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Abstract—Pansharpened images are widely used synthetic
representations of the Earth surface characterized by both a high
spatial resolution and a high spectral diversity. They are usually
generated by extracting spatial details from a high resolution
PANchromatic (PAN) image and by injecting them into a low
spatial resolution MultiSpectral (MS) image. The details injection
is performed through injection coefficients, whose values can
be either uniform for the whole image (global methods) or
spatially variant (context-adaptive approaches). In this paper,
we propose a context-adaptive approach in which the injection
coefficients are estimated over image segments achieved via a
binary partition tree segmentation algorithm. The approach is
applied to two credited pansharpening algorithms based on the
Gram-Schmidt orthogonalization procedure and the generalized
Laplacian pyramid technique. The performance assessment is
performed using two different datasets acquired by the Quick-
Bird and the WorldView-3 satellites. The validation procedure,
both at full and at reduced resolution, shows the suitability of
the proposed approach, which reaches a good trade-off between
accuracy and computational burden.

Index Terms—Context-adaptive Algorithms, Binary Partition
Tree, Pansharpening, Image Segmentation, Image Fusion, Re-
mote Sensing.

I. INTRODUCTION

Pansharpening refers to the fusion of a high spatial resolu-
tion PANchromatic (PAN) channel with an image character-
ized by a higher spectral diversity (i.e. MultiSpectral (MS)
or HyperSpectral (HS)) [1]–[4]. The goal is to produce a
synthetic image featuring both a high spatial and spectral
resolution that are unachievable by a single sensor due to
physical limitations. Pansharpening finds is widely exploited
for enhancing images mapping the Earth surface in software
platforms such as Google Earth and Microsoft Bing. How-
ever, the benefits of using pansharpened images for scientific
applications have been demonstrated in many fields, such as
spatial feature extraction [5], snow mapping [6], and change
detection [7], [8].

Pansharpening has gathered an increasing interest in the
scientific community and in the last two decades a huge
amount of methods have been proposed [1], [4], [9], [10].
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The pansharpening techniques found in the literature can be
divided in “classical approaches” that are based on a simple
model of fusion and that have been extensively studied and
benchmarked [4], [11], and recent methods based on more
complex models. These latter techniques can in some cases
outperform classical techniques but with a significant increase
of the computational burden. Within this family we can
find Bayesian methods exploiting Total Variation penalization
terms [12], [13] and the sparse representations of signals [14]–
[17] for regularizing the reconstruction of the ideal high
resolution multichannel image from the available data.

A key result of the pansharpening literature states that nearly
all the classical approaches can be recast into a unique frame-
work [1], [4]. More specifically, the pansharpening operation
can be divided into two sequential phases: i) The extraction of
the spatial details from the PAN image; and ii) The injection
of the extracted details into the original MS image, upsampled
to the PAN size. Thus, pansharpening algorithms differ in the
way they extract the spatial details and they inject them into the
MS image. According to the approach used to extract the PAN
details, classical pansharpening algorithms can be divided into
two classes: i) Component Substitution (CS) methods, which
exploit the difference between the PAN image and a linear
combination of the MS channels to extract details, and ii)
MultiResolution Analysis (MRA) techniques, which extract the
details from the PAN image and its low resolution version
derived from a multiscale decomposition [4], [11].

The injection step is also a method-dependent operation
which depends on the way the injection coefficients are de-
fined. The definition of the injection coefficients is either done
globally (i.e. only a single injection coefficient per spectral
band is used for the whole image) or in a Context-Adaptive
(CA) approach, in which the injection coefficients are spatially
variant. Global estimation procedures of the injection coef-
ficients have a low computational burden, whereas context-
adaptive techniques can lead to better results since the injection
coefficients are inferred locally on the image (via sliding
windows), thus reducing the variance of the estimate [18],
[19]. A simple solution to get a trade-off between performance
and computational complexity consists in employing a context-
adaptive approach based on non overlapping windows (i.e., a
partition of the image on a grid) on which the estimation pro-
cedure is independently carried out [20]. A more sophisticated
method instead involves a multiscale approach that is able to
adapt the choice of a global and a local MRA method for
each pixel by estimating the scale of the corresponding object
in the considered scene [21], [22]. A further computational
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efficient method to implement a CA procedure is achievable
by dividing the image in segments obtained by clustering the
pixels according to a suitable criterion. This approach has been
recently used in [23] for improving the use of the Minimum
Mean Square Error (MMSE) rationale for the pansharpening
problem. The k-means algorithm has been applied to the PAN
image employing the pixels intensity and the local standard
deviation as features in the unsupervised classification. Sig-
nificant quality enhancement has been demonstrated in the
paper with respect to the global estimation approach without
significantly affecting the computational burden.

