periodograms. Following notations used in

Eq. (3), the corresponding estimator for the voltage-current CPSD around the

block of data number k is given by:190

Ŝuik(f) =
1

N

k∑
n=k−N+1

P̂uin(f), (6a)

= Ŝuik−1
(f) +

P̂uik(f)− P̂uik−N
(f)

N
, (6b)

where the number of averaged periodograms N is smallest than the total number

of periodograms L. Eq. (6b) corresponds to the recursive implementation of

this estimator, which is more suitable for embedded systems. Obviously, the195

averaging effect increases with the size of the sliding window N .

The spectral estimator obtained with an exponential averaging is given by the

following relation:

Ŝuik(f) = αŜuik−1
(f) + (1− α)P̂uik(f), (7)

where α ∈ [0, 1[ is usually called the forgetting factor. Eq. (7) clearly shows200

that when α = 0, the voltage-current CPSD estimate for block k Ŝuik(f) is

simply the cross-periodogram of the corresponding data blocks P̂uik(f). In that

case, no average is performed, leading to poor estimation performance regarding

measurement noise. On the contrary, the estimated CPSD is more and more

averaged when α increases and tends to 1.205
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As noticed for Eq. (3), similar time-varying estimates are obtained for PSDs by

replacing cross-periodograms with periodograms in Eq. (6) and (7).

Two different criteria are used to compare the previous strategies: their es-

timation performance, and their implementation complexity.210

Estimation performance can be easily studied by considering each strategy as a

digital filter. Indeed, Eq. (6b) corresponds to the recursive equation of a causal

finite impulse response (FIR) filter of order N with all weights equal to 1
N , while

Eq. (7) is the recursive equation of a causal infinite impulse response (IIR) filter

of order 1 with one pole α. Then, the following filter properties can be used to215

characterize the performance of each strategy:

• Response time at r%: this quantity is the number of samples from which

the step response of the considered filter reaches r% of it’s final value. In

the present context, it can be interpreted as the convergence time at r%

of the averaging strategy.220

• Equivalent noise bandwidth: this quantity corresponds to the variance

(i.e. the amount of residual fluctuations) at the filter output when supplied

with a white noise of variance 1. For lowpass filters as in this study, it

represents the significance of the averaging effect realized by the filter:

strong averaging effect for values close to 0, and weak averaging effect for225

values close to one.

The values of these characteristics are determined for each averaging strategy

by using the weights of the corresponding filter, and are given in Table. 1. Obvi-

ously, these characteristics exclusively depend on parameters N and α, and show

that the two strategies can reach similar estimation performance depending on230

the values of these two independent parameters. These results are consequently

not useful to determine the best strategy, but give interesting links between N

and α. For example, α can be set such that Eq. (7) has the same averaging

effect as Eq. (6). In that case, the two averaging strategies must have the same
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averaging strategy
sliding window

(FIR filter)

exponential

(IIR filter)

response time at r% N
r

100
− 1

ln
(
1− r

100

)
ln(α)

− 1

equivalent noise bandwith
1

N

1− α
1 + α

Table 1: Main characteristics of the considered averaging strategies.

equivalent noise bandwidth, leading to the following equality:235

α =
N − 1

N + 1
. (8)

The algorithm complexity can be directly deduced from the recursive equations

(6b) and (7). The implementation of these two equations leads to a similar

number of operations, but the sliding window approach clearly needs a larger

amount of memory. Indeed, in Eq. (7) only two values must be stored to update240

the spectral estimator whatever the value of α. On the contrary, the memory

depth needed for Eq. (6b) is N + 2, leading to a large amount of memory for

large N . Therefore, the exponential averaging is much more interesting for

embedded systems regarding this second criterion, which justifies the choice of

this strategy in the final estimator.245

2.3. Time-varying impedance estimator

As previously mentioned, the global structure of the proposed algorithm is

the same as for the wideband approach, and is described in Fig. 1.
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Figure 1: Structure of the time-varying estimation of the battery electrochemical impedance.

The main difference concerns the estimation of spectral quantities which are

now locally averaged around each block of data with an exponential averaging250

strategy. The final expression of the impedance estimated for the block number

k is then:

Ẑk(f) =
Ŝuik(f)

Ŝiik(f)
, (9)

where the spectral quantities Ŝuik(f) and Ŝiik(f) are updated thanks to Eq. (7).

