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DEGENERATION OF ENDOMORPHISMS OF THE COMPLEX

PROJECTIVE SPACE IN THE HYBRID SPACE

CHARLES FAVRE

Abstract. Consider a meromorphic familly of endomorphims of degree at least 2 of
a complex projective space that is parameterized by the unit disk. We prove that the
measure of maximal entropy of these endomorphisms converges to the equilibrium mea-
sure of the associated non-Archimedean dynamical system when the system degenerates.
The convergence holds in the hybrid space constructed by Boucksom and Jonsson. We
also infer from our analysis an estimate for the blow-up of the Lyapunov exponent near
a pole in one-dimensional families of endomorphisms.
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2 CHARLES FAVRE

Introduction

This paper is the first of a series in which we analyze degenerations of complex dy-
namical systems. Inspired by the recent work of S. Boucksom and M. Jonsson [BJ16] we
aim here at describing the limit of the equilibrium measures of a meromorphic family of
endomorphisms of the projective space.

More specifically we consider a holomorphic family {Rt}t∈D∗ of endomorphims of the
complex projective space PkC of degree d ≥ 2 parameterized by the punctured unit disk,
and assume it extends to a meromorphic family over D. For any t 6= 0 small enough, one
can attach to Rt its unique measure of maximal entropy µt which is obtained as the limit
1
dkn

(Rnt )
∗ω∧k

FS as n→ ∞, where ωFS is the usual Fubini-Study Kähler form on PkC.
The family {Rt} also induces an endomorphism R of degree d on the Berkovich ana-

lytification of the projective space Pk
C((t)),r defined over the valued field of formal Laurent

series endowed with the t-adic norm normalized by |t|r = r ∈ (0, 1). In a similar way
as in the complex case, Chambert-Loir [CL06] proved that the sequence of probability
measures 1

dkn
(Rn)∗δxg converges to a measure µR where xg is the Gauß point in Pk

C((t)),r.

The entropy properties of µR are much more delicate to control in this case, and µR is no
longer the measure of maximal entropy in general, see [FRL10].

We shall show that µt converges towards µR as t → 0. This convergence statement is
parallel to the results of L. DeMarco and X. Faber [DMF14] that imply the convergence
of µt to the residual measure1 of µR in the analytic space PkC × D when k = 1. Our main
result is somehow less precise than the one by DeMarco and Faber, and we postpone to a
subsequent article the proof of a generalization of their theorem.

To make sense out of our convergence statement we face the difficulty that our measures
live in spaces of very different natures: complex analytic for µt and analytic over a non-
Archimedean field for µR. Constructing spaces mixing complex analytic spaces and non-
Archimedean analytic spaces have appeared though in the literature several times, most
notably in the work of Morgan-Shalen in the 80’s on character varieties, see e.g. [MS85];
and in a paper by Berkovich [Be09]. Such spaces are also implicit in the works of DeMarco
and McMullen [DMM08] and Kiwi [Ki06].

We use here a construction by Boucksom and Jonsson [BJ16] of a hybrid analytic space
that projects onto the unit disk D such that the preimage of D∗ is naturally isomorphic to
PkC×D∗ whereas the fiber over 0 is homeomorphic to the non-Archimedean analytic space

Pk
C((t)),r .

The construction of this hybrid space can be done as follows. Let Ar be the Banach space
of complex power series f =

∑
n∈Z anT

n such that |f |hyb,r :=
∑

n∈Z |an|hybr
n < +∞ where

|c|hyb = max{1, |c|} for any c ∈ C∗. It was proved by Poineau [Po10] that the Berkovich
spectrum of Ar is naturally isomorphic to the circle {|T | = r} inside the affine line over
the Banach ring (C, | · |hyb), see also §1.2 below. For that reason, we denote by Chyb(r)
this spectrum.

Now one considers the projective space Pk over this spectrum. To ease notation we shall
write Pkhyb,r instead of PkChyb(r), and denote by π : Pkhyb,r → Chyb(r) the natural structure

map. Recall the following statement due to Boucksom and Jonsson.

1this is a purely atomic measure as soon as Rt diverges in the parameter space of rational maps of
degree d
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Theorem A. [BJ16, Appendix A] There are three natural homeomorphisms

τ : D̄r → Chyb(r) , ψNA : PkC((t)),r → π−1(τ(0)) , and ψ : PkC × D̄∗
r → π−1(τ(D̄∗

r))

such that τ−1 ◦ π ◦ ψ is the projection onto the second factor.

The construction of the hybrid is canonical enough so that any meromorphic family of
endomorphisms {Rt}t∈D∗ as above induces a continuous map on Pkhyb,r whose action on

τ−1(0) is conjugated to R by ψNA. One can now state our main result.

Theorem B. Fix r ∈ (0, 1). Let {Rt}t∈D be any meromorphic family of endomorphisms

of degree d ≥ 2 of PkC that is parameterized by the unit disk, and let R be the endomorphism

induced by this family on the Berkovich space Pk
C((t)),r. For any t 6= 0, denote by µt the

measure of maximal entropy of Rt, and let µR be the Chambert-Loir measure associated to

R.

Then one has the weak convergence of measures

lim
t→0

ψ(·, t)∗µt → (ψNA)∗µR

in Pkhyb,r.

The above convergence is equivalent to the convergence of integrals

(1)

∫
Φ d(ψ(·, t)∗µt) −→

∫
Φ d((ψNA)∗µNA) as t→ 0 ,

for any continuous function Φ on the hybrid space. The bulk of our proof is to prove this
convergence for only special functions that we call model functions and which are defined
as follows. Let L be the pull-back of OPk

C

(1) on the product space PkC × D by the first

projection, and let us fix a reference metrization | · |⋆ on L that we assume to be smooth
and positive. A (regular) admissible datum F is the choice of a finite set τ1, · · · , τl of
meromorphic sections of a fixed power of L that are holomorphic over PkC × D∗ and have
no common zeroes (see §2.1 for a precise definition). Any regular admissible datum gives
naturally rise to a continuous function Φ on the hybrid space whose restriction to PkC×D∗

is equal to logmax{|τ1|⋆, · · · , |τl|⋆} (see Theorem 2.10). A model function is any function
obtained in this way.

The key observation is that the set of model functions associated to regular admissible
data forms a dense set in the space of continuous functions, see Theorem 2.12. For a
model function the convergence (1) follows from direct estimates and basic facts about
the definition of the complex Monge-Ampère operator as defined originally by E. Bedford
and A. Taylor in [BT76]. Using refined Chern-Levine-Nirenberg estimates due to Demailly
(see also [FS95]), we prove that our estimates imply the convergence (1) for more general
functions than model functions. As an illustration of these ideas we analyze the behaviour
of the Lyapunov exponents of Rt as t→ 0.

Recall that the sum of all Lyapunov exponents of the complex endomorphism Rt with
respect to the measure µt is defined by the integral

Lyap(Rt) =

∫
log ‖det(dRt)‖ dµt

where ‖det(dRt)‖(x) is the norm of the determinant of the differential of Rt at a point
x computed in terms of e.g. the standard Fubini-Study Kähler metric2 on PkC. Observe

2Since µt is invariant this quantity does not depend on the choice of the metric.
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that the integral defining the Lyapunov exponent actually converges, since µt is locally
the Monge-Ampère measure of a continuous plurisubharmonic (psh) function. Briend
and Duval have been able to bound from below each individual Lyapunov exponent of
µt by

1
2 log d so that Lyap(Rt) ≥

k
2 log d, see [BD99]. It is also known that the function

t 7→ Lyap(ft) is Hölder continuous and subharmonic on D∗, see e.g. [BB, Corollary 3.4].
In a non-Archimedean context one can define the quantity ‖det(dR)‖ using the projec-

tive/spherical metric on the projective space. Using the theory developed in [BFJ15] one
can argue just as in the complex case that the integral Lyap(R) :=

∫
log ‖det(dR)‖ dµR is

finite3.
To the author’s knowledge, the Lyapunov exponent has been considered only in a

few papers over a non-Archimedean field and just in dimension k = 1. In this case,
Okuyama [Ok15] has proved that the Lyapunov exponent can be computed as the limit of
the average of the multiplier of periodic orbits of increasing periods. Jacobs [J16] has given
some estimates of Lyap(R) in terms of the Lipschitz constant of R w.r.t. the spherical met-
ric. Finally, the author and Rivera-Letelier [FRL16] have recently given a characterization
of those rational maps of P1

K having zero Lyapunov exponent, under the assumption that
K is a complete metrized field of residual characteristic zero. This applies in particular to
the case K = C((t)) endowed with the t-adic norm.

Theorem C. Under the same assumptions as in the previous theorem, we have

(2) Lyap(Rt) =
Lyap(R)

log r
log |t|−1 + o(log |t|−1) .

In particular we have Lyap(R) ≥ 0.

In dimension 1, the theorem is a consequence from works by DeMarco. More precisely,
it follows from a combination of [DeM03, Theorem 1.4] and [DeM16, Proposition 3.1]. Let
us mention the following

Conjecture 1. The function Lyap(Rt) −
Lyap(R)
log r log |t|−1 extends continuously at t = 0,

and
Lyap(R)
log r is a non-negative rational number.

A proof of this fact has been given by Ghioca and Ye when k = 1 and Rt is a family of
cubic polynomials, see [GY16]. But even in dimension 1 this conjecture is widely open for
an arbitrary family of rational maps.

Theorems B and C are consequences of results that we present in a higher degree of
generality, replacing the product space PkC × D∗ by any holomorphic family of projective
varieties X → D∗; and our dynamical setup by a more geometric one working with various
metrics on a fixed relatively ample line bundle L → X. Our setup is described in details
in §1.1, and our main results are then Theorems 1.2, 3.5 and 4.2.

We have not tried to prove our results in maximal generality: it is very likely that
they extend to degenerations of compact Kähler manifolds for instance (in which case the
hybrid space has to be replaced by the construction given in [BJ16, §4]). We have collected
a series of questions in §5 that we feel are of some interest for further researchs.

Notation. | · |0 is the trivial norm (on any field); | · |∞ is the standard euclidean norm
on the field of complex numbers; and | · |hyb = max{| · |∞, | · |0} is the hybrid norm of
Berkovich.

3observe that this quantity depends on the choice of norm on C((t)) hence on our given r ∈ (0, 1).
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For any r ∈ (0, 1), we set Dr = {z ∈ C, |z| < r}, D∗
r = D \ {0}, D̄r = {z ∈ C, |z| ≤ r},

and D̄∗
r = D̄r \ {0}. We let | · |r be the t-adic norm on C((t)) normalized by |t|r = r. We

write O(D) for the ring of holomorphic functions on D.

Acknowledgements. I would like to extend my thanks to B. Conrad for interesting ex-
changes on relative ampleness in analytic geometry; and to S. Boucksom and M. Jonsson
for all the discussions we had during our long-term collaboration on developping pluripo-
tential tools in non-Archimedean geometry, and for their comments on a first version of
this paper.
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1. Degeneration of complex projective manifolds

In this section, we explain the construction of the hybrid space mentioned in the in-
troduction following Boucksom and Jonsson. We shall work in a more general setting
than strictly necessary to prove Theorems A and B so as to allow more flexibility in our
arguments.

1.1. The general setup. We consider a proper submersion π : X → D∗ having connected
fibers where X is a smooth connected complex manifold of dimension k+1. We fix an snc

model X of X that is a smooth connected complex manifold endowed with a proper map4

πX : X → D, together with an isomorphism π−1
X (D∗) ≃ X sending πX to π such that the

central fiber X0 := π−1
X (0) is a divisor with simple normal crossing singularities. We get a

natural embedding ı : X → X .
We suppose given a line bundle L → X that is relatively very ample over D. This means

that the restriction of L to the fiber Xt = π−1
X (t) is ample for any t ∈ D. One can show

that up to restricting the family to a smaller disk this is equivalent to the existence of an
embedding of X into PNC ×D compatible with πX such that L is the restriction to X of the
pull-back of OPN

C

(1) by the first projection (see [Nak87, §1.4], or [Co06, Theorem 3.2.7]).

It follows also from [Nak04, Lemma 1.11] that one may find a finite set of homogeneous
polynomials Q1, · · · , QM ∈ O(D)[z0, · · · , zN ] in N + 1 variables whose coefficients are
holomorphic functions over D and such that X = {([z], t), Q1(t, z) = · · · = QM (t, z) = 0}.

We shall denote by t the holomorphic function π on X (with values in the unit disk).
For any 0 < r < 1 we write Xr = π−1(Dr), Xr = Xr ∩X, and X̄r = π−1(D̄r).

1.2. The hybrid circle. Fix r ∈ (0, 1). Recall from the introduction that one defines the
ring

Ar :=

{
f =

∑

n∈Z

ant
n, ‖f‖hyb,r :=

∑

n∈Z

|an|hybr
n < +∞

}
.