In this paper, we propose to employ a semantic partition
of the image using a segmentation approach, whose goal is
twofold: i) Group pixels with similar spectral characteristics
of the details that are supposed to require equal values of the
injection coefficients; ii) Improve the pansharpened product
by letting the transitions among the zones characterized by
different injection coefficients occur in correspondence of the
boundaries of the object present in the scene, thus resulting
less evident to the visual inspection. We apply this scheme
to two different pansharpening algorithms, the Gram Schmidt
Adaptive (GSA) [24] and the Generalized Laplacian Pyramid
with Modulation Transfer Function (MTF)-matched filter and
regression based injection model [11] (GLP) [11], [18], [25]
that represents two very efficient implementations of GS
Mode 1 and GS Mode 2 [26], respectively. In both cases the
coefficients are given by the regression of pixel values of the
original MS channels and the corresponding pixel values of
the low resolution version of the PAN image. However, the
two methods are rather different in the practice, since while
the GSA approach belongs to the CS class, the GLP algorithm
fits in the MRA class, with substantially different features in
their final outcomes.

Many segmentation algorithms can be used for this purpose.
In this work we employed a Binary Partition Tree (BPT) [27]
that is a hierarchical representation of an image employing a
region-based logic. The BPT has been selected for its ability
in precisely delimiting homogeneous regions, by accurately
preserving the object edges present in the scene. Furthermore
it does not require prior information and the application of
the pruning algorithm allows to consider regions coming from
different levels of the hierarchy, thus permitting a precise
representation of small as well as large regions. In greater
details, a BPT is constructed through an iterative procedure
that performs successive aggregations of pairs of adjacent
regions starting from an initial partition of the image until a
single region, correspondent to the whole image, is obtained.
The sequence of region mergings corresponds to a binary tree
structure in which the segments of the initial partition are the
leaves and the whole image is the root. The intermediate nodes
are the regions obtained during the merging phase that consists
in combining the two most similar nodes at each step. Once
the tree is built, image partitions can be obtained by pruning
the BPT with a criterion that strongly depends on the specific
application.

In order to assess the performance of the proposed algo-
rithms, a dataset acquired by the QuickBird satellite and one
by the more recent WorldView-3 satellite are considered. This

allows us to test the capability of the proposed algorithm to
deal with 4-channels and 8-channels MS images. Both the
reduced resolution and the full resolution assessment proce-
dures have been used for numerical evaluation of the proposed
methods [4]. In the former procedure, the original MS image
plays the role of a reference, whereas the images acting in the
fusion are obtained by properly degrading the available MS
and PAN images, according to the Wald’s protocol [28]. In
particular, the original MS image is low pass filtered with
a Gaussian kernel mimicking the MTF of the MS sensor,
while the PAN image is processed by an almost ideal low
pass filter [25]. Both are then downsampled by a factor r
equal to the ratio of the pixel sizes of the MS and PAN
images. This procedure yields a couple of simulated images
characterized by the same starting pixel size ratio r and with
the PAN image at the same resolution of the reference image.
Thanks to the presence of a reference image, it is possible to
apply several quality indexes. However, the spatial degradation
phase carried out to simulate the two low resolution starting
images, introduces a bias for the filters used in the detail
extraction step. Furthermore, the hypothesis of the invariance
among scales of the fused outcomes is assumed to hold. For
these reasons, a complementary procedure is carried out at full
resolution to evaluate the performance of the pansharpening
algorithms at the nominal resolution. However, in this case
the lack of a reference image limits the validation. In both the
cases, we demonstrate the suitability of the proposed approach
by highlighting the significant advantages entailed by this
procedure with respect to the global approach. Furthermore,
the comparison to several state-of art techniques shows that the
proposed method is able to achieve very high performance.