The obtained estimator is time-varying and updated at each new block of data255

in order to correctly estimate the true value of the battery impedance, and ef-

ficiently track its eventual variations over time. On the one hand, its tracking

performance is related to the convergence time or similarly the response time

of the averaging strategy: the smaller the convergence time is, the higher the

tracking performance is. On the other hand, the estimation performance is260

directly related to the amount of residual variations after averaging, and there-

fore to the equivalent noise bandwidth of the averaging strategy: the lower the

equivalent noise bandwidth is, the higher the estimation performance is. From

expressions given in Table. 1, it is clear that the tradeoff between these two

types of performance is controlled by the parameter α:265

• When α is small and close to 0, the convergence time is small leading to
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high tracking capabilities. But in this case, the equivalent noise bandwidth

is high meaning poor averaging effect and poor estimation performance.

• On the contrary if α is high and close to 1, the convergence time is

large and the tracking capabilities decrease. However, the equivalent noise270

bandwidth is small in that case, leading to high averaging effect and good

estimation performance.

Finally, Eq. (8) gives an interesting way to set the value of α: if the user wants

the exponential averaging be equivalent to a sliding window of size N , α must

be set by using this relation.275

Following the same idea as for impedance estimation, the global estimator of

the magnitude squared spectral coherence given in Eq. (5) can be adapted to

the time-varying case by using local exponential averaging estimates of PSD

and CPSD as shown in Eq. (10).

Ĉuik(f) =
|Ŝuik(f)|2

Ŝuuk
(f)Ŝiik(f)

. (10)280

The magnitude squared spectral coherence is then locally estimated around each

block and averaged on an equivalent period of time controlled by the parameter

α and Eq. (8).

In the two next sections, this algorithm is used and evaluated on simulated and

experimental data.285

3. Experimental approach

In this part, the time varying method of impedance estimation is tested on

batteries. This study is performed on commercial lithium nickel manganese

cobalt

3.1. Battery model and simulation290

The goal of this section is to validate the previous approach thanks to a

battery simulator. This simulator models the behavior of the battery at 25 ◦C.
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To model the system behavior, an electric model with a constant phase element

(CPE) [18][25] is used. The impedance of such an element is given by:

Zcpe(w) =
1

Q(jw)p
, (11)295

where Q is a real constant, j is a complex number such that j2 = −1 and

0 ≤ p ≤ 1.

From Eq. (11), it is clear that if p = 1 the CPE behaves as a simple capacitor

whereas if p = 0 it is considered as a resistor.

300

Figure 2: Equivalent electric model of the battery.

Zthq(w) = R1 + jwL1 +
R2

1 + jwR2C1
+

R3

1 +R3Q(jw)p
(12)

Fig. 2 and Eq. (12) present the equivalent electric model of the battery. Each

element is attributed to various physicochemical phenomena in the battery and

the measurement chain [25][26][27]. Thus, L1 corresponds to the inductance of

connexions, R1 is the purely ohmic resistance of the battery and the connex-305

ions, R2 is linked to the charge transfer resistance and C1 to the double layer

capacity, R3 and Q, p model the diffusion of ions.

The value of each parameter is obtained with a Levenberg-Marquardt [23][24]

optimization algorithm applied to impedances estimated through narrowband

FFT-EISs. These impedances are measured on a real battery under a constant310

discharge current of -0.5 A from a SoC of 90 % to 40 % every 10 % change. Dur-

ing this continuous discharge, parameters L1, C1, Q, p stay constant whereas
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R1, R2, R3 change. As an example, Table. 2 presents the value of each param-

eter obtained for a SoC of 90 % and 40 %.

315

Parameter Value for the SoC 90 % Value for the SoC 40 %

L1 6.079*10−8 H

C1 1.173*10−1 F

Q 5.181 F.sp−1

p 6.02*10−1

R1 4.648*10−2 Ω 4.768*10−2 Ω

R2 3.541*10−3 Ω 4.352*10−3 Ω

R3 1.359*10−2 Ω 1.340*10−2 Ω

Table 2: Values of the model parameters obtained for a SoC of 90 % and 40 %.

Fig. 3 clearly emphasis the variation of impedance during the discharge.