With the norm ‖ · ‖hyb,r it is a Banach ring, and we let Chyb(r) be its Berkovich spectrum,
i.e. the set of all multiplicative semi-norms on Ar that are bounded by ‖ · ‖hyb,r endowed
with the topology of the pointwise convergence.

Observe that for any f ∈ Ar the set of negative integers n for which an 6= 0 is finite.
It follows that any map f ∈ Ar induces a continuous map on D̄∗

r that is holomorphic on
Dr, and meromorphic at 0. One can thus define a canonical map τ from the closed disk
of radius r to Chyb(r) by the formulas:

(3)




|f(τ(0))| = rord0(f);

|f(τ(z))| = |f(z)|
log r

log |z|∞
∞ if 0 < |z| ≤ r.

for any f ∈ Ar.
This map is injective since |(t− w)(τ(z))| = 0 iff z = w 6= 0. It is also continuous since

one can write f(t) = tord0(f)(a+ o(1)) with a ∈ C∗, and

log |f(τ(z))| = log r
log |f(z)|∞
log |z|∞

= log r
ord0(f) log |z|∞ + log |a+ o(1)|

log |z|∞
−→ log(rord0(f)) ,

when z → 0.

Proposition 1.1 ([Po10]). The map τ : D̄r → Chyb(r) is a homeomorphism.

4since X and D are smooth and the latter is a curve, the map πX is automatically flat.
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Proof. Since Chyb(r) is the analytic spectrum of a Banach ring it is compact. It is therefore
sufficient to prove that τ is surjective. Pick any multiplicative semi-norm f 7→ |f | on Ar
bounded by ‖ · ‖hyb,r. Observe that |t|n = |tn| ≤ rn for all n ∈ Z which implies |t| = r.

Suppose first that the restriction of | · | to C is the trivial norm. Then | · | is non-
Archimedean since

|f + g| = |(f + g)n|1/n =

∣∣∣∣∣
n∑

i=0

(
i

n

)
f ign−i

∣∣∣∣∣

1/n

≤

(
n∑

i=0

|f |i|g|n−i

)1/n

≤

(n+ 1)1/n max{|f |, |g|} ,

and letting n→ ∞. Pick f = tord0(f)(a+
∑

n≥1 ant
n) ∈ Ar with a 6= 0. Then we have

|f | = rord0(f)

∣∣∣∣∣∣
a+

∑

n≥1

ant
n

∣∣∣∣∣∣
.

Since
∑

n≥0 |an|hybr
n < +∞, we get limN→∞

∑
n≥N |an|hybr

n = 0, so that
∣∣∣∣∣∣
∑

n≥1

ant
n

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

n≥1

ant
n

∣∣∣∣∣∣
hyb

≤ max



|t|,

∣∣∣∣∣∣
∑

n≥N

ant
n

∣∣∣∣∣∣
hyb



 < 1

because | · | is non-Archimedean. Since |a| = 1, it follows that |f | = rord0(f).

Suppose now the restriction of | · | to C is non-trivial. Then there exists a positive real
number ǫ ≤ 1 such that |2| = |2|ǫ∞, and this implies |c| = |c|ǫ∞ for any c ∈ C. Look at the
restriction of | · | to the sub-algebra C[t] of Ar. By Gelfand-Mazur theorem, this restriction
has a non-trivial kernel hence |P (t)| = |P (z)|ǫ∞ for some z ∈ C and any P ∈ C[t]. Since

|t| = r, we have |z|∞ = r1/ǫ. Now pick any f ∈ Ar, and expand it into power series

f(t) = tord0(f)(a+
∑

n≥1 ant
n). As above we have
∣∣∣∣∣∣
∑

n≥N

ant
n

∣∣∣∣∣∣
≤
∑

n≥N

|an|hybr
n N→∞
−→ 0 ,

and we get |f | = limN→∞

∣∣∣tord0(f)(a+
∑

n≤N ant
n)
∣∣∣ = |f(z)|ǫ∞. �

1.3. The hybrid space. Any holomorphic function f on the punctured unit disk that
is meromorphic at 0 can be expanded as a series

∑
n≥n0

ant
n for some n0 ∈ Z with∑

n≥n0
|an|ρ

n < ∞ for all ρ < 1, hence belongs to Ar. Since X is defined by an homo-
geneous ideal of polynomials with coefficients in the space of holomorphic functions over
D, one can make a base change and look at the projective Ar-scheme XAr induced by X.
In the sequel, we fix a finite union of affine charts Ui = SpecBi with Bi an Ar-algebra
of finite type for XAr . If an embedding X into PNC × D is fixed, then one may choose an
index i ∈ {0, · · · , N} and look at

Ui = X ∩
{
([z], t) ∈ PNC × D, zi 6= 0

}

so that

Bi = Ar[w1, · · · , wN ]/〈Qj(t, w1, · · · , wi−1, 1, wi+1, · · · , wN )〉j=1,··· ,M .

One defines the hybrid space Xhyb,r as the analytification (in the sense of Berkovich) of
the projective scheme XAr . As a topological space it is obtained as follows. Set (Ui)hyb,r to
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be the space of those multiplicative semi-norms on Bi whose restriction to Ar is bounded
by ‖ · ‖hyb,r, and endow this space with the topology of the pointwise convergence. Define
Xhyb,r as the union of (Ui)hyb,r patched together in a natural way using the patching maps
defining XAr .

It is a compact space (any embedding of X into PNAr
realizes Xhyb,r as a closed subset

of PNhyb,r, and it is easy to check that the latter space is compact). We get a continuous

structure map πhyb : Xhyb,r → Chyb(r) sending a semi-norm on Bi to its restriction to Ar.

Observe that Ar is a subring of the field of formal Laurent series C((t)). Endowed with
the t-adic norm | · |r such that |t|r = r, the field C((t)) becomes complete with valuation
ring C[[t]]. We may thus consider the projective variety XC((t)) obtained by base change
Ar → C((t)), and the Berkovich analytification XC((t)),r of XC((t)) with respect to | · |r.

The latter space can be defined just like the hybrid space above using affine charts, or
more intrinsically as follows (see e.g. [Nic16, §2.1]). A point in XC((t)),r is a pair (x, | · |)
where x is a scheme-theoretic point in XC((t)) with residue field κ(x) and | · | : κ(x) → R+

is a norm whose restriction to C((t)) is | · |r.
The topology on XC((t)),r is the coarsest one such that the canonical map s : XC((t)),r →

XC((t)) sending (x, | · |) to x is continuous; and for any affine open set U ⊂ XC((t)), the

map f 7→ |f(x)| is continuous on s−1(U).
Since XC((t)) is projective and connected, it follows from [Ber90, §3] that XC((t)),r is

a compact locally connected and connected space. Note that it is however not a second
countable space but is sequentially compact by [Po12].

The next result summarizes the main properties of the map πhyb. Together with Propo-
sition 1.1 it also completes the proof of Theorem A from the introduction.

Theorem 1.2.

(1) The natural map πhyb : Xhyb,r → Chyb(r) is continuous and proper;

(2) there exists a natural homeomorphism ψNA : XC((t)),r → π−1
hyb(τ(0));

(3) there exists a natural homeomorphism ψ : π−1(D̄∗
r) → π−1

hyb(τ(D̄
∗
r)) such that πhyb ◦

ψ = τ ◦ π.

In other words the hybrid space gives a way to see the complex manifold Xt = π−1(t)
degenerating to the non-Archimedean analytic variety XC((t)),r .

Proof. For the purpose of the proof, we fix a finite open cover by affine open setsXAr = ∪Ui
with Ui = SpecBi where Bi are Ar-algebras of finite type. Recall the definition of (Ui)hyb,r
which is a natural subset of Xhyb,r, and let (Ui)C((t)),r be the analogous open subset of
XC((t)),r associated to Ui.

The continuity of πhyb follows from the definition and the first statement is clear since
Xhyb,r is compact.

For the proof of (2), consider a point x ∈ π−1
hyb(τ(0)). By definition this is a multiplicative

semi-norm on some Bi whose restriction to Ar is equal to the t-adic norm | · |r. It follows
that x naturally induces a semi-norm on the complete tensor product Bi⊗̂C((t)) (with
C((t)) endowed with the norm | · |r). This semi-norm is still multiplicative since the
inclusion Ar → C((t)) is dense. We get a continuous map from (Ui)hyb,r ∩ π−1

hyb(τ(0))

to (Ui)C((t)),r , This map is clearly continuous, and its inverse is given by restricting a

semi-norm on Bi⊗̂C((t)) to Bi. These maps respect the patching defining Xhyb,r and

induces a homeomorphism between π−1
hyb(τ(0)) and XC((t)),r whose inverse is the map ψNA

by definition.
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To construct the map ψ in (3), recall that we realized X as the locus {([z], t) ∈ PNC ×
D, Qj(t, z) = 0, j = 1, · · · ,M}, so that we may suppose

(4) Ui = X ∩
{
([z], t) ∈ PNC × D, zi 6= 0

}

and Bi = Ar[w1, · · · , wN ]/〈Qj(t, w1, · · · , wi−1, 1, wi+1, · · · , wN )〉j=1,··· ,M .

Pick any point ([z], t0) ∈ PNC × D̄∗
r such that Qj(t0, z) = 0 for all j = 1, · · · ,M . Suppose

that zi 6= 0, i.e. ([z], t0) ∈ Ui. We may then consider the multiplicative semi-norm

f ∈ Bi 7→

∣∣∣∣f
(
t0,

z1
zi
, · · · ,

zi−1

zi
,
zi+1

zi
, · · · ,

zM
zi

)∣∣∣∣
log r

log |t0|∞

∞

,

which defines a point ψ([z], t0) ∈ (Ui)hyb,r. This map defines a natural continuous injective

map from π−1(D̄∗
r) to π

−1
hyb(τ(D̄

∗
r)) such that πhyb ◦ ψ = τ ◦ π.

Conversely pick any point x ∈ π−1
hyb(τ(D̄

∗
r)). It is a multiplicative semi-norm on some

Bi whose restriction to Ar is equal to τ(t0) for some t0 ∈ D̄∗
r (hence to |c|

log r
log |t0|∞
∞ for

c ∈ C). The semi-norm x induces a multiplicative norm on the quotient of Bi by the kernel
P = {f ∈ Bi, |f(x)| = 0}. This quotient is isomorphic to C by Gelfand-Mazur theorem.
In particular, we infer the existence of a point ([z], t0) ∈ X such that |f(x)| = |f(ψ([z], t0)|
for all f ∈ Bi.

This proves ψ is surjective and concludes the proof. �

Observe that any semi-norm on Chyb(r) induces a norm on C bounded by | · |hyb which
is therefore equal to | · |ǫ∞ for some ǫ ∈ [0, 1]. We shall denote by n : Xhyb → [0, 1] the
composition of this map with πhyb. It is a continuous surjective and proper map. When
x ∈ X and π(x) = t ∈ D, then it follows from (3) that

n(ψ(x)) =
log r

log |t|−1
.

2. Model functions

We use the same setup as in the previous section. Our aim is to construct natural
continuous functions (called model functions) on the hybrid space Xhyb,r, and on the
Berkovich analytic space XC((t)),r that are of algebraic origin and form a dense subspace
of the space of all continuous functions. These functions will play a key role in the next
section to analyze degeneration of measures in the hybrid space.

2.1. Admissible data. Let X and X ′ be two snc models of X. One shall say that X ′

dominates X if there is a proper bimeromorphic morphism p : X ′ → X compatible with
the natural inclusion maps ı : X → X and ı′ : X → X ′, i.e. satisfying ı = p ◦ ı′.

We say an analytic subvariety Z of an snc model X is horizontal when Z equals the
closure of Z ∩X in X . It is vertical when it is included in the central fiber X0.

Definition 2.1. A singular admissible datum F = {X ′, d,D, σ0, · · · , σl} is a collection of

elements of the following form:

• an snc model p : X ′ → X of X dominating X ;

• a positive integer d ∈ N∗;

• a vertical divisor D;

• a finite set of holomorphic sections σ0, · · · , σl of the line bundle p∗(L⊗d)⊗OX ′(D)
defined in a neighborhood of p−1(X̄r) whose common zero locus does not contain

any irreducible component of X ′
0.
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When the set of sections has no common zeroes then we say that F is regular.

For convenience, we shall call the integer d the degree of the admissible datum, and
refer to D as the vertical divisor associated to F .

There is an equivalent way of thinking about admissible data that we now explain.
Recall that a (coherent) fractional ideal sheaf A in X is a (coherent) OX -module such that
locally f · A ⊂ OX for some f ∈ OX . We shall say that a fractional ideal sheaf is vertical
when its co-support is vertical. A log-resolution of a vertical fractional ideal A is an scn
model p : X ′ → X such that A · OX ′ is isomorphic to OX ′(D) for some vertical divisor D.
Any snc model X ′ is dominated by some log-resolution of A by the theorem of Hironaka
on the resolution of complex analytic spaces.