The work presented in this paper is an extension of pre-
viously reported progress on context-adaptive pansharpening
using BPT [29], [30]. It worths to remark that the main
novelties of this paper with respect to the conference versions
are: i) A more detailed analysis of the literature; ii) A broader
experimental analysis at both reduced and full resolution; iii)
A novel proposed approach based on Generalized Laplacian
Pyramid, regression based injection model, and the BPT
segmentation technique; iv) The application of the recent
Extrapolated Q2n [31] index to optimize the free parameters
of context-adaptive algorithms.

The remaining of the paper is organized as follows. In
Sect. II, the context-adaptive pansharpening problem is formu-
lated and reviewed. Sect. III is devoted to the review of the
binary partition tree image segmentation approach. Its use in
two well-established pansharpening methods is also proposed
in this section. Experimental results using both the reduced
and the full resolution validation procedures are discussed in
Sect. IV. Finally, conclusions and future research lines arising
from this work are drawn in Sect. V.

II. CONTEXT-ADAPTIVE PANSHARPENING

Pansharpening algorithms aim at producing a synthetic
image M̂ with the same spectral diversity of an available
MS image M and the same spatial resolution of a companion
PAN image P, whose pixel size is r times smaller than the
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Fig. 1: Comparison of the datasets used for the reduced resolu-
tion assessment and the distribution of the optimal coefficients
obtained through (4): Indianapolis (on the left) and Sidney (on
the right). (a-b) Original MS image (used as the GT); (c-d)
False color representation of the optimal injection coefficients:
red, green, and blue colors represent the values related to the
red, blue, and green channel coefficients, respectively.

one of M. The coefficient r is referred to as resize factor.
Almost all classical approaches can be formulated with the
same fusion model [1], [4]. Specifically, by using the subscript
k ∈ {1, . . . , N} to index the channels of the multispectral
images involved in the process, the k-th band of the fused MS
image M̂ can be written as

M̂k = M̃k +Gk ◦Dk. (1)

In (1) M̃ is the available MS image, upscaled to the PAN
size, and ◦ denotes the element by element multiplication of
the three-dimensional injection coefficient matrix G and the
detail image D. The channels of D are defined as

Dk = Pk −PLP
k , (2)

namely, they are achieved by subtracting from the PAN image
Pk (in which the subscript k indicates that is eventually
equalized with respect to M̃k) its low resolution version
PLP

k . The technique used for constructing PLP
k determines the

two main categories of classical pansharpening algorithms,
since it is obtained as the combination of the bands of M̃
for Component Substitution (CS) approaches and through a
multiscale decomposition of Pk for MultiResolution Analysis
(MRA) methods.

According to (1), given the PLP image, the subsequent
step is the computation of the injection coefficient matrix G

that represents another feature for distinguishing the different
algorithms proposed in the literature.

An ideal formula could be derived if the target reference
image, say M, would be available. In fact the definition

G = ◦M− M̃

D
◦, (3)

where ◦ ·
·◦ denotes the element by element matrix division,

easily leads to a fused product equal to the target image:

M̂k = M̃k +

(
◦Mk − M̃k

Dk
◦

)
◦Dk = Mk. (4)

However, the lack for the reference M precludes the appli-
cation of (4) in the practice. On other hand, useful indications
can be derived by employing this formula at reduced scale
[28]. The application of this procedure to the images reported
in Figs. 1(a) and 1(b) is depicted in Figs. 1(c) and 1(d),
respectively; more specifically, the distribution of the optimal
coefficients is illustrated in false colors whose intensities
are proportional to the value of the injection coefficients
of the related channels. Although this check is based on
the scale invariance hypothesis, it confirms the intuition that
the optimal coefficients are actually spatially variant. Thus,
global approaches are expected to perform sub-optimally since
they apply a single injection coefficient (possibly different
for each band) to all pixels. This applies for example to
techniques based on the additive injection method (or High
Pass Filtering (HPF) scheme) [4], in which the coefficient
matrix is composed of ones:

Gk = 1. (5)