It presents the Nyquist diagram of the modeled battery impedance for a SoC

of 90 % and 40 %, from 0.1 to 1000 Hz in blue, obtained from Eq. (12) and

Table. 2. The red curves correspond to the frequency band of interest (from 20

to 90 Hz) on which the time-varying method is tested in the experimental part.320

The magenta and green crosses are the real battery impedance values obtained

from FFT-EIS for the same SoC, and used to check the validity of the modeled

impedance.
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Figure 3: Nyquist diagram of the modeled and measured impedance for a SoC of 90 % and

40 %.

3.2. Simulation protocol

A variation of SoC from 90 % to 40 % is simulated by discharging the battery325

with a constant polarization current of -0.5A which corresponds to a discharge

ratio of C
4.4 . A PRBS current is continuously added to this polarization current

in order to perform impedance estimation and tracking. The amplitude of this

additive PRBS signal is set to 250 mA, which is sufficiently small for the bat-

tery to respect the linear assumption. In order to be in the same conditions as330

for the experimental results, the frequency band where the battery impedance

is estimated is limited to 20 Hz - 90 Hz. This band is chosen because of in-

strumental constraints which are detailed in the experimental protocol. This

frequency bandwidth corresponds to a PRBS block of length 0.25 s. This block

15



is then filtered thanks to a numeric low-pass filter with a cutoff frequency of335

120 Hz to avoid abrupt variations in this additive current. The filtered block is

then repeated continuously 31 680 times, i.e. during 2.2 h. The current and the

voltage of the battery are, as in the experimental test, synchronously sampled

at a sampling rate of 2 500 Hz. The simulated temperature is assumed constant

at 25 ◦C during the discharge.340

3.3. Experimental protocol

The battery is placed in an enclosure with controlled temperature of 25 ◦C.

After a complete charge (25 ◦C, constant current of C
2 until 4.2V, constant

voltage during 1h), we discharge the battery at a current of -0.5 A which corre-

sponds to a rate of discharge of C
4.4 .345

The estimates obtained by the time-varying wideband frequency algorithm is

compared to a known reference impedance called Zref (f). This reference is

measured through an impedance spectroscopy thanks to a potentiotat VMP3 of

Bio-Logic SAS with a booster 5A, associated with the EC-Lab software (signal

amplitude of 200 mA, 1 Hz to 1 kHz, logarithm spacing of 10 measures per350

decade, 3 measures per frequency). Therefore, once 10 % of SoC is discharged,

we first record a classical FFT-EIS in a galvanostatic mode at the polarization

current. For instance, Fig. 3 presents the Nyquist diagram of this NMC battery

obtained from the FFT-EIS for the SoC 90 % and 40 %.

Then we consecutively apply the same block of filtered PRBS block, which was355

described in the protocol of the simulation, centered again around -0.5 A in order

to apply global (Eq.(3b)) and exponential averaging and compare the obtained

results. This low polarization current allows to minimize the SoC variation dur-

ing the measurement time.

This filtered block is repeated consecutively 36 times, leading to a measurement360

process with a total duration of 9 s. During this process, the current and the

voltage of the battery are synchronously sampled at a rate of 2500 Hz. The

bandwidth studied begins at Fmin=20 Hz and closes at Fmax=90 Hz, due to

instrumental constraints.
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The chosen frequency band is also limited by the context of embedded appli-365

cations. This clearly limits the measurement time and consequently the lower

frequency at which the impedance can be correctly estimated. Indeed both the

range of the sampling frequency and the number of points of an acquisition are

limited. The lower Fmin is, the longer the SBPA block is. By choosing Fmax,

the bit frequency Fbit of the PRBS block is defined as Fbit = Fmax
0.4 [14] and370

the sampling frequency Fe as at least Fe = 10Fbit. To raise Fmax, the sam-

pling frequency should also be increased, yet for our experiment the sampling

frequency is limited at most to 5 kHz. Moreover the higher the sampling fre-

quency is, the larger the memory is.