We denote by div(σ) the divisor of poles and zeroes of a meromorphic section σ of L⊗d.
Given any finite set of meromorphic sections σi of L

⊗d, we also let 〈σi〉 be the fractional
ideal sheaf locally generated by the meromorphic functions given by σi in a trivialization
chart of L⊗d.

Proposition 2.2. An admissible datum is completely determined by:

(1) a positive integer d ∈ N∗;

(2) a fractional ideal sheaf A in X such that tNA ⊂ OX for some integer N ;

(3) a finite set of meromorphic sections τ0, · · · , τl of L
⊗d defined in a neighborhood of

p−1(X̄r) such that 〈τ0, · · · , τl〉 = A;

(4) an snc model p : X ′ → X of X dominating X .

A datum is regular iff its associated fractional ideal sheaf is vertical, and p : X ′ → X is a

log-resolution of A.

Proof. Take any admissible datum F = {X ′, d,D, σ0, · · · , σl}, and let σ−D be the canonical
meromorphic section of OX ′(−D) with div(σ−D) = −D. A holomorphic section σ of
p∗L⊗d⊗OX ′(D) gives rise to a meromorphic section τ ′ = σσ−D of p∗L⊗d which is the lift
by p of a meromorphic section τ of L⊗d that is holomorphic off X0.

Let τ0, · · · , τl (resp τ ′0, · · · , τ
′
l ) be the meromorphic sections of L⊗d (resp. of p∗L⊗d)

associated to σ0, · · · , σl as above, and set A = 〈τi〉. We have

〈τi〉 · OX ′ = 〈τ ′i〉 = 〈σi〉 · OX ′(−D) .

Since D is a vertical divisor, there exists an integer N such that tNOX ′(−D) ⊂ OX ′ which
implies tN 〈τi〉 · OX ′ ⊂ OX ′ . Since any coherent ideal sheaf defined on the complement of
a subvariety of codimension at least 2 extends to a coherent ideal sheaf of the ambiant
variety, we get tN A ⊂ OX .

When F is regular, observe that 〈τi〉 · OX ′ = OX ′(−D) implies A to be vertical, and p
to be a log-resolution of A.

Conversely let τ0, · · · , τl be meromorphic sections of L⊗d such that tNA ⊂ OX where
A = 〈τi〉 and N ∈ N, and pick any scn model p : X ′ → X . Introduce the vertical
divisor D whose order of vanishing along an irreducible component E of the central fiber
is equal to ordE(A) = −min{ordE(f), f ∈ A(U)} where U is an affine chart intersecting
E. We conclude as before that A · OX ′(D) is a coherent ideal sheaf whose co-support
does not contain any irreducible component of X0. Any meromorphic section τi lifts to
a meromorphic section of p∗L⊗d whose divisor of poles and zeroes is greater or equal to
div(A·OX ′ ) = −D. In other words, the lift of τi to X ′ is a meromorphic section τ ′i of p

∗L⊗d

with div(τ ′i) ≥ −D. Since 〈τi〉 = A, then 〈τ ′i〉 · OX ′(D) is a coherent ideal sheaf having
horizontal co-support. Let σD be the canonical meromorphic section of OX ′(D) with
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div(σD) = D, and define σi = τ ′iσD: these are holomorphic sections of p∗L⊗d ⊗ OX ′(D)
whose common zero locus does not contain any irreducible vertical component.

When A is vertical, and p : X ′ → X is a log-resolution of A, then A · OX ′ = OX ′(−D).
It follows that 〈τ ′i〉 · OX ′(D) = OX ′ hence the sections σi have no common zeroes. �

Notation. Given any singular admissible datum F , we let AF be its associated vertical
fractional ideal by the previous proposition.

2.2. Model functions on degenerations. From now on, we fix a smooth positively
curved reference metric | · |⋆ on L. One can for instance proceed as follows. Recall that X
is embedded into PNC × D, and L is the restriction of the pull-back of O(1)PN

C

by the first

projection. Endow the ample line bundle O(1)PN
C

with a metric (unique up to a scalar

factor) whose curvature form is the Fubini-Study (1, 1) form on PNC . Pull-back this metric
to the product space PNC × D and restrict it to X . Recall that X̄r = π−1(D̄∗

r) ⊂ X.

Let F = {X ′, d,D, σ0, · · · , σl} be any singular admissible datum. Recall from the
previous section that we associated to it meromorphic sections τ0, · · · , τl of L

⊗d that are
holomorphic in restriction to Xr. We may thus define a function ϕF : X̄r → R ∪ {−∞}
given by

ϕF (x) := logmax{|τ0|⋆, . . . , |τl|⋆} .

This is a continuous function on Xr with values in R ∪ {−∞}.

Definition 2.3. A model function on X is a function of the form ϕF associated to a

regular admissible datum F as above. This is a continuous real-valued function ϕF :
X̄r → R.

Let F be a (singular) admissible datum. Let X ′′ be any snc model dominating X ′ so
that the natural map q : X ′′ → X ′ is regular. One may define a (singular) admissible

datum FX ′′ by choosing the line bundle L̃ := q∗L̂ on X ′′, and considering the lift of the
sections σi of L̂ to L̃. This new admissible datum has the same degree as F , admits q∗D
as its vertical divisor, and we have ϕFX′′ = ϕF .

Remark. A function of the form ϕF (e.g. any model functions) is completely deter-
mined by the data (1)–(3) of Proposition 2.2. The scn model X ′ (or equivalently the
log-resolution of the fractional ideal) is included in the definition of an admissible datum
only for convenience since we shall work in such resolutions most of the time.

Theorem 2.4. Denote by ω the curvature of the metrization induced by | · |⋆ on L. It

is a positive closed smooth (1, 1) form on X such that for any singular admissible datum

F = {X ′, d,D, σ0, · · · , σl}, the following properties hold.

• In any local coordinates (w0, . . . , wk) such that the vertical divisor D of F is defined

by the equation {
∏k
i=0 w

di
i = 0} with di ∈ N, then we may write

(5) ϕF =
∑

0≤i≤k

di log |wi|+ v

where v is the sum of a smooth function and a psh function with analytic singular-

ities, so that ϕF extends as an L1
loc-function in a neighborhood of the central fiber

in X ′.

• We have the equality of positive closed (1, 1)-currents in X ′
r:

(6) ddcϕF + d p∗ω = ΩF + [D]

where ΩF is a positive closed (1, 1)-current with analytic singularities.
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• When F is regular, then v is continuous, and ΩF admits Lipschitz continuous

potentials.

Terminology. We say that a positive closed (1, 1) current on a complex manifold has a
continuous (resp. Lipschitz continuous) potential when it can be written locally near any
point as the ddc of a continuous (resp. Lipschitz continuous) psh function u. A psh function
having analytic singularities is a psh function u such that one can find holomorphic maps
h0, . . . , hl and c > 0 for which u− c log max{|h0|, · · · , |hl|} is bounded. Observe that any
such function is continuous with values in [−∞,+∞).

Proof. Let F be any singular admissible datum.
Choose first any point x outside the central fiber, local coordinates (w0, w1, . . . , wk)

near x, and a local trivialization of L in that chart. In this trivialization a section σ of
p∗(L⊗d) ⊗ OX ′(D) can be identified to a holomorphic function in the variables w, and
|σ|⋆ = |σ(w)|∞e

−u where u is a smooth psh function. It follows that

ϕF = logmax{|h0|, . . . , |hl|} − u ,

where hi are holomorphic functions. Recall that ddcu is the curvature form of the metric
| · |⋆ on L⊗d hence is equal to dω, and logmax{|h0|, . . . , |hl|} is a psh function with analytic
singularities, so that (5) and (6) hold near x.

Now choose a point x ∈ X ′
0, and choose local coordinates (w0, w1, . . . , wk) such that

the central fiber X ′
0 is included in

∏k
i=0 wi = 0. More precisely introduce the integers

ai ∈ N, di ∈ Z such that we have the equality of divisors π∗[0] =
∑

i ai[wi = 0]; and
D =

∑
i di[wi = 0].

Choose a local trivialization of p∗(L⊗d). In this trivialization a section σ of p∗(L⊗d) is a
holomorphic function in the variables w and its norm can be written as |σ|⋆ = |σ(w)|∞e

−u

with u psh and smooth.
A section σ of p∗(L⊗d) ⊗OX ′(D) can then be identified to a meromorphic function in

the variables w whose divisor of poles and zeroes div(σ) satisfies div(σ) ≥ D. In other

words one can write σ =
∏
iw

di
i × h where h is holomorphic. Since h is a local section of

p∗(L⊗d), it follows that

log |σ|⋆ =
∑

i

di log |wi|+ log |h| − u ,

so that we may write as above

ϕF =
∑

i

di log |wi|+ logmax{|h0|, . . . , |hl|} − u ,

where u is a smooth psh function. Equations (5) and (6) follow as before.

When F is regular, then the holomorphic functions h0, . . . , hl have no common zeroes,
hence the function logmax{|h0|, . . . , |hl|} is Lipschitz continuous. �

Theorem 2.5. The space of model functions on Xr is stable by sum, and by addition by

any real number. Moreover if F and F ′ are admissible data of degree d and d′ respectively,

then
max{d′ϕF ,dϕF′}

gcd (d,d′) is also a model function.

Proof. Let F = {X ′, d,D, σ0, · · · , σl} be any regular admissible datum.
Multiplying each section by a constant λ ∈ C∗ modifies the model function by adding

log |λ| to ϕF which proves the stability by addition by a real number.
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Now pick another regular admissible datum F ′. By the previous observation, and
replacing X ′ by a suitable snc model dominating it we may suppose that both F and F ′

are defined over the same scn model X ′. Let L̂′ := p∗L⊗d′ ⊗OX ′(D′) be the line bundle

and σ′j the sections of L̂′ associated to F ′.

One can then build a natural regular admissible datum F ⊗ F ′ associated to L̂ ⊗ L̂′,
and to the sections σi ⊗ σ′j. This new admissible datum has degree d + d′ and vertical

divisor D +D′. Moreover we have

ϕF⊗F ′ = ϕF + ϕF ′

which implies the stability by sum of model functions.

To see the stability under taking maxima, it is easier to view the regular admissible
data F and F ′ in X given by their degrees d, d′ ∈ N∗, vertical fractional ideals A,A′ and
meromorphic sections τi and τ ′j of L⊗d and L⊗d′ respectively. The log-resolutions of A

and A′ will not play any role in the next argument.
Introduce the integer δ = dd′/ gcd (d, d′), and we consider the set of meromorphic sec-

tions {σ
δ/d
i } ∪ {(σ′i)

δ/d′} of L⊗δ. The fractional ideal sheaf 〈σ
δ/d
i , (σ′i)

δ/d′〉 is then equal to
A + A′ which is vertical. We may thus build an admissible datum F ′′ by choosing a log-
resolution of A+A′, and the associated model function is given by ϕF ′′ = max{ δdϕF ,

δ
d′ϕF ′}

as required. �

2.3. Model functions on non-Archimedean analytic spaces. We now explain how
an admissible datum F also induces a natural continuous function on the Berkovich ana-
lytic space XC((t)),r following the discussion of [BFJ16].

Let p : X ′ → X be any snc model of X dominating X . To any irreducible component E
of the central fiber X ′

0 we may attach a point xE ∈ XC((t)),r corresponding to the generic
point on the projective C((t))-variety XC((t)) and a norm on its field of rational functions
in the following way. Pick any rational function f on XC((t)). It defines a rational function

on the SpecC[[t]]-scheme obtained by base change X ′
C[[t]] whose generic fiber is isomorphic

to XC((t)). We then set |f(xE)| = r
ordE(f)

bE where ordE(f) is the order of vanishing of f at
the generic point of E and bE = ordE(t) ∈ N∗.

Any such point xE is called a divisorial point. It is possible to show that the set of
divisorial points is dense in XC((t)),r , see e.g. [BFJ16, Corollary 2.4].

To any fractional ideal sheaf A defined in a neighborhood of X̄r, we can attach a function
log |A| : XC((t)),r → R ∪ {−∞}. When A is a vertical ideal sheaf of the SpecC[[t]]-scheme
XC[[t]] this was done e.g. in [BFJ16, § 2.5]. Since we work here with coherent sheaves in the
analytic category, we explain this construction in some details using explicit coordinates.

Recall that we realized X as the locus
⋂M
j=1{([z], t) ∈ PNC × D, Qj(t, z) = 0}, where

Qj are homogeneous polynomials in z with coefficients that are holomorphic functions on
t ∈ D. Recall the definition of the open sets

Ui = X ∩
{
([z], t) ∈ PNC × D, zi 6= 0

}
, i = 0, · · · , N .

Lemma 2.6. For any i, one can find finitely many meromorphic functions f (i), g
(i)
1 , · · · , g

(i)
l

defined in a neighborhood of X̄r and holomorphic on Ui such that f (i) · A(Ui) is an ideal

of the ring of holomorphic functions on Ui that is generated by g
(i)
1 , · · · , g

(i)
l .
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Proof. Let Hi be the hyperplane section {zi = 0} in X . Recall that a section of the line
bundle O(dHi) in a neighborhood of X̄r for some d defines a meromorphic function in a
neighborhood of X̄r which is holomorphic on Ui.