This class comprises algorithms such as the Intensity-Hue-
Saturation (IHS) image fusion [32], [33], box filter High-Pass
Filtering (HPF) [33], Indusion [34], and Generalized Lapla-
cian Pyramid (GLP) with MTF-matched filter with unitary
injection model (GLP-HPF) [18], [25]. Other approaches ex-
ploiting a global estimation method are, for example, the Prin-
cipal Component Analysis (PCA) [33], the Additive À Trous
Wavelet Transform with unitary injection model (ATWT) [35],
the Additive Wavelet Luminance Proportional (AWLP) [36],
the Band-Dependent Spatial-Detail method with Global es-
timation of coefficients (G-BDSD) [37], and the classical
implementations of Gram-Schmidt (GS) approaches [24], [26].

On the contrary, algorithms based on the multiplicative in-
jection method (or High Pass Modulation (HPM) scheme) [4]
use a different injection coefficient for each pixel, since in this
case the coefficient matrix is defined as

Gk = ◦ M̃k

PLP
k

◦ . (6)

The Brovey transform (BT) [38], the Smoothing Filter-based
Intensity Modulation (SFIM) [39], [40], and the GLP with
MTF-matched filter and multiplicative injection model (GLP-
HPM) [25], [41] are successful examples of this class of
pansharpening algorithms.

The last option consists in estimating the entries of G
locally in the image. Image blocks, either overlapping or not,
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are often used. For instance, a rectangular sliding window
is employed to perform the pixel-wise optimal estimation
in the Minimimum Mean Square Error (MMSE) sense [23],
[37], or to calculate local statistics that represent the heart
of the Context-Based Decision (CBD) [18] and the Enhanced
Context-Based (ECB) methods [25]. Of course, different cri-
teria can be obtained by replacing the spatial distance with
a different similarity measure. For example, the intensity and
the local standard deviation of the PAN image are used in [23]
for clustering the image pixels before the MMSE estimation of
the coefficients. We refer to this algorithm as Context-adaptive
Band-Dependent Spatial-Detail C-BDSD.

III. BINARY PARTITION TREE FOR PANSHARPENING

This work is focused on the estimation of the injection
coefficients in a context-adaptive manner. Specifically, we rely
on a segmentation of the scene for defining L regions in
the image domain, on which the injection coefficient will be
estimated. As shown in Figs. 1(c)-(d) one can easily note
that similar values of the optimal coefficients correspond to
pixels related to the same feature of the illuminated scene.
We consider a segmentation based on the BPT (Sect. III-A)
for partitioning the image which is used to locally estimate
the injection coefficients. Thus, in this section, we review first
the BPT image segmentation approach. Afterwards, its use
with two well-established pansharpening methods belonging
to the component substitution and the multi-resolution analysis
families is proposed.

A. Binary Partition Tree Image Segmentation
The Binary Partition Tree (BPT) is a tree structure, whose

nodes represent image regions obtained by merging segments
of an initial fine image partition (i.e., an over-segmentation
of the image or even the set of pixels itself) [27]. The
BPT is constructed by progressively merging the two most
similar adjacent regions until the whole image is obtained
and the merging sequence defines the binary hierarchical
structure. The construction phase heavily relies on the way the
region similarity is computed. Specifically, this is implemented
considering a region model MR, which specifies how a region
R is described, and a merging criterion O(MRi ,MRj )
quantifying the similarity of two regions Ri and Rj in terms
of their models MRi

and MRj
.

The BPT built can start from the finest partition of the
image, which is given by the set of connected components
(and might correspond to a partition in which each pixel is
associated to a region). However, since regions at the pixel
level are in many cases not semantically meaningful, a com-
mon procedure consists in considering an over-segmentation in
which segments correspond to small regions that are spectrally
homogeneous (i.e., super-pixels) [42], [43]. Since the aim is
to preserve all the boundaries contained in the image, in this
work the initial partition is generated by a watershed algorithm
applied to the morphological gradient of the MS image, which
is obtained as the maximum of the morphological gradients1

of the single spectral channels.

1The morphological gradient is the difference between a dilation and an
erosion with a minimal size structuring element [44].