The chosen frequency range is adapted to the study of the considered battery by375

an embedded measurement system. This frequency band corresponds approxi-

matively to the end of the first semicircle on the Nyquist diagram of the battery

impedance. This area is closely related to the contributions of both ohmic and

charge transfer resistance of the battery, which is an important parameter re-

lated to common state indicators such as the SoC and the SoH. Being able to380

estimate the battery impedance in this particular frequency band thus provides

an efficient way to estimate this parameter and obtain information on the bat-

tery SoC and SoH. Indeed in the chosen frequency band, the battery impedance

varies significantly with respect to the SoC, justifying the development of an

evolutionary method. This point is highlighted by Fig. A in complementary385

information.

4. Results and discussion

4.1. Simulation results

The time-varying impedance spectroscopy method developed in section 2

and summarized in Fig. 1 is applied to the simulated signals for the frequency390

band of interest (20 Hz - 90 Hz). A Hann window and a forgetting factor

α = 0.9 are chosen to estimate the necessary PSDs and CPSD with Eq. (7), the

time-varying impedance with Eq. (9) and the time-varying magnitude squared
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spectral coherence with Eq. (10). This forgetting factor value corresponds to a

local averaging over N = 19 blocks (see Eq. (8)) or equivalently a local averag-395

ing time of 4.75 s, and a response time at 80 % of 3.56 s (see Table. 1).

After this transient period, the algorithm is in steady state and the estimations

can be considered as valid. On the frequency band of interest, the magnitude

squared spectral coherence stays above 0.99 all along the simulation. This con-

firms that the battery can be considered as a LTI system during the equivalent400

averaging time, and that its electrochemical impedance can be correctly esti-

mated. Fig. 4 presents the Bode diagram of the estimated impedance obtained

with these settings for different SoC values during the whole discharge. After

each decrease of 10 % of SoC, the estimated impedance is compared to its the-

oretical value computed thanks to Eq. (12).405

Figure 4: Bode diagram of the estimated impedance during a discharge for different SoC

values (top: modulus; bottom: phase).

Fig. 4 shows that whatever the SoC value, the estimated impedance obtained
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with the proposed method is very close to its theoretical value. The relative bias

and standard deviation of the impedance modulus and phase estimation error410

averaged over the frequency band of interest are calculated for each SoC value.

During the whole discharge, these quantities stay below 1 % showing that the

proposed method reaches good estimation and tracking performance. More-

over, a movie is available in supplementary information to further illustrate the

tracking performance of the algorithm, and shows the real-time evolution of the415

estimated impedance during the whole discharge.

Finally, these simulation results show the good performance of the proposed

method able to efficiently estimate and follow in real-time the temporal varia-

tions of a battery electrochemical impedance. In the next section, the proposed

method is validated experimentally on a commercial battery.420

4.2. Experimental results

During the whole measurement process, the SoC evolution is lower than

1% leading to the assumption that the battery can be considered as linear and

time-invariant. This important assumption can be confirmed thanks to the mag-

nitude squared spectral coherence defined by Eq. (10), where CPSD and PSD425

are estimated with α = 0.9 and an Hann window. Each time it stays higher

than 0.99 in the frequency band of interest like in the simulation results. This

high value confirms that during one estimation process, the battery behaves as

a LTI system and its electrochemical impedance can be theoretically defined by

Eq. (1) and estimated with Eq. (9).430

Fig. 5 shows the Nyquist plot results obtained, like the simulation results, with

a Hann window and a forgetting factor α = 0.9 (corresponding to N=19 blocks

following Eq. (8)) which induces a response time at 80 % of 3.56 s. We chose this

value of α to converge before 9 s and to provide several impedance estimations435

after the convergence time. We can notice on the Nyquist plots that the global

averaging estimation is very close to the estimation obtained through the FFT-

EIS. However the exponential averaging method seems less accurate. This can

19



be explained by the time window over which each estimator is averaged. The

global averaging estimation is averaged over the whole data set (N = 36 blocks)440

leading to good estimation performance. On the contrary, the exponential av-

eraging estimation is averaged over a smaller local window (α = 0.9, N = 19

blocks) whose size is set by using the forgetting factor α (the closer to 1 α is,

the longer the time window is).

445

Figure 5: Estimated impedances between 20 Hz to 90 Hz by using the three methods (top:

Nyquist diagram for exponential averaging α = 0.9 (red), global averaging (green), and the

EIS method (blue), bottom: error curves (time evolution of the root-mean-square error)).