It follows from a theorem of Grauert and Remmert, see [GR58] or [No59] that for a
sufficiently large integer d the sheaf O(dHi)⊗A is globally generated over a neighborhood
of X̄r. This implies our claim. �

Recall that the collection of sets {(Ui)hyb,r}i=0,··· ,N which consists of all multiplicative
semi-norms on the Ar-algebra

Bi = Ar[w1, · · · , wN ]/〈Qj(t, w1, · · · , wi−1, 1, wi+1, · · · , wN )〉j=1,··· ,M

forms an open cover of XC((t)),r . For any x ∈ (Ui)hyb,r we may thus set

log |A|(x) := inf{log |g
(i)
j (x)|, j = 1, · · · , l} − log |f (i)(x)| .

It is easy to check that this definition does not depend on the choice of generators, so that
log |A| actually defines a continuous function on XC((t)),r with values in [−∞,+∞). When
A is vertical, then the function log |A| is a real-valued continuous function.

For any admissible datum F with associated fractional ideal sheaf AF , we set gF :=
log |AF |. This defines a continuous function gF : XC((t)),r → [−∞,+∞) (with values in R

when F is regular).

Lemma 2.7. For any admissible datum F , any snc model p : X ′ → X and for any

component E of the central fiber, we have

gF (xE) = log r
ordE(D)

bE

where D is the unique vertical divisor such that AF · OX ′(D) is an ideal subsheaf of OX ′

whose co-support does not contain any vertical component.

Proof. We may suppose X ′ = X and pick a generic point on E which is not included in
the co-support of the ideal sheaf AF · OX ′(D). In a local analytic chart w = (w0, · · · , wk)
near that point we can write E = {w0 = 0}. The ideal A is generated by wl0 for some
l ∈ Z so that D is the divisor associated to wl0 too (a section of OX ′(D) is a meromorphic
function whose divisor of poles and zeroes is ≥ −D = −l[w0 = 0]).

By definition of xE we have log |A(xE)| =
l
bE

log r which implies our claim. �

Definition 2.8. A model function on the Berkovich analytic space XC((t)),r is a function

of the form gF : XC((t)),r → R for some regular admissible datum F .

In [BFJ15], model functions are defined as the difference of two model functions in
the sense of our paper. The notion of model functions appears at several places in the
literature under various names, see [BFJ15, Table 1].

Proposition 2.9. Any continuous function on XC((t)),r is the uniform limit of a sequence

of functions of the form λ(gF − gF ′) where F and F ′ are admissible data of the same

degree, and λ ∈ Q∗
+.

Proof. Let us introduce the following three spaces of continuous functions on XC((t)),r :

(1) F1 = {λ(gF − gF ′)} where F and F ′ are admissible data of the same degree, and
λ ∈ Q∗

+;
(2) F2 = {λ(log |A| − log |B|)} where A,B are two vertical fractional ideal sheaves

defined in a neighborhood of X̄r, and λ ∈ Q∗
+;
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(3) F3 = {λ(log |Â| − log |B̂|)} where Â, B̂ are two vertical fractional ideal sheaves of
XC[[t]], and λ ∈ Q∗

+.

By [BFJ16, Proposition 2.2] we know that F3 is dense in C0(XC((t)),r). On the other hand
Grauert and Remmert’s theorem implies that for any fractional ideal sheaf A there exist
an integer d ∈ N∗ and sections τ0, · · · , τl of L

⊗d such that 〈τi〉 = A over a neighborhood
of X̄r. In particular we have F1 = F2.

To conclude it is therefore sufficient to check that for any vertical fractional ideal sheaf
Â of XC[[t]] there exists a vertical fractional (analytic) sheaf A defined in a neighborhood

of X̄r such that log |Â| = log |A| on XC((t)),r .

Replacing Â by tN · Â if necessary we may suppose that Â is an coherent sheaf of ideals
of OXC[[t]]

. Since the ideal sheaf is vertical, there exists an integer l sufficiently large such

that tl ∈ Â. Recall the definition of the open cover as in the proof of Lemma 2.6. It follows
that on

(Ui)C[[t]] = SpecC[[t]][w1, · · · , wN ]/〈Qj(t, w1, · · · , wi−1, 1, wi+1, · · · , wN )〉j=1,··· ,M

Â is actually generated by elements of the ring

O(D)[w1, · · · , wN ]/〈Qj(t, w1, · · · , wi−1, 1, wi+1, · · · , wN )〉j=1,··· ,M

hence by meromorphic functions on X that are holomorphic in Ui. It thus defines a vertical
ideal sheaf A whose values at any point in (Ui)hyb,r coincides with the ones of Â.

This concludes the proof. �

2.4. Model functions on the hybrid space. Recall that any point x ∈ Xhyb,r induces

a norm of the field of complex numbers equal to | · |
n(x)
∞ for some n(x) ∈ [0, 1], and we have

n(ψ(x)) =
log r

log |π(x)|−1

for any x ∈ X.

Theorem 2.10. For any singular admissible datum F , the function ΦF given by

n · ϕF ◦ ψ−1 on π−1
hyb(τ(D̄

∗
r)), and by gF ◦ ψ−1

NA on π−1
hyb(τ(0))

is continuous on Xhyb,r with values in R ∪ {−∞}.

Observe that when F is regular, then the previous result claims that ΦF is a real-valued
continuous function.

Definition 2.11. A model function on the hybrid space Xhyb,r is a continuous function

of the form ΦF for some regular admissible datum F .

Proof. Let F be an admissible datum and let A be its associated fractional ideal sheaf.
The continuity of ΦF in restriction to π−1

hyb(τ(D̄
∗
r)) (resp. to π−1

hyb(τ(0))) follows from the

continuity of ϕF (resp of gF ).
Since π−1

hyb(τ(0)) is a closed subset of Xhyb,r it is sufficient to prove the following. For

any net of points xn in π−1
hyb(τ(D̄

∗
r)) indexed by a set N and converging to a point x ∈

π−1
hyb(τ(0)), then we have ΦF (xn) → ΦF (x).

Pick any snc model p : X ′ → X obtained from X by a sequence of blow-ups of smooth
centers and write A = B · OX ′(−D) where D is a vertical divisor, and B is an ideal sheaf
whose co-support does not contain any vertical components. Observe that there exists



16 CHARLES FAVRE

a relatively ample line bundle L′ → X ′ so that (L′)⊗N ⊗ OX ′(D), and B ⊗ (L′)⊗N are
globally generated for a sufficiently large integer N over D̄r.

We may thus find a finite family of meromorphic functions w
(j)
i , h

(j)
α on p−1(π−1(D̄r))

such that (w
(j)
0 , . . . , w

(j)
k ) form a family of charts U (j) covering X ′

0; h
(j)
0 , · · · , h

(j)
l are holo-

morphic in U (j) and generate B(U (j)). In each chart, we get

(7) ϕF =
∑

i

d
(j)
i log |w

(j)
i |+ logmax

α
{|h(j)α |}+ ϕ(j)

where ϕ(j) is continuous, and D is defined by the equation
{∏k

i=1(w
(j)
i )d

(j)
i = 0

}
.

For each j let N (j) be the subset of N of those indices such that xn belongs to the j-th

chart. Write xn = (w
(j)
0,n, . . . , w

(j)
k,n) when n ∈ N (j). The convergence xn → x then implies

n(xn) × log |h| → log |h(x)| when n tends to infinity in N (j), and for all meromorphic

function h on p−1(π−1(D̄r)) that is holomorphic in U (j). We thus get

ΦF (xn) = n(xn)× ϕF ◦ ψ−1(xn)

= n(xn)×

(∑

i

d
(j)
i log |w

(j)
i,n|+ logmax

α
{|h(j)α (xn)|}+ ϕ(j)(xn)

)

which implies

lim
n→∞

ΦF(xn) =
∑

i

d
(j)
i log |w

(j)
i (x)| + logmax

α
{|h(j)α (x)|} = log |A|(x) = gF (x) ,

as required. �

2.5. Density of model functions.

Theorem 2.12. Let D(Xhyb,r) be the space of all functions of the form qΦF − q′ΦF ′

where F ,F ′ are regular admissible data and q, q′ are positive rational numbers such that

q deg(F) = q′ deg(F ′).
Then D(Xhyb,r) is dense in the space of all continuous functions on Xhyb,r endowed

with the topology of the uniform convergence.

Proof. We claim that D(Xhyb,r) is stable under taking maximum (hence by minimum
since it is a Q-vector space). Pick two functions in q1ΦF1 − q′1ΦF ′

1
and q2ΦF2 − q′2ΦF ′

2

in D(Xhyb,r) such that q1 deg(F1) = q′1 deg(F
′
1), and q2 deg(F2) = q′2 deg(F

′
2). One can

first multiply both functions by a suitably large integer such that q1, q
′
1, q2 and q′2 are all

integers. One then writes

max{q1ΦF1−q
′
1ΦF ′

1
, q2ΦF2−q

′
2ΦF ′

2
} = max{q1ΦF1+q

′
2ΦF ′

2
, q2ΦF2+q

′
1ΦF ′

1
}−q′1ΦF ′

1
−q′2ΦF ′

2

and apply Theorem 2.5. This proves the claim.
We then conclude by applying Stone-Weierstrass theorem and the next lemma. �

Lemma 2.13. For any two points x 6= x′ ∈ Xhyb,r, any rational numbers ρ, ρ′, and any

positive real number ǫ > 0, there exists Φ ∈ D(Xhyb,r) such that |Φ(x) − ρ| ≤ ǫ and

|Φ(x′)− ρ′| ≤ ǫ.

Proof. For λ ∈ C∗ and q ∈ Z denote by λtqF the admissible datum obtained by multiplying
all sections by λtq over Xt. This does not change the degree of F but its associated vertical
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divisor is modified by adding q times the vertical divisor associated to F . Observe that
ϕλtqF = ϕF + log |λtq| on X, so that

ΦλtqF − ΦF = n
(
ϕλtqF ◦ ψ−1 − ϕF ◦ ψ−1

)
= log |λ| n− q log r

belongs to D(Xhyb,r) for any λ ∈ C∗ and for any q ∈ Z (and thus for any q ∈ Q). This
implies the lemma when πhyb(x) = τ(0) and πhyb(x

′) 6= τ(0) since n(x) = 0 and n(x′) 6= 0
in this case.

In the case πhyb(x) = πhyb(x
′) = 0, i.e. both points x, x′ belongs to XC((t)),r , then the

lemma follows from Proposition 2.9.

To treat the case x, x′ ∈ ψ−1(X), we first recall a few facts. We assumed that X is
embedded in PNC × D, and L is the restriction to X of the pull-back by the first projec-
tion of OPN

C

(1). Any section σ of OPN
C

(d) is determined by a homogeneous polynomial

Pσ(z0, . . . , zN ) of degree d in (N + 1)-variables with complex coefficients, and we have

|σ([z])|⋆ =
|Pσ(z0, . . . , zN )|

(|z0|2 + . . .+ |zN |2)d/2
,

for a point [z] = [z0 : . . . : zN ] ∈ PNC . A meromorphic section σ of L⊗d is therefore given
by a homogeneous polynomials Pσ(z0, . . . , zN , t) of degree d in z0, · · · , zN with coefficients
depending meromorphically on t ∈ D, and we have

|σ(x)|⋆ =
|Pσ(z0, . . . , zN , t)|

(|z0|2 + . . .+ |zN |2)d/2
,

for any x = ([z0 : . . . : zN ], t) ∈ X ⊂ PNC × D.

Pick λ0, . . . , λN ∈ C∗ and integers m0, . . . ,mN ∈ Z. Then

([z0 : . . . : zN ], t) 7→ log

(
max{|λ0t

m0 | |z0|, . . . , |λN t
mN | |zN |}

(|z0|2 + . . .+ |zN |2)1/2

)

is a model function on X associated to a regular admissible datum of degree 1 (in the snc
model X , and with a non-zero vertical divisor that depends on the choices of the integers
m0, . . . ,mN ). It follows that the function Φ : Xhyb,r → R defined by

Φ (ψ ([z0 : . . . : zN ], t)) :=
log r

log |t|−1
(logmax{|λ0t

m0 | |z0|, . . . , |λN t
mN | |zN |} −

logmax{|z0|, . . . , |zN |}) ,

for all ([z0 : . . . : zN ], t) ∈ X ⊂ X belongs to D(Xhyb,r).
Now pick x 6= x′ ∈ X ⊂ X , and suppose first that π(x) 6= π(x′). Since the group

of projective transformations preserving our chosen metrization on O(1)PN
C

is transitive,

we may assume that x = ([1 : 0 : · · · : 0], t), and x′ = ([0 : 1 : · · · : 0], t′) with t′ 6= t.
Evaluating the previous function at ψ(x) and ψ(x′) respectively, we obtain

Φ(ψ(x)) = −m0 log r log |λ0| and Φ(ψ(x′)) = −m1 log r log |λ1|

and the claim follows easily.