The subsequent step in BPT construction is constituted by
the successive operations of region merging, which iteratively
define the partition tree structure. At each step the following
three operations are carried out: i) Find the most similar pair
of neighboring regions according to O(·, ·); ii) Create a new
region by merging the two selected regions and insert it as a
new node in the tree; iii) Update the values of the similarity
between the newly constructed region and its neighboring
regions. Several definitions are exploitable as region models
and merging criteria [27], [42], [43] and the final choice
depends on the desired semantic of the segmentation. In
our case, the goal is to partition the scene in spectrally
homogeneous regions (corresponding to land cover made up
of same materials). Thus, a suitable region model should rely
on spectral vectors (i.e., I{p} = [I1{p}, I2{p}, . . . , IN{p}]
containing for each pixel p of image I the values of the spectral
bands). Perhaps the simplest option in this case is to consider
the first order region model (i.e., the mean vector):

MR =
1

|R|
∑
p∈R

I{p}, (7)

in which |R| denotes the number of pixels contained in region
R. For computing the similarity between regions, we consid-
ered the Spectral Angle Mapper (SAM) as region merging
criterion [45], which is defined as:

O(MRi ,MRj ) = SAM [MRi ,MRi ]

= arccos

( ⟨
MRi ,MRj

⟩
∥MRi∥

∥∥MRj

∥∥
)
, (8)

where ⟨·, ·⟩ and ∥ · ∥ denote the scalar product and the norm,
respectively. Since the SAM relies on the angles between
spectral vectors, it can be a suitable distance for distinguishing
different materials regardless their illumination conditions,
which is related to their modules [46].

The image segmentation is then obtained by pruning the
BPT, since each cut in the BPT structure corresponds to a
partition of the image domain. In this application, the pruning
is obtained by fixing the number L of segments in the segmen-
tation map in order to control the computational complexity
of the injection coefficient estimation (which depends on the
number of regions in the segmentation map). The segmentation
map is thus composed of the regions in the last L−1 merging
steps of the BPT construction.

The segmentation algorithm exploited in this work is sum-
marized in Algorithm 1.

B. Local Injection Coefficient Estimation: GSA and GLP using
BPT

The focus of this work is the application of the image
segmentation to the Gram Schmidt Adaptive (GSA) [24] and to
the Generalized Laplacian Pyramid with MTF-matched filter
and regression based injection model [11] (GLP) [11], [18],
[25] pansharpening algorithms.

On the one hand they are different approaches, belonging
to the CS and the MRA class, respectively. Indeed the low
pass version PLP of the PAN image, required for constructing
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Algorithm 1: BPT-Segmentation Algorithm
Data: The image I to segment, the number of segments

L, the region model MR, the merging criterion
O(MRi ,MRj ).

Result: The segmentation R = {Ri}i=1,...,L.
begin

- Initialization:
- Generate an over-segmentation of the image

composed by N0 > L regions:

R(0) = {Ri}i=1,...,N0

- Compute the region models {MRj}j=1,...,N0

according to (7)
- Compute the values of the merging functions
O(MRi ,MRj ) according to (8)

for n = 1, . . . , N0 − L do
- Find the two most similar neighboring regions
among the set (Ri, Rj) ∈ R(n−1) ×R(n−1)

(Rl, Rm) = arg min
Ri,Rj

O(MRi ,MRj ).

- Merge Rl and Rm in Rlm and define
R(n) = R(n−1) \ {Rl, Rm} ∪Rlm

- Compute:
- the region model MRlm

- for all the neighbors Rj of Rlm update

O(MRlm
,MRj )

- Set R = R(n)

the image of details D = P − PLP , is obtained through the
application, for each k = 1, . . . , N of the formulas

PLP
k =

N∑
k=1

αkM̂k, for GSA, (9)

PLP
k =Pk ∗ hk, for GLP, (10)

where αk are weights estimated through a regression proce-
dure and · ∗hk is a Linear Time-Invariant (LTI) filter obtained
by convolution with a kernel hk whose frequency response
amplitude matches the MTF of the sensor acquiring the k-th
channel of the MS image.