The error curves shown in Fig. 5 represent the time evolution of the esti-

mation performance indicator defined in the exponential (red curve) and global

(green curve) cases. This indicator corresponds to the normalized root-mean-

square error (RMSE Eq.(13)) between a known reference value of the impedance450

Zref (f) and the kth estimated value of this impedance Zk(f) described in

Eq.(13). As expected, the error for the global averaging algorithm is always

lower than the one obtained in the exponential averaging case. Moreover two
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steps are clearly visible on the red error curve: a first decaying part correspond-

ing to the convergence time at 80 % of the algorithm (duration = 3.56 s for455

α = 0.9), and a second part after convergence where the estimate fluctuates

around the correct impedance. We can see the same two steps on the film of the

discharge on the simulator, after the convergence time, the estimation is really

more accurate.

RMSEk = 100

√√√√∑f∈B |Zref (f)− Ẑk(f)|2∑
f∈B |Zref (f)|2

(13)460

Figure 6: Difference between the initial estimation and the first estimation after the conver-

gence for the exponential case (left: 1st estimation at time t=0.25 s, right: estimation after

the convergence at time t=3.56 s, top: module, bottom: phase).

Fig. 6 underlines the difference of estimation accuracy between the first and

after convergence temporal estimates of the battery impedance (both module

and phase are represented). Once the convergent step of the exponential aver-

aging algorithm is finished, the estimation performance becomes clearly more

accurate, explaining the large decrease in the error curve of Fig. 5. The pa-465

rameter which controls the length of the convergence time and the quantity of
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fluctuations around the final error is the forgetting factor α. Fig. 7 highlights

the influence of this parameter on the estimated impedance (Nyquist diagrams)

and on the learning curve of the algorithm. For a forgetting factor close to

1 (α = 0.9, N = 19 blocks, red curves), a large convergence time is obtained470

(around 3.56 s) with small final estimation error and fluctuations. For a smaller

forgetting factor (α = 0.5, N = 3 blocks according to Eq. (8), black curves), the

convergence time is much shorter (around 0.33 s) but the final estimation error

and fluctuations are increased.

475

Figure 7: Influence of the forgetting factor (top: Nyquist diagram for α = 0.9 (red), α = 0.5

(black), and the EIS method (blue), bottom: error curves for α = 0.5 (black), α = 0.9 (red),

and the sliding window algorithm (green)).

These results emphasis the existence of a trade-off between the obtained con-

vergence time (related to the tracking capabilities of the algorithm) and the final

estimation error (related to the estimation performance of the algorithm). This

trade-off can be managed through the value of the forgetting factor α. Indeed,

a small forgetting factor leads to an algorithm able to follow strong variations of480

the estimated impedance over time, but with a large estimation error. On the
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contrary, a forgetting factor close to 1 leads to an algorithm able to precisely

estimate the battery impedance, but unable to follow large time variations.

To check the repeatability of the time-varying method, the experiment was485

repeated during 5 charges discharges cycles. The repeatability of the exponen-

tial method was evaluated and compared to the FFT-EIS performances.

In a first part, the aim is to quantify the repeatability of the FFT-EIS. For

each SoC, 5 FFT-EISs estimations are averaged according to Eq. (14) and the

standard deviation defined by Eq. (15) is calculated. Fig. 8 presents on a Bode490

diagram the averaged module and phase for several SoC.

Zeis
m (f, SoC) =

1

5

idech=5∑
idech=1

Zeis
idech

(f, SoC). (14)

Zeis
std(f, SoC) =

√√√√1

4

idech=5∑
idech=1

|Zeis
idech

(f, SoC)− Zeis
m (f, SoC)|2. (15)

where Zeis
idech

(f, SoC) is the impedance estimator for one SoC; Zeis
m (f, SoC) cor-495

responds to averaged impedance and Zeis
std(f, SoC) its standard deviation. On

the module part (on Fig. 8), it is very easy to distinguish each SoC, whereas it

is more difficult on phase because of the inflection point around 25 Hz.
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Figure 8: Bode diagram of the average on 5 discharges of impedance at 6 SoC (top: Module;

bottom: Phase).

The relative standard deviation average on the frequency bandwidth of the

module is lower than the one of the phase, however in both cases these quantities500

are under 1.2 %, which show the good repeatability of this method. After having

quantify the repeatability of the FFT-EIS, the tracking method is tested in a

second part.