Finally suppose that x 6= x′ ∈ X belongs to the same fiber Xt with t 6= 0. This time,
we may assume that x = ([1 : 0 : · · · : 0], t), and x′ = ([w0 : 1 : · · · : wN ], t) so that
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Φ(ψ(x)) = −m0 log r log |λ0| and

Φ(ψ(x′)) =
log r

log |t|−1
(logmax{|λ0t

m0 | |w0|, |λ1t
m1 |, . . . , |λN t

mN | |wN |} −

log max{|w0|, 1, . . . , |wN |}) .

By adjusting m0 and λ0 one can achieve at Φ(ψ(x)) taking its values in a fixed open
interval, and choosing m1 negative enough and λ1 = 1, λi = 0 for all i ≥ 2, we can make
|Φ(ψ(x′))| as large as we want. Multiplying Φ by a suitable (small) rational number we
get an element Φ1 ∈ D(Xhyb,r) for which Φ1(ψ(x)) and |Φ1(ψ(x

′))− ρ′| are both as small
as we want. In the same manner, we construct Φ2 ∈ D(Xhyb,r) for which |Φ2(ψ(x

′))| ≪ 1
and |Φ2(ψ(x)) − ρ| ≪ 1, and we conclude the proof of the lemma by taking Φ1 +Φ2. �

3. Degeneration of Monge-Ampère measures of model functions on the

hybrid space

We now explain how a regular admissible datum F gives rise in a natural way to
a continuous family of positive measures µt,F on the hybrid space Xhyb,r. In §3.1, we
explain how to associate a continuous family of positive measures to F on a suitable scn
model. In §3.2, we review briefly the definition of the Monge-Ampère operator in a non-
Archimedean context following [BFJ15], and define a measure µF ,NA on XC((t)),r . In §3.4
we prove the main result of this Section, namely Theorem 3.4 on the convergence of µt,F
towards µF ,NA in the hybrid space.

3.1. Monge-Ampère measures associated to an admissible datum. We refer to the
survey [De93] for the basic theory of intersection of positive closed currents on a complex
manifold. Observe that we only need the very first steps of this theory and the definition
of the Monge-Ampère measure of a continuous psh function, which is due to Bedford and
Taylor [BT76].

Let F = {X ′, d,D, σ0, · · · , σl} be any regular admissible datum. Recall from Theo-
rem 2.4 that one can find a positive closed (1, 1)-current ΩF with Lipschitz continuous
potential on the scn model p : X ′ → X , such that

ΩF = ddcϕF − [D] + d · p∗ω ,

where D is the vertical divisor associated to F . Since ΩF has continuous potentials, its
k-th power Ω∧k

F is a well-defined positive closed (k, k)-current on X ′. For any t ∈ D, write
[Xt] = ddc log |π ◦ p − t|. When t is non-zero, then [Xt] is the current of integration over
the fiber π−1(t), and [X0] =

∑
bE [E] where E ranges over all irreducible components of

X ′
0 and bE = ordE(π

∗t).
The positive measure µt,F = (ΩF )

∧k ∧ [Xt] is well-defined for any t ∈ D, and the family
of measures t 7→ µt,F is continuous, see e.g. [De93, Corollary 1.6].

Observe that D being supported on X ′
0, the measure µt,F for t ∈ D∗ can be obtained

alternatively by restricting ΩF to the fiber Xt and consider its Monge-Ampère measure:

µt,F = (ΩF |Xt)
∧k = (d · ωt + ddcgF |Xt)

∧k

where ωt = ω|Xt . The total mass of µt,F is thus equal to dk ×
∫
Xt
ωkt which can be com-

puted purely in cohomological terms. Indeed the class determined by ωt in the DeRham
coholomogy group of Xt is equal to the integral class c1(L|Xt) ∈ H2

dR(Xt,Z), see [GH78,
p.139]. It follows that

Mass(µt,F ) = dk c1(L|Xt)
∧k ∈ N∗ .
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Since µt,F varies continuously this mass is a constant.
The next computation is the key to understand the degeneration of µt,F as t→ 0.

Proposition 3.1. For any irreducible component E of the central fiber X ′
0, one has

(8) c1

(
p∗L⊗d ⊗OX ′(D)|E

)∧k
=

∫

E
ΩkF ≥ 0 .

The left hand side is computed in the DeRham (or singular) cohomology as follows: one
restricts the line bundle p∗L⊗d⊗OX ′(D) to E, take its first Chern class, and consider the
degree of its k-th power. The right hand side is computed analytically, as the total mass
of the measure (ΩF |Xt)

∧k on E.

Proof. Consider the line bundle L̂ := p∗L⊗d⊗OX ′(D) on X ′. A local section σ of L̂ is the
same as a local section of p∗L⊗d whose divisor of poles and zeroes satisfies div(σ) ≥ −D.

Endow L̂ with the metric | · |F := | · |⋆ e
−ϕF . Choose coordinates w in a trivializing

chart such that D is given by the equation {
∏
iw

di
i = 0}. By |σ|F = |σ(w)|∞e

−ue−gF

with u smooth and ddcu = dp∗ω. Since ϕF =
∑
di log |wi| + v with v smooth we see

that w 7→ |σ(w)|F = ev−u |σ(w)|∞
∏
i |wi|

−di is continuous. It follows that | · |F is a

continuous metric on L̂ whose curvature form is equal to ΩF by (6). Therefore c1(L̂|E) is
represented by the positive closed (1, 1)-current ΩF |E and the formula follows from [De93,
Corollary 9.3]. �

3.2. The Monge-Ampère measure on XC((t)),r. We briefly review the definition of the
Monge-Ampère operator following A. Chambert-loir [CL06, CL11]. The theory has been
expanded and made more precise in [BFJ15, BFJ16-2], [GM16], and we shall extract from
the first reference the key Theorem 3.2 below.

Recall that XC((t)) is the projective variety over the field C((t)) obtained from X by
base change Ar → C((t)). We shall also consider the Spec(C[[t]])-scheme XC[[t]] obtained
by base change Ar → C[[t]]. It is a formal scheme whose generic fiber is XC((t)). We also
denote by XC((t)),r the Berkovich analytification of XC((t)) when C((t)) is endowed with
the t-adic norm with |t|r = r.

The line bundle L → X induces natural line bundles LC((t)) → XC((t)), LC[[t]] → XC[[t]],
and LC((t)),r → XC((t)),r . Recall that LC[[t]] determines a natural metrization | · |L on
LC((t)),r , see [CL11, §1.3.2]. Any other continuous metrization | · | on LC((t)),r can be thus

written | · | = | · |Le
−g for some continuous function g : XC((t)),r → R.

We shall say that | · | is a semi-positive model metrization if g is a positive rational
multiple of a model function log |A|, and for some (or any) log-resolution p : X ′ → X of A
such that A · OX ′ = OX ′(−D), the line bundle p∗L⊗OX ′(D) is relatively nef in the sense
that p∗L ⊗OX ′(D)|E is nef for all irreducible component E of X ′

0.

To any semi-positive model metrics | · | = | · |Le
−g as above, we associate a positive

(atomic) measure5 MAL(g) on XC((t)),r as follows:

(9) MAL(g) :=
∑

E

c1 (p
∗L ⊗OX ′(D)|E)

∧k δxE

where E ranges over all irreducible components of the central fiber X ′
0.

5Chambert-Loir uses the notation (ĉ1(Lg)
k|X) instead of MAL(g). The latter notation is inspired by

the notations used in [BFJ15, §4].
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The quantity c1 (p
∗L ⊗OX ′(D)|E)

∧k is here understood as follows. We restrict the line

bundle L̂ := p∗LC[[t]] ⊗ OX ′(D) to E viewed as a component of the special fiber of the
formal scheme XC[[t]], and compute the top intersection degree of its first Chern class

c1(L̂|E) (in E viewed as a projective C-scheme). Since the (complex) analytification of

L̂|E is isomorphic to p∗L ⊗ OX ′(D)|E , we see that c1 (p
∗L ⊗OX ′(D)|E)

∧k is identical to
the left hand side of (8) by the compatibility results of [Ful88, Example 19.1.1 & Corollary
19.2 (b)].

A general continuous semi-positive metric | · | = | · |Le
−g is by definition a continuous

metric on LC((t)),r such that there exists a sequence of semi-positive model metrics | · |n =

| · |Le
−gn for which gn → g. One associates to any such metric a positive Borel measure on

XC((t)),r by setting MAL(g) = limn→∞MAL(gn). This measure does not depend on the
choice of model metrics converging to | · |.

A (singular) semi-positive metric | · |Le
−g is by definition determined by an upper semi-

continuous function g : XC((t)),r → [−∞,+∞) for which there exists a net of model

semi-positive metrics | · |Le
−gn such that gn is decreasing pointwise to g, see [BFJ16,

Theorem B].
In this terminology, we have

Theorem 3.2. Let | · |Le
−gn be a sequence of continuous semi-positive metrics on LC((t)),r

converging uniformly to |·|Le
−g. Then the latter metric is again a continuous semi-positive

metric and we have

MAL(g) = lim
n→∞

MAL(gn) .

More precisely, given any singular semi-positive metric |·|Le
−h, all integrals

∫
hd(MAL(gn))

and
∫
hd(MAL(g)) are finite, and we have

∫
hd(MAL(g)) = lim

n→∞

∫
hd(MAL(gn)) .

Proof. The first statement is a consequence of [BFJ15, Theorem 3.1]. The second state-
ment also follows from the arguments of [BFJ15]. The finiteness of the integrals is ex-
actly [BFJ15, Proposition 3.11]. For completeness we give a sktech of the proof of the
convergence statement We freely use notation from op. cit.

Let θ be the class in the relative Neron-Severi space N1(XC[[t]]/S) induced by c1(L)
(with S = SpecC[[t]]). A θ-psh function g is an upper semi-continuous function whose
metric | · |Le

−g is semi-positive. For any continuous θ-psh functions g1, · · · , gk, [BFJ15,
Theorem 3.1] asserts that one can define a Radon measure (θ+ ddcg1)∧ · · · ∧ (θ+ ddcgk).
This measure has mass δ =

∫
θk = c1(L)

k, is symmetric in the entries, and depends
continuously on the gi’s. When all functions are the same g = g1 = · · · = gk, then we have
MAL(g) = (θ + ddcg)∧k.

The first step is to prove that one can define a (signed) Radon measure ddch ∧ (θ +
ddcg1)∧· · ·∧ (θ+ddcgk−1) when h is any θ-psh function, and the gi’s are continuous θ-psh
functions. The point is to check that for any model function ϕ, the quantity

Λ(ϕ) :=

∫
h (ddcϕ) ∧ (θ + ddcg1) ∧ · · · ∧ (θ + ddcgk−1)
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is well-defined and satisfies |L(ϕ)| ≤ 2δ sup |ϕ|. To see that, one first assumes that h is
bounded and one writes

±

∫
h (ddcϕ) ∧ (θ + ddcg1) ∧ · · · ∧ (θ + ddcgk−1) =

±

∫
ϕ (ddch) ∧ (θ + ddcg1) ∧ · · · ∧ (θ + ddcgk−1) ≤ 2 sup |ϕ| δ .

For a general h, we apply the very same estimate to the sequence max{h,−n} and let
n→ ∞.

Since the linear form ϕ 7→ Λ(ϕ) is continuous, it defines a Radon measure on XC((t)),r

(of total mass ≤ 2δ) which we denote by ddcψ ∧ (θ + ddcg1) ∧ · · · ∧ (θ + ddcgk−1). Then
we write:
∫
ψ d(MAL(g)) −

∫
ψ d(MAL(gn)) =

∫
ψ (θ + ddcg)∧k −

∫
ψ (θ + ddcgn)

∧k

=
k−1∑

j=0

∫
ψ ddc(g − gn) ∧ (θ + ddcg)j ∧ (θ + ddcgn)

k−j−1

=
k−1∑

j=0

∫
(g − gn) dd

c(ψ) ∧ (θ + ddcg)j ∧ (θ + ddcgn)
k−j−1 ≤ 2k sup |g − gn| δ ,

which concludes the proof. �

In the sequel we shall use the following simple computation.

Proposition 3.3. Let F = {X ′, d,D, σ0, · · · , σl} be any regular admissible datum. Then

the metric |·|Le
−gF is a semi-positive model metric, and for any singular admissible datum

G, we have

(10)

∫
gG MAL(gF ) =

∑

E

gG(xE) c1

(
p∗L⊗d ⊗OX ′(D)|E

)∧k

where E ranges over all irreducible components of X ′
0.