On the other hand both algorithms are instances of the
Gram-Schmidt method, sharing the formula for the evalua-
tion of the injection coefficients. To this aim, the regression
between the MS channels and a low resolution version of the
PAN image is employed, leading to the following expression

Gk =
Cov[M̃k,P

LP
k ]

Cov[PLP
k ,PLP

k ]
, (11)

in which Cov[X,Y] denotes the covariance of X and Y,
which is valid for the original implementation employing a
global estimation procedure.

Eq. (11) is easily implemented locally by computing Gk on
each image region. Formally, the entry G

(p)
k corresponding to

Algorithm 2: Pansharpening Algorithm Based on BPT-
Segmentation
Data: The available images M and P, the number of

segments L, the region model MR, the merging
criterion O(MRi ,MRj ).

Result: The pansharpened image M̂.
begin

- Upscale image M to the scale P, yielding M̃
- Extract the detail image Dk = Pk −PLP

k , where
PLP

k is defined according to (9) and (10) for GSA
and GLP, respectively
- Segment image M̃ in L regions, through
Algorithm 1, obtaining the partition:

R = {Ri}i=1,...,L

for k = 1, . . . , N do
for l = 1, . . . , L do

- Calculate the injection coefficients
for each region l as

Gl
k =

Cov[RM
l , RP

l ]

Cov[RP
l , R

P
l ]

- Gather {Gl
k}l=1,...,L in Gk

- Compute the fused image M̂k according to

M̂k = M̃k +Gk ◦Dk.

pixel p is calculated as

G
(p)
k =

Cov[RM
p , RP

p ]

Cov[RP
p , R

P
p ]

, (12)

wherein RM
p and RP

p denote the regions of the M̃k and
PLP

k images that include p, respectively. According to this
procedure the same Gk is applied to all pixels belonging to
the same region R. Differently from [19], in which rectangular
(overlapping or not) blocks are considered, in this work the
regions RM

p and RP
p are extracted by image partition based

on the BPT algorithm.
The proposed context-adaptive pansharpening algorithm

based on segmentation is thus articulated in four steps: i) The
segmentation of the image through the application of the BPT
method to the image M̃; ii) The extraction of the detail image
D; iii) The evaluation of the injection coefficients matrix G
through formula (12); iv) The fusion of the available M and P
according to the expression (1). The pansharpening algorithm
based on BPT is summarized in Algorithm 2.

IV. EXPERIMENTAL RESULTS

We considered two datasets for the experimental comparison
of the algorithms: the first one has been collected by the
Quickbird sensor and is composed by a PAN channel and
a 4-bands MS image (Blue, Green, Red and NIR). It will
be referred to as the Indianapolis dataset from the city
represented in the images. The multispectral bands have a
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2: Datasets used for the assessment. From the left to the right: Indianapolis reduced resolution dataset and Sidney reduced
resolution dataset, Indianapolis full resolution dataset and Sidney full resolution dataset. The first row contains the high
resolution PAN image and the second row contains the low resolution MS image upscaled to the PAN size (EXP).

resolution cell of 2.4m×2.4m, while the panchromatic channel
has a 4 times higher spatial resolution (0.6m×0.6m). Instead,
the Sidney dataset has been acquired by the WorldView-3
satellite over a urban area of the New South Wales capital.
The PAN image is characterized by a Ground Sample Distance
(GSD) equal to 40cm, while the GSD of the MS acquisition
device is equal to 1.6m acquiring 8 channels (Coastal, Blue,
Green, Yellow, Red, Red Edge, Near-IR1, and Near-IR2). Both
the datasets have been used for the reduced and full resolution
analyzes by cutting the 1024× 1024 images shown in Fig. 2.

Several algorithms, selected from the CS and the MRA
classes, have been employed for comparison in this work. The
acronyms BT, AWLP, G-BDSD, and C-BDSD have already
been defined in Sect. II. The other compared algorithms are:
the MS image interpolation, using a polynomial kernel with
23 coefficients (EXP) [18], the Generalized Intensity-Hue-
Saturation (GIHS) [47], the Partial Replacement Adaptive
Component Substitution (PRACS) [48], the GLP with additive
injection model (GLP-HPF) [18], [25], the GLP with multi-
plicative injection model (GLP-HPM) [41] and the Sparse
Representation based methods proposed in [15] (SR-Li) and
in [16] (SR-Zhu). As suggested in the original papers, the SR-
Li algorithm was implemented by employing 3 × 3 patches,
overlapping each other by 2 pixels, and the SR-Zhu algorithm
by employing 7×7 patches overlapping each other by 3 pixels.
Only for the reduced resolution assessment, the quality indexes
related to the Ground Truth (GT) are reported in the first row
of the table and represent the best achievable values.