For each SoC, once convergence time is past, 5 estimations obtained with the

exponential method are averaged by Eq. (16) and the standard deviation is505

calculated by Eq. (17).

Zm(f, SoC) =
1

5

idech=5∑
idech=1

Z̄idech(f, SoC). (16)

Zstd(f, SoC) =

√√√√1

4

idech=5∑
idech=1

|Z̄idech(f, SoC)− Zm(f, SoC)|2. (17)

where Z̄idech(f, SoC) is the temporal average of impedance estimator for all the510

estimations after the convergence time for one SoC; Zm(f, SoC) corresponds to

averaged impedance on 5 cycles and Zstd(f, SoC) its standard deviation.
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The results are presented on Bode diagram in Fig. 8 for several SoC. If on

the module part it is again easy to follow the impedance evolution during the

discharge, the phase presents more variations at some frequencies. Again an515

inflection point can be seen but with more difficulty than one in the FFT-EIS

case because of the noise on the estimates.

The phase and module relative bias averages on the frequency bandwidth be-

tween the estimation by the proposed method and the FFT-EIS are calculated.520

For each SoC the relative bias of the module (phase respectively) is under 1 %

(respectively 2 %). The relative standard deviation average on the frequency

bandwidth is under 0.1 % for the module and 1.1 % for the phase. These rel-

ative standard deviations are of the same order of magnitude than FFT-EIS.

The battery impedance was not estimated for extreme SoC values of 100 %525

and below 10 %. For a SoC of 100 %, the main reason is that measurement

processes were carried on only during battery discharges. Under these condi-

tions, the estimation of the battery impedance with a SoC of 100 % presents no

practical interest and was not considered in the paper. For SoC values below

10 %, technical difficulties are encountered to estimate the battery impedance.530

Indeed, the results obtained with the proposed method are compared to those

obtained with FFT-EIS method. Unfortunately, no security system prevents

the battery from deterioration at the end of the discharge during FFT-EIS. The

impedance estimation for SoC 40 % to 10 % is supplied as supplementary in-

formation (Fig. B).535

On this study over 5 discharges of the lithium-ion battery, the exponential

method presents for each SoC low relative standard deviations and bias. The

exponential method can so be considered as repeatable as the FTT-EIS method.
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5. Conclusion540

More and more applications use batteries. The development of BMS is

needed to optimize their efficiency and dependability. With this in mind, esti-

mate in real time the electrochemical impedance temporal evolution is a valuable

tool. The method presented in this paper provides one solution to this open

problem.545

This method not only allows an accurate estimation of the battery impedance,

but also a tracking of its temporal evolution. In other words, the developed

method presents the major advantage to be evolutionary and to follow the tem-

poral evolution of the impedance compared to classical estimation methods like

FFT-EIS. It mainly relies on a simple exponential averaging strategy, and al-550

lows to manage the trade-off between its tracking and estimation performance

through a single normalized parameter: the forgetting factor.

The chosen exponential averaging strategy can be recursively implemented with

a low memory depth. Moreover, the use of a wideband signal such as PRBS

can be generated with very simple electronics circuits. These two particularities555

clearly show that the proposed method is particularly relevant for embedded

applications.

The proposed estimator was tested on both a simulated and real lithium ion

battery, because this technology is widely used for electric or hybrid transports

or connected objects. However, this method is not limited to lithium ion bat-560

teries and could also be applied to any other electrochemical systems such as

primary battery, secondary battery (including aqueous technology or other) or

fuel cells .

On the simulator, the exponential averaging method allows to track in real

time the temporal variations of electrochemical impedance. The obtained re-565

sults demonstrate the capabilities of the method to precisely track the battery

impedance evolution over more than 50 % of SoC discharge.

On the real battery we checked the influence of the forgetting factor on the per-

formance of estimation. A trade-off between the tracking and estimation per-
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formance was determined. Then a repeatability study was carried out, showing570

that the proposed method finally appears as repeatable as the FFT-EIS method.

The proposed method provides not only an accurate and repeatable estimation

of the impedance but also a tracking of its fluctuations over time. In further

work, this algorithm will be embedded, applied on a test bench, and the devel-

oped method will be tested on batteries of different chemistries.575
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