Proof. Since the sections σ0, · · · , σl of the line bundle L̂ := p∗L⊗d ⊗ OX ′(D) have no
common zeroes over D̄r, for any compact curve C ⊂ X ′

0 there exists at least one section
say σ0 whose restriction to C is non-zero and

deg(L̂|C) =
∑

p∈E

ordp(σ0|C) ≥ 0

so that L̂ is relatively nef. The identity (10) follows from the definition of MAL(gF ) when
computed in X ′. �

3.3. The Chambert-Loir measure associated to an endomorphism of Pk
C((t)),r.

This section may be skipped during a first reading. Suppose X = PkC × D, and let L be
the pull-back by the second projection of OPk

C

(1). This line bundle determines a canonical

semi-positive metric | · |can on OPk
C((t)),r

(1), and we shall also denote by | · |can the induced

metric on OPk
C((t)),r

(d) for all d ∈ Z. Note that the norm of a section σ of OPk
C((t)),r

(d) is given
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in homogeneous coordinates by

|σ([w])|can =
|Pσ(w0, · · · , wk)|

max{|w0|d, · · · , |wk|d}
,

where Pσ is the homogeneous polynomial (of degree d and coefficients in C((t))) determined
by σ. The Monge-Ampère measure of | · |can is the Dirac mass at the divisorial point6

xg corresponding to PkC × {0}. In the notation of the previous section, we thus have
MAL(0) = δxg .

Now suppose R is an endomorphism of Pk
C((t)) of degree d given in homogeneous coordi-

nates by k + 1 polynomials P0, · · · ,Pk ∈ C((t))[w0, · · · , wk] of degree d having no zeroes
in common except for the origin.

There is a natural way to pull-back metric by regular maps. Observe that the pull-back
metric R

∗| · |can on R
∗OPk

C((t)),r
(1) = OPk

C((t)),r
(d) can be written R

∗| · |can = | · |cane
−g1 where

g1([w]) = log

(
max{|P0|, · · · , |Pk|}

max{|w0|, · · · , |wk|}d

)
.

The metric R∗|·|can is again semi-positive, see e.g. [FG15, Lemma 2.10] for details. Consider
now the metric | · |n on OPk

C((t)),r
(1) obtained by taking the dn-th root of (Rn)∗| · |can. We get

| · |n+1 = | · |ne
− 1

dn
g1◦Rn

so that | · |n+1 converges uniformly to a continuous semi-positive
metric | · |R = | · |cane

−gR on OPk
C((t)),r

(1) with

(11) gR =
∑

n≥0

1

dn
g1 ◦ R

n .

The Chambert-Loir measure associated to R is by definition µR := MAL(gR).

3.4. Degeneration of measures. Let us return to our general setup as described in §1.1.
Fix a regular admissible datum F , and recall the definition of ψ and ψNA from The-

orem 1.2. We define a family of positive measures µF ,t,hyb on Xhyb,r parameterized by
t ∈ D̄r as follows: {

µF ,t,hyb := ψ∗(µF ,t) if t ∈ D̄∗
r ;

µF ,0,hyb := (ψNA)∗(µF ,NA) .

Observe that µF ,t,hyb is supported on π−1
hyb(τ(t)). We have the following continuity state-

ment.

Theorem 3.4. For any regular admissible datum F , one has the weak convergence of

measures in Xhyb,r:

lim
t→0

µF ,t,hyb = µF ,0,hyb .

By the density Theorem 2.12, this continuity statement is equivalent to prove

lim
t→0

∫
ΦG dµF ,t,hyb =

∫
ΦG dµF ,0,hyb

for any regular admissible datum G. Since we have
∫
ΦG dµF ,0,hyb =

∫
gG dµF ,NA by

definition, we see that the continuity is in fact a consequence of the following (more
general) statement by (10).

6when suitably interpreted as a norm on C((t))[z1, · · · , zk] this point corresponds to the Gauß norm
hence the notation, see [CL11, §2.1].
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Theorem 3.5. Let F and G be admissible data, with F regular. Then one has

lim
t→0

∫
ΦG dµF ,t,hyb =

∑

E

gG(xE) c1

(
p∗L⊗d ⊗OX ′(−D)|E

)∧k
,

where the sum is taken over all irreducible components E of the central fiber of an scn

model X ′ which is a log-resolution of the fractional ideal sheaf associated to F .

Proof. Choose any snc model p : X ′ → X which is a log-resolution of the vertical fractional
ideal sheaf associated to F . Decompose the fractional ideal sheaf A associated to G by
writing A = B · OX ′(−D) where D is a vertical divisor, and B is an ideal sheaf whose
co-support W does not contain any vertical component. We shall denote by Z the union
of X ′

0 ∩W and the singular locus of the central fiber X ′
0: it is a subvariety included in X ′

0

that does not contain any irreducible component of the central fiber.

Cover the central fiber X ′
0 by finitely many charts U (j) and choose coordinates w(j) =

(w
(j)
0 , . . . , w

(j)
k ) in each of these charts. Let b(j) ∈ N∗ such that one has

t = π ◦ p =
∏

i

(w
(j)
i )b

(j)
i × unit

in Uj ⊂ X ′. By Theorem 2.4, one can also find integers d
(j)
i,F and d

(j)
i,G , and finitely many

holomorphic functions h
(j)
α such that B · OX ′(U (j)) = 〈h

(j)
α 〉,

ϕF =
∑

i

d
(j)
i,F log |w

(j)
i |+ ϕ(j), and ϕG =

∑

i

d
(j)
i,G log |w

(j)
i |+ logmax

α
|h(j)α |+ ψ(j)

on Uj where ϕ(j) and ψ(j) are continuous. It follows that one can write for all w(j) ∈

U (j) \ X ′
0:

ΦG ◦ ψ(w(j)) =
log r · ϕG(w

(j))

log
∣∣π ◦ p(w(j))

∣∣−1

=
log r ·

(∑
i d

(j)
i,G log

∣∣∣w(j)
i

∣∣∣+ logmaxα

∣∣∣h(j)α
∣∣∣
)
+O(1)

∑
i b

(j)
i log

∣∣∣w(j)
i

∣∣∣+O(1)
.(12)

Let K be any compact neighborhood of Z inside X ′. Observe that since all integers b
(j)
i

are non-zero, it follows that

(13) ΦG ◦ ψ(w(j)) →
d
(j)
i,G

b
(j)
i

log r when w
(j)
i → 0 and w(j) /∈ K .

In more geometric terms, these estimates imply the

Lemma 3.6. The function ΦG ◦ ψ extends to a continuous function on X ′ \ K whose

restriction to an irreducible component E of the central fiber is constant equal to gG(xE).

Proof. The equation (13) implies the continuity statement. Let E be an irreducible com-

ponent of X ′
0, and suppose U (j)∩E is non empty and determined by the equation w

(j)
i = 0.

Then by definition we have

gG(xE) = log r
ordE(D)

bE
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where D is the vertical divisor associated to G, and bE = ordE(π ◦ p). It follows from

Theorem 2.4 that D is given by the equation (w
(j)
i )d

(j)
i = 0 in U (j) whereas bE = b

(j)
i . This

concludes the proof. �

We shall also use the following

Lemma 3.7. For any ǫ > 0, there exists a compact neighborhood K of Z, such that

(14) max

{∫

K
(ΩF |Xt)

∧k,

∫

K
ΦG ◦ ψ (ΩF |Xt)

∧k

}
≤ ǫ

for any t ∈ D.

To simplify notation, write µE = c1
(
p∗L⊗d ⊗OX ′(D)|E

)∧k
for any irreducible compo-

nent E of X ′
0. We then obtain

∆t :=

∣∣∣∣∣

∫
ΦG dµF ,thyb −

∑

E

gG(xE)µE

∣∣∣∣∣ =
∣∣∣∣∣

∫
ΦG ◦ ψ dµF ,t −

∑

E

gG(xE)µE

∣∣∣∣∣ ≤

∣∣∣∣
∫

K
ΦG ◦ ψ (ΩF |Xt)

∧k

∣∣∣∣+
∣∣∣∣∣

∫

Xt\K
ΦG ◦ ψ (ΩF |Xt)

∧k −
∑

E

gG(xE)µE

∣∣∣∣∣ .

Applying (14) and Lemma 3.6, we get

lim
t→0

∆t ≤ ǫ+
∑

E

gG(xE)

(∫

E\K
(ΩF |E)

∧k − µE

)
.

By Proposition 3.1, we have
∫
E(ΩF |E)

∧k = µE so that

lim
t→0

∆t ≤ ǫ+
∑

E

gG(xE)

(∫

E∩K
(ΩF |E)

∧k

)
,

and we conclude since
∫
E∩K(ΩF |E)

∧k can be made arbitrarily small by Lemma 3.7. �

Proof of Lemma 3.7. Let us first estimate the integral
∫
K(ΩF |Xt)

∧k. Since ΩF is a positive
closed (1, 1)-current with continuous potential, it follows from [De93, Proposition 1.11] that
for any irreducible component E of X ′

0 we have

(ΩF |E)
∧k(Z) = 0 ,

so that µ0(Z) = 0 where µ0 = ddc(log |π ◦ p|) ∧ Ω∧k
F . Since t 7→ (ΩF |Xt)

∧k = ddc(log |π ◦
p− t|)∧Ω∧k

F is continuous, for a sufficiently small compact neighborhood K of Z we have∫
K(ΩF |Xt)

∧k ≤ ǫ for all |t| ≪ 1.

To estimate the integral
∫
K ΦG ◦ψ (ΩF |Xt)

∧k, we work in a fixed chart U ∋ (w0, · · · , wk)
near a point x ∈ Z where we have

ΦG ◦ ψ =
log r · (

∑
i di log |wi|+ logmaxα |hα|) + θ∑

i bi log |wi|+O(1)

on Uj where θ is continuous, hα are holomorphic, di ∈ Z, and bi ∈ N∗, see (12) above. We
decompose ΦG ◦ ψ into the following sum Φ1 +Φ2, with

Φ1 =
log r · (

∑
i di log |wi|) + θ∑

i bi log |wi|+O(1)
and Φ2 =

log r · (logmaxα |hα|)∑
i bi log |wi|+O(1)

.
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Since Φ1 is bounded, we have
∫
K Φ1(ΩF |Xt)

∧k ≤ ǫ for K and t small enough by the
preeceding estimate. Let us prove that

At =

∫

U
logmax

α
|hα| (ΩF |Xt)

∧k = O(1) .

Since
∫
K Φ1(ΩF |Xt)

∧k ≤ log r·At

log |t|−1 → 0, this will conclude the proof. Let g be a continuous

potential of ΩF in the open set U . We can then write

At =

∫

U
log max

α
|hα| (ΩF |Xt)

∧k =

∫

U
logmax

α
|hα|

(
[Xt] ∧ (ddc)kg

)
.

This integral can be now estimated using the improved Chern-Levine-Nirenberg inequali-
ties of [De93, Proposition 2.6] (with u1 = logmaxα |hα|, u2 = · · · = uk = g and T = [Xt]).
Indeed since the ideal sheaf B has a co-support which does not contain any vertical com-
ponent, the psh function logmaxα |hα| is continuous outside a subvariety W of X ′ whose
intersection with any fiber Xt has codimension at least 2 (in X ′). �

4. Monge-Ampère of uniform limits of model functions

In this section, we show how to extend Theorem 3.4 to a much larger class of measures.
This will imply a stronger form of Theorem B from the introduction.

4.1. Uniform limits of model functions. We aim at proving a generalization of The-
orem 3.4 to a more general class of functions than model ones. To that end we introduce
the following definition.

Definition 4.1. A function ϕ : X → R is said to be uniform if there exists a sequence of

regular admissible data Fn of degree dn → ∞ such that

(15) sup
Xt

∣∣∣∣
1

dn
ϕFn − ϕF

∣∣∣∣ ≤ ǫn log |t|
−1

for all 0 < |t| ≤ r and for a sequence ǫn → 0.

The condition imposed by (15) is empty outside π−1(D̄∗
r). This causes no harm since

we shall only be interested in the behaviour of uniform functions near the central fiber.

Observe that for a regular admissible datum F of degree d, the model function 1
dϕF is

uniform since 1
dnϕF⊗n = ϕF for all n. We refer to the next section for more examples.

Remark. Pick any uniform function ϕ as in the definition, and consider the function
Φ := n · ϕ ◦ ψ−1 on π−1

hyb(τ(D̄
∗
r)) in the hybrid space. Then (15) implies the uniform

convergence 1
dn
ΦFn → Φ hence Φ extends continuously to Xhyb,r. Heuristically uniform

functions correspond to continuous ω-psh function on the hybrid space, see Question 1
below for a conjectural characterization of uniform function in this vein.

Let us explain now how to associate a sequence of positive Borel measures to a uniform
function.