Finally, the quality indexes corresponding to the selected

algorithms are computed; for both GSA and GLP methods, the
reported values are obtained by approximating the statistical
quantities required by (11) with sample values calculated in
multiple different ways: glob refers to the calculation of a
single coefficient for the whole image, which is obtained by
using all the pixels; the block method consists in partitioning
the images in squared blocks and in computing a single value
of the injection coefficient for all the pixels included in each
block; ovlp denotes the pixel-wise estimation of the injection
coefficients through a sliding window that delimits the pixels
included in calculation; the last three methods are based on
the application of the segmentation algorithm to partition the
pixels before the coefficients estimation. More in details, bpt
indicates the method proposed in this paper, in which the BPT
algorithm is applied to M̃S (the original MS image upscaled
to the PAN size), kmc-m relies on the segmentation of M̃S
through the k-means clustering (KMC), while kmc-p consists
in applying the k-means clustering to the intensity and the local
standard deviation of the PAN image, like in [23].

As in [4], the first two moments of the PAN image have
been equalized with respect to the original MS image before
the detail extraction phase. Actually, the results of some
algorithms are independent of this procedure.

A. Reduced Resolution Validation

The assessment procedure performed at reduced resolution
is able to accurately evaluate the algorithms’ capability of
reproducing the original MS image, which acts as the Ground
Truth (GT), starting from a degraded version of the available
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TABLE I: Quality indexes obtained by the compared algorithms for the two reduced resolution datasets. Values of the Q2n,
ERGAS, and SAM are reported. Val indicates the block dimension for the block method, the window size for the ovlp
approach, and the number of segments for the the bpt, kmc-m, kmc-p and the C-BDSD methods. For each dataset, the
best results are pointed out in boldface and the second best in italic characters. The best results among the GSA and GLP
approaches are underlined.

Val Q2n ERGAS SAM Time Val Q2n ERGAS SAM Time
GT 1.0000 0.0000 0.0000 0.0 1.0000 0.0000 0.0000 0.0
EXP 0.7849 4.1275 3.8276 0.0 0.6423 7.9554 5.8668 0.0
IHS 0.7573 3.9271 4.9660 0.1 0.7693 4.8259 6.8399 0.1
Brovey 0.7981 3.4821 3.8276 0.1 0.7651 4.6297 5.8668 0.1
PRACS 0.8729 2.9884 3.9216 1.7 0.8468 4.3665 5.2170 5.2
AWLP 0.8486 3.2928 3.7421 1.6 0.8762 4.0706 4.6465 3.6
SR-Li 0.8803 2.7780 3.7264 6827.8 0.8506 4.6013 5.8398 10077.8
SR-Zhu 0.8086 3.9831 5.1360 124.9 0.8055 6.4756 8.9345 124.4
GLP-HPF 0.8307 3.1072 4.4065 0.1 0.7970 4.8304 6.2754 0.2
GLP-HPM 0.8360 3.0911 3.7555 0.1 0.8143 4.0120 5.8730 0.2
G-BDSD 0.8397 3.0998 4.3408 0.4 0.8588 4.1615 5.6220 0.6
C-BDSD 50 0.8654 3.0748 4.0357 1.7 10 0.8703 3.9882 5.2700 1.0

GSA

block 128 0.8609 3.2156 4.1093 0.2 1024 0.8733 3.9539 4.9068 0.4
ovlp 55 0.8562 3.4000 4.2843 544.0 15 0.8735 4.0924 4.9594 626.7
glob 0.8391 3.1327 4.1279 0.7 0 0.8733 3.9539 4.9068 0.8
bpt 500 0.8775 3.0907 3.7307 13.0 1000 0.8770 3.8635 4.9120 47.3
kmc-m 3 0.8770 2.9857 3.5990 0.5 1 0.8733 3.9539 4.9068 0.8
kmc-p 3 0.8538 3.0448 3.9553 0.5 10 0.8739 3.8636 4.8278 1.2