Theorem 4.2. Let ϕ be any uniform function on X, and let Fn be a sequence of regular

admissible data of degree dn → ∞ such that (15) holds.
For any t ∈ D̄r, the sequence of measures 1

dkn
µt,Fn,hyb converges to a positive Borel

measure MAt,hyb(ϕ), and we have the following weak convergence of measures

(16) lim
t→0

MAt,hyb(ϕ) = MA0,hyb(ϕ)
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in the hybrid space Xhyb,r. More precisely, for any singular admissible datum G, we have

(17) lim
t→0

∫
ΦG dMAt,hyb(ϕ) =

∫
ΦG dMA0,hyb(ϕ)

Proof. Let Fn be a sequence of admissible data of degree dn, such that 1
dn
ϕFn → ϕ, and

sup
Xt

∣∣∣∣
1

dn
ϕFn − ϕF

∣∣∣∣ ≤ ǫn log |t|
−1

with ǫn → 0. Recall that we wrote ω for the curvature form of the smooth positive
metrization | · |⋆ on L, and ωt = ω|Xt .

For any fixed t ∈ D̄∗
r, the restriction ϕ|Xt is the uniform limit of the sequence of con-

tinuous functions 1
dn
ϕFn |Xt , and ωt +

1
dn
ddcϕFn |Xt is a positive closed (1, 1)-current for

all n ∈ N. It follows from [De93, Corollary 1.6] that ωt + ddcϕ|Xt is also a positive closed
(1, 1)-current for which its k-th exterior power is well-defined and

µn,t :=
1

dkn
µt,Fn,hyb = ψ∗

(
ωt +

1

dn
ddcϕFn |Xt

)∧k

n→∞
−−−−→ψ∗ (ωt + ddcϕ|Xt)

∧k =: MAt,hyb(ϕ) .

Recall that n = log r
log |π|−1 on X so that the function Φ = ϕ◦ψ

n
which is defined on ψ(X)

satisfies

∣∣∣∣Φ−
1

dn
ΦFn

∣∣∣∣ ≤ ǫn log r on π−1(D̄∗
r) .

We thus conclude that Φ extends continuously to Xhyb,r and is a uniform limit of the

sequence of model functions 1
dn
ΦFn on Xhyb,r. In particular, g := Φ◦ψNA : XC((t)),r → R is

a uniform limit of the sequence of model functions 1
dn
gFn . It follows from Theorem 3.2 that

the Monge-Ampère measure MAL(g) is well-defined, and we have the weak convergence
of measures

µn :=
1

dkn
µ0,Fn,hyb = (ψNA)∗ MAL

(
1

dn
gFn

)
n→∞

−−−−→ (ψNA)∗ MAL(g) =: MA0,hyb(ϕ) .

It remains to prove (17) (which implies (16)).

We claim that for any singular admissible data G there exists a constant C(G) > 0 such
that

(18)

∣∣∣∣
∫

ΦG dµn,t −

∫
ΦG dMAt,hyb(ϕ)

∣∣∣∣ ≤ C(G)ǫn
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for all t ∈ D̄∗
r and all n. Indeed, using the positivity of the current ddcΦG + deg(G)ω on

Xr by (6), we get
∫

ΦG dµn,t −

∫
ΦG dMAt,hyb(ϕ) =

log r

log |t|−1

∫

Xt

ϕG

(
ωt +

1

dn
ddcϕn|Xt

)∧k

−

∫

Xt

ϕG (ωt + ddcϕ|Xt)
∧k =

log r

log |t|−1

k−1∑

j=0

∫

Xt

(
1

dn
ϕn − ϕ

)(
ωt +

1

dn
ddcϕn|Xt

)∧j

∧ (ωt + ddcϕ|Xt)
∧(k−j−1) ∧ ddcϕG

≤
log r

log |t|−1
sup
Xt

∣∣∣∣
1

dn
ϕn − ϕ

∣∣∣∣× 2k deg(G)

which implies (18) with C(G) = 2k | log r| deg(G).

Let us now prove that
∫
Xt

ΦG dMAt,hyb(ϕ) →
∫
XC((t)),r

ΦG dMA0,hyb(ϕ). To that end we

fix ǫ > 0 arbitrarily small, and take n sufficiently large such that ǫn ≤ ǫ. Since µn,t → µn
as t→ 0 by Theorem 3.4, there exists η > 0 such that∣∣∣∣

∫
ΦG dµn,t −

∫
ΦG dµn

∣∣∣∣ ≤ ǫ

for all 0 < |t| ≤ η. By (18), we infer
∣∣∣∣
∫

ΦG dMAt,hyb(ϕ)−

∫
ΦG dµn

∣∣∣∣ ≤ ǫ(1 + C(G))

and letting n→ ∞ we conclude that∣∣∣∣
∫

ΦG dµt −

∫
ΦG dMA0,hyb(ϕ)

∣∣∣∣ ≤ ǫ(1 + C(G))

for all |t| ≤ η as was to be shown. �

4.2. Example of uniform functions. This section is logically not necessary for the rest
of the paper.

Proposition 4.3. Let ϕ : X → R be any continuous function such that | · |⋆e
−ϕ induces a

semi-positive metric on L. Then one can find a sequence of admissible data Fn of degree

n such that

(19) sup
π−1(D̄r)

∣∣∣∣
1

n
ϕFn − ϕ

∣∣∣∣→ 0 as n→ ∞ .

In particular, the function ϕ is uniform.

This result shows that uniform functions form a quite large class. One the other hand,
it is quite easy to show that MAt,hyb(ϕ) → MA0,hyb(0) as t→ 0 for any functions as above
(without approximating by model functions). In fact one has the following

Remark. Suppose | · |⋆e
−ϕ is a semi-positive metric on L that is continuous in restriction

to X, and such that supXt
|ϕ| = o(log |t|−1). Then one can copy the proof of (18) to obtain

∣∣∣∣
∫

ΦG dMAt,hyb(ϕ) −

∫
ΦG dMAt,hyb(0)

∣∣∣∣ ≤
log r

log |t|−1
sup
Xt

|ϕ| 2k deg(G) ,

for all admissible data G, which implies MAt,hyb(ϕ) → MA0,hyb(0).
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Proof. The proof is a simple adaptation of the approximation result of Demailly, see [De12,
Theorem 14.21]. For any integer m write | · | = | · |⋆ e

−ϕ, | · |m = | · |⋆ e
−mϕ (which is a

metric on L⊗m), and let ω be the curvature form of our reference metric on X . Recall
that we write Xr = π−1(Dr), and X̄r = π−1(D̄r).

Consider the Hilbert space

Hm =

{
σ ∈ H0(Xr,L

⊗m),

∫
|σ|2m dVolω <∞

}

and set ϕm = supσ∈Hm(1)
1
m log |σ|⋆ where Hm(1) is the unit ball of Hm.

We cover X̄r by finitely many charts Ui in which both KX and L are trivialized. Pick
any section σ of L⊗m over Xr. In each trivializing chart Ui , σ gives rise to a holomorphic
function σi. And we have |σ|⋆ = |σi|∞e

−mvi for some smooth psh functions vi.
For all x ∈ Xr ∩ Ui, and for any ρ sufficiently small, the mean value inequality for |σi|

2

then implies

|σ(x)|2⋆ = e−2mvi(x)|σi(x)|
2
∞ ≤

e−2mvi(x)(k + 1)!

πk+1ρ2(k+1)

∫

B(x,ρ)
|σi|

2
∞

≤
Ce−2mvi(x)

ρ2(k+1)

∫

B(x,ρ)
|σ|2⋆e

−2mϕ × e2m supB(x,ρ) ϕ × e2m supB(x,ρ) vi

so that

(20) ϕm(x) ≤ sup
B(x,ρ)

ϕ+
1

2m
log

(
C ′

ρ2(k+1)

)
+ C ′′ρ .

For the lower bound, for any x ∈ Xr in the chart Ui, one produces using Ohsawa-
Takegoshi’s theorem a holomorphic function f such that f(x) = a and

∫

Ui

|f |2e−2mϕ ≤ C|a|2e−2mϕ(x) .

We denote by | · |⋆ the induced metric on K±1
X ⊗L⊗m by our reference metric ω on X and

| · |⋆ and L.
Pick m0 ∈ N∗ a sufficiently large integer such that L⊗m0 ⊗ KX and L⊗m0 ⊗ K−1

X are
globally generated over a neighborhood of Xr. Choose two sections τ and τ− respectively
of L⊗m0⊗KX and L⊗m0⊗K−1

X such that |τ(x)|⋆ = |τ−(x)|⋆ = 1 . Pick θ a smooth function
having compact support in Ui with constant value 1 in a neighborhood of x. Interpret
the (0, 1) form ∂(θf) as a section of

∧0,1 T ∗Xr ⊗ L⊗m in the trivialization chart Ui, and

consider the section F = ∂(θf) ∧ τ of the line bundle
∧n,1 T ∗Xr ⊗L⊗(m+m0).

On the line bundle L⊗m⊗L⊗m0 put the product metric | · |′m induced by | · |⋆
e−mϕ

|x−a|θ(x)(k+2)

in the first factor and | · |⋆ in the second. The curvature form of this metric is equal to

(m+m0)ω +mddcϕ+ ddc(θ log |x− a|) ≥ ω ,

for m0 large enough. We can solve the equation ∂G = F where G is a section over Xr of
the line bundle

∧n,0 T ∗Xr ⊗ L⊗(m+m0) with L2-norm bounded by the L2-norm of F , see
e.g. [De94, Corollary 5.3] (observe that Xr is indeed weakly pseudoconvex).
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Then σ = τ−⊗ ((θf) τ −G) is a holomorphic section of the line bundle L⊗(m+2m0) such
that σ(x) = aτ(x)⊗ τ−(x), and we have the integral bound

∫
|σ|2m dVolω ≤ C1

∫
(|σ|′m)

2e−2m0ϕ|x− a|2θ(x)(k+2) dVolω

≤ C2

∫
(|σ|′m)

2 dVolω ≤ C3|a|
2e−2mϕ(x) .

Choosing a such that the right hand side is equal to 1, we obtain the lower bound

ϕm ≥ ϕ−
C

2m
.

Now fix ǫ > 0, and observe that Hm is a separable Hilbert space. We can thus find finitely
many sections σ0, · · · , σl of L

⊗(m+2m0) such that |ϕm − 1
m log max{|σ0|, · · · , |σl|}| ≤ ǫ on

X̄r′ for some fixed r′ < r.
Since ϕ is continuous, one may on the other hand find ρ > 0 small enough such that

supB(x,ρ) ϕ ≤ ϕ(x) + C ′′ρ ≤ ǫ for all x ∈ X̄r′ . For m large enough, we then obtain
∣∣∣∣ϕ−

1

m+ 2m0
logmax{|σ0|, · · · , |σl|}

∣∣∣∣ ≤
C ′′′

2m
+ ǫ ,

on X̄r′ . This concludes the proof since 1
m+2m0

logmax{|σ0|, · · · , |σl|} is a function associ-
ated to an admissible datum of degree m+ 2m0. �

4.3. Degeneration of measures of maximal entropy. Let us now explain how the
results of Section 4.1 imply Theorem B from the introduction.

Recall the setting. We let Rt be a meromorphic family of endomorphisms of PkC of a
fixed degree d parameterized by the unit disk. In other words, we suppose given k + 1
homogeneous polynomials P0,t(w0, · · · , wk), · · · , Pk,t(w0, · · · , wk) of degree d whose coeffi-
cients are meromorphic functions on D with a single pole at the origin. These polynomials
are uniquely determined up to the multiplication by a meromorphic function h(t) in D.

We also assume that for any t ∈ D∗ these polynomials have no common zeroes so that
the map

Rt([w]) = Rt([w0 : · · · : wk]) = [P0,t(w) : · · · : Pk,t(w)]

has no indeterminacy point. For any integer n, we shall write

R◦n
t ([w]) = [Pn0,t(w) : · · · : P

n
k,t(w)] .

Recall that each polynomial Pni defines a meromorphic section of the line bundle L⊗dn on
X := PkC ×D where L := π∗1OPk

C

(1) and π1 denotes the first projection. We endow L with

the pull-back of the metric on OPk
C

(1) whose curvature form is the standard Fubini-Study

Kähler metric.

Since the polynomials Pni,t have no common zeroes over the PkC × {t} when t ∈ D∗,

the fractional ideal sheaf An := 〈Pnt,0, · · · , P
n
t,k〉 is vertical. Let pn : Xn → X be any

log-resolution of this vertical ideal sheaf. The set of sections {Pnt,0, · · · , P
n
t,k} and the de-

generation Xn thus defines a regular admissible datum Fn of degree dn by Proposition 2.2,
whose model function on X is given by

ϕFn = log

(
max{|Pn0,t(w)|, · · · , |P

n
k,t(w)|}

(|w0|2 + · · · + |wk|2)d
n/2

)
.

The key estimate is given by the following (standard) result:
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Proposition 4.4. There exists a positive constant C > 0 such that

(21)

∣∣∣∣
1

dn+1
ϕFn+1 −

1

dn
ϕFn

∣∣∣∣ ≤
C log |t|−1

dn

on PkC × D̄r.

Proof of Proposition 4.4. Observe that Pn+1
i,t = Pi,t(P

n
0,t, · · · , P

n
k,t) for all n so that (21) is

a consequence of the bound

c |t|M ≤
max{|P0,t(w)|, · · · , |Pk,t(w)|}

max{|w0|d, · · · , |wk|d}
≤ C |t|−N .

for some c, C > 0, and M,N ∈ N∗. By compactness of D̄r, it is sufficient to get this bound
in a neighborhood of the origin.

The upper bound is easy to obtain since |Pi,t(w)| ≤ C|t|N max{|w0|
d, · · · , |wk|

d} for
any i. The lower bound follows from the Nullstellensatz applied in the algebraic closure

M̂ of the field M of meromorphic functions on D∗. Observe that any element g ∈ M̂
can be represented (non uniquely) by a Puiseux series converging in some neighborhood
of the origin, so that there exists a rational number q and a positive constant such that
|g(t)| ≤ C|t|q for all t small enough.

Since the polynomial Pi,t have no common factors for all t ∈ D∗, it follows that the

subvariety of Ak+1

M̂
defined by the vanishing of these polynomials is reduced to the origin.

We may thus find an integer N and homogeneous polynomials qi,j,t of degree N − d with

coefficients in M̂ such that

wNi =
∑

j

qi,j,tPj,t .

Assuming |qi,j,t(t)| ≤ C|t|q near 0 for all i, j and taking norms of both sides, we get

max{|w0|, · · · , |wk|}
N ≤ C|t|q ×max{|w0|, · · · , |wk|}

N−d ×max{|P0,t(w)|, · · · , |Pk,t(w)|} ,

which implies the lower bound. �

Proposition 4.4 implies that ϕR := limn→∞
1
dnϕFn is a well-defined function on PkC×D∗

which is uniform in the sense of §4.1.

Proof of Theorem B. By Theorem 4.2, we have the convergence of measures MAt,hyb(ϕR) →
MA0,hyb(ϕR) in the hybrid space associated to PkC × D.

To conclude the proof it remains to relate MAt,hyb(ϕR) to the measure of maximal
entropy µt of the endomorphism Rt, and MA0,hyb(ϕR) to the Chambert-Loir measure of

the dynamical system R induced by the family {Rt} on Pk
C((t)).

Let ωFS be the standard Fubini-Study (1, 1)-form on PkC so that

1

d
R∗
tωFS − ωFS =

1

2
ddc log

(
|P0,t(w)|

2 + · · · + |Pk,t(w)|
2

|w0|2 + · · · + |wk|2

)
.

It follows from the previous proposition that 1
dn (R

n
t )

∗ωFS converges to a positive closed
(1, 1)-current T with continuous potential, and [Sib99, Théorème 3.3.2] and [BD01] implies
that T∧k is the unique measure of maximal entropy of Rt hence is equal to µt. On the
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other hand for each n, we have

1

dn
(Rnt )

∗ωFS −

(
ωFS +

1

dn
ddcϕFn |Pk

C
×{t}

)
=

1

dn
ddc log

(
(|Pn0,t(w)|

2 + · · ·+ |Pnk,t(w)|
2)1/2

max{|Pn0,t(w)|, · · · , |P
n
k,t(w)|}

)
.

The right hand side is the ddc of a function with values in [0, log(k+1)
2dn ], and therefore we con-

clude that T = limn(ωFS +
1
dn dd

cϕFn |Pk
C
×{t}), and T

∧k = limn(ωFS +
1
dndd

cϕFn |Pk
C
×{t})

∧k.

Unwinding definitions, we see that the latter convergence implies ψ∗(µt) = MAt,hyb(ϕR)
in the hybrid space.

To identify MA0,hyb(ϕR) with the Chambert-Loir measure of R, we proceed as follows.

By definition MA0,hyb(ϕ) = (ψNA)∗ MAL(g) where g = limn→∞
1
dn gFn . We claim that

g = gR as defined in (11) hence MA0,hyb(ϕ) = (ψNA)∗µR which proves the theorem.
Let Pi be the homogeneous polynomial of degree d and coefficients in C((t)) associated

to Pi,t. Observe first that we have the following identity in PkC × D:

(22)
1

dn
ϕFn =

1

dn
ϕF1 +

n−1∑

j=1

(
1

dj+1
ϕFj+1 −

1

dj
ϕFj

)
=

1

dn
ϕF1 +

n−1∑

j=0

1

dj
ϕ̃ ◦Rn

where

ϕ̃([w], t) = log

(
max{|P0,t|, · · · , |Pk,t|}

max{|w0|, · · · , |wk|}d

)
.

Recall the definition of g1 in §3.3, and observe that this function equals gF1 by definition.

Lemma 4.5. The function n · ϕ̃ ◦ ψ extends continuously to the hybrid space and its

restriction to π−1(τ(0)) is equal to g1.

From this lemma and Theorem 2.10 we get

1

dn
gFn =

1

dn
gF1 +

n−1∑

j=0

1

dj
g1 ◦ R

j

and letting n→ ∞, we conclude that g = gR by (11). �

Proof of Lemma 4.5. One has n·(ϕ̃−ϕF1) = n·log
(
(|w0|2+···+|wk|

2)d/2

max{|w0|,··· ,|wk|}d

)
so that this function

extends continuously to the hybrid space with constant value 0 on π−1(τ(0)). �

4.4. Lyapunov exponents of endomorphisms. Let R = [P0 : · · · : Pk] be an endo-
morphism of the projective complex space PkC given in homogeneous coordinates by k+ 1
polynomials of degree d. The norm of the determinant of the differential ‖det(dR)‖ com-
puted with respect to Fubini-Study Kähler form ω satisfies R∗(ω∧k) = ‖det(dR)‖2 ω∧k

and a direct computation in homogeneous coordinates shows:

‖det(dR)‖ =
1

d

∣∣∣∣∣det
[
∂Pi
∂wj

]

i,j

∣∣∣∣∣×
(
|w0|

2 + · · ·+ |wk|
2

|P0|2 + · · ·+ |Pk|2

)k/2
,

see [BJ00, Lemma 3.1]. Recall that the sum of the Lyapunov exponents of R is given by
the formula:

Lyap(R) =

∫
log ‖det(dR)‖ dµR ,
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where µR is the measure of maximal entropy of R. Observe also that log ‖det(dR)‖ is
locally the sum of a psh function and a smooth function so that the integral is converging
since µR is locally the Monge-Ampère measure of a continuous function. It was proved
in [BD99] that Lyap(R) ≥ k

2 log d.

For an endomorphism R = [P0 : · · · : Pk] defined over Pk
C((t)), then one uses a slightly

different formula setting

‖det(dR)‖ =

∣∣∣∣∣det
[
∂Pi
∂wj

]

i,j

∣∣∣∣∣×
(
max{|w0|, · · · , |wk|}

max{|P0|, · · · , |Pk|}

)2

,

compare with [Ok11, (3.1)]. The sum of the Lyapunov exponents7 of the Chambert-Loir
measure of R is defined analogously to the complex case by the formula:

Lyap(R) =

∫
log ‖det(dR)‖ dµR .

This integral makes sense and is finite by Theorem 3.2.

Proof of Theorem C. Introduce the two (singular) admissible data G1 and G2 correspond-

ing to the section det
[
∂Pi,t

∂wj

]
i,j

and to the family of sections P0,t, · · · , Pk,t respectively.

They are of degree (2d − 2) and d respectively. We have

ϕG1 =

∣∣∣∣∣det
[
∂Pi,t
∂wj

]

i,j

∣∣∣∣∣×
1

max{|w0|, · · · , |wk|}2d−2
, and ϕG2 =

max{|P0,t|, · · · , |Pk,t|}

max{|w0|, · · · , |wk|}d
,

so that

log ‖det(Rt)‖ =

∫
(ϕG1 − 2ϕG2 + ϕ̃) dµRt

where

ϕ̃ = 2 log

(
max{|P0,t|, · · · , |Pk,t|}

|P0,t|2 + · · ·+ |Pk,t|2

)
− log

(
max{|w0|, · · · , |wk|}

|w0|2 + · · ·+ |wk|2

)
,

is a bounded function on PkC × D∗. We now apply Theorem 4.2 to the uniform function
ϕR, and we get the series of equalities

Lyap(Rt) =

∫
(ϕG1 − 2ϕG2 + ϕ̃) dµRt

=
log |t|−1

log r

∫
(ΦG1 − 2ΦG2) dMAt,hyb(ϕR) +O(1)

=
log |t|−1

log r

∫
(gG1 − 2gG2) dMA0,hyb(ϕR) + o(log |t|−1)

= Lyap(R)
log |t|−1

log r
+ o(log |t|−1) .

This concludes the proof. �

7one can define each individual Lyapunov exponent of R by looking at the limits 1
n

∫
log ‖

∧l(dRn)‖ dµR

as n → ∞ for l ∈ {1, · · · , k} which exist by Kingman’s theorem.



DEGENERATION OF COMPLEX ENDOMORPHISMS 33

5. Questions

5.1. Characterization of uniform functions. The notion of uniform functions depends
on the choice of smooth positive metrization on L. It would be interesting to explore if
one can give a more intrinsic definition of uniform function not relying on the existence of
an approximating sequence of model functions.

Let T be any positive closed (1, 1) current on X , and let E be any irreducible component
of the central fiber of an scn model p : X ′ → X . Then we set gT (xE) to be the quotient of
the Lelong number of T at a general point in E divided by the integer bE = ord(p∗π∗t).

Question 1. A function ϕ : X → R is uniform iff

• it is continuous in a neighborhood of X̄r;
• there exists a positive closed (1, 1) current T on Xr such that T |Xr = ω + ddcϕ;
• the function gT extends continuously to XC((t)),r .

The forward implication is easy.

It was proved in [BFJ15] (see also [BGJ+16]) that one can solve the Monge-Ampère
equation MAL(g) = µ for a suitable class of positive measures µ on XC((t)),r .

Question 2. Let | · |L e
−g be any continuous semi-positive metrization of LC((t)),r . Is it

possible to find a uniform function ϕ such that (ψNA)∗ MAL(g) = MA0,hyb(ϕ)?

5.2. Effective aspects. One can refine the estimates in §3.4 and prove that for any
admissible data F and G with F regular, then the function

(23)

∫
ϕG d(µF ,t)−

(∫
gG d(µF ,NA)

)
log |t|−1

log r

extends continuously at t = 0. In other terms, the error terms in the convergence (17) is

of the form c+o(1)
log |t|−1 for some c ≥ 0.

It would be interesting to see whether the same kind of estimates can hold when ϕF is
replaced by a general uniform function ϕ. In particular, when ϕ is the uniform function
of a degenerating family of endomorphisms then (23) is expected to hold true. Observe
that this would imply the first assertion of Conjecture 1 from the introduction.

5.3. Degeneration of volume forms. It would also be interesting to further investigate
the relationship between the two convergence theorems of measures in the hybrid space
given by Theorem A of the present paper and [BJ16, Theorem A]. Let us recall briefly the
setting of the latter paper (we have changed slightly their notation so as to match with
ours).

Suppose X → D∗ is a smooth and proper submersion, and let π : X → D be an snc
model of X. To simplify the discussion we shall assume furthermore that X is smooth
and that there exists a relatively ample line bundle L → X .

Let KX/D∗ be the relative canonical line bundle over the punctured disk: in a trivializa-
tion (z1, · · · , zk, t) where π(z, t) = t, then sections ofKX/D∗ are k-forms α(z, t)dz1∧· · ·∧dzk
with α holomorphic. Suppose that there exists a line bundle K → X whose restriction to
X is equal to KX/D∗ , and pick any smooth metric h on KX/D that extends continuously
to K.

For any fixed t ∈ D∗ one may consider the smooth volume form µt given locally by

µt =
Ω∧Ω̄
|Ω|2h

where Ω is any local section of KX/D∗ . The family of measures {µt}t∈D∗ is in fact

smooth, and S. Boucksom and M. Jonsson gave a precise asymptotic formula for the total
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mass µt(Xt) as t → 0. They also proved that the probability measures νt = µt/Mass(µt)
converge to an explicit measure νNA in the hybrid space.

Let us fix any smooth positive metric on L, and denote by ω its curvature form. The
restriction ωt := ω|Xt is a Kähler form for any t ∈ D∗. Recall that δ =

∫
Xt
ωkt is in-

dependent on t. Now for any fixed t ∈ D∗ we may solve the Monge-Ampère equation
(ωt + ddcϕt)

k = δ νt and gt is uniquely determined if we normalize it by the condition
supXt

ϕt = 0.

Question 3. Is it true that the family of functions ϕt is uniform in the sense of §4.1?

If the answer to the previous question is positive, then we may consider the associated
function g on XC((t)),r which defines a continuous semi-positive metrics on LC((t)),r and
Theorem 4.2 together with the results of [BJ16] imply MAL(g) = limt νt = δ νNA.
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[BFJ16] Boucksom, Sébastien; Favre, Charles; Jonsson, Mattias. Singular semipositive metrics in non-
Archimedean geometry. J. Algebraic Geom. 25 (2016), 77 – 139
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