GLP

block 128 0.8725 3.0457 3.9698 0.2 1024 0.8755 3.9148 4.8642 0.5
ovlp 55 0.8698 3.1661 4.0798 701.9 15 0.8746 4.0183 4.8553 735.3
glob 0.8508 3.0121 4.0315 0.5 0 0.8755 3.9148 4.8642 0.8
bpt 500 0.8895 2.8793 3.5681 10.1 1000 0.8790 3.8086 4.8447 47.1
kmc-m 5 0.8862 2.7397 3.5117 0.5 1 0.8755 3.9148 4.8642 0.8
kmc-p 3 0.8637 2.9256 3.8801 0.4 10 0.8765 3.8169 4.7641 1.4

Quickbird Indianapolis dataset WV-3 Sidney dataset

(a) (b) (c)

Fig. 4: Reduced resolution Indianapolis dataset: the difference of the errors committed in estimating the optimal injection
coefficients; the segmentation-aided (bpt) method is compared to: (a) HPF; (b) HPM; (c) glob. Green values indicate better
results for the bpt method, red values indicate better results for the compared method.

data. Both a quantitative analysis, based on some credited
quality indexes, and a visual inspection of the pansharpened
products have been carried out.

The main elements for completing the quantitative eval-
uation are contained in Tab. I that reports the values of
three different quality indexes. Among the wide class of
measures applicable to this case, we selected the Spectral
Angle Mapper (SAM) [49] to quantify the spectral accuracy

of the pansharpened product, the Erreur Relative Globale Adi-
mensionnelle de Synthèse (ERGAS) [50], which is primarily
related to the radiometric distortion, and the comprehensive
vector quality index Q2n [51], [52], which quantifies both
spatial and spectral quality. Optimal values are 0 for the SAM
and the ERGAS, and 1 for the Q2n. The Q2n index is also
used for the optimization of the parameters characterizing the
specific methods, i.e. the size in pixels of the partitioning
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(a) GT (b) GLP-HPM (c) G-BDSD (d) C-BDSD opt

(e) GSA glob (f) GSA bloc (g) GSA ovlp (h) GSA segm

(i) GLP glob (j) GLP bloc (k) GLP ovlp (l) GLP segm

Fig. 5: Reduced resolution Indianapolis dataset: a small portion of the final products related to some compared algorithms,
which are indicated under the corresponding image.

(a) GT (b) GLP-HPM (c) G-BDSD (d) C-BDSD opt

(e) GSA bloc (f) GSA ovlp (g) GSA glob (h) GSA segm

(i) GLP bloc (j) GLP ovlp (k) GLP glob (l) GLP segm

Fig. 6: Reduced resolution Indianapolis dataset: the details corresponding to the images shown in Fig. 5.

blocks, the size in pixels of the sliding window, and the
number of classes in the block, ovlp, bpt, kmc-m, kmc-p
techniques, respectively. The same procedure was applied for
selecting the number of classes in the C-BDSD method. The
chosen parameter is indicated as Val in Tab. I. The selection of
the Q2n index has been guided by the possibility, illustrated
in [31], of correctly estimating its value at full resolution

by extrapolating, through a polynomial regression, the quality
indexes calculated at multiple reduced scales.

Paying attention to the proposed segmentation-based ap-
proach, additional information can be extracted by analyzing
the trend of the Q2n index as a function of the number of
segments L that is depicted in Fig. 3. The figure indicates that
the overall image quality is not particularly sensitive to L,
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(a) GLP-HPF (b) GLP-HPM (c) G-BDSD (d) C-BDSD opt

(e) GSA glob (f) GSA bloc (g) GSA ovlp (h) GSA segm

(i) GLP glob (j) GLP bloc (k) GLP ovlp (l) GLP segm
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Fig. 7: ERGAS maps related to the images shown in Fig. 5.
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Fig. 3: Learning curves of the Q2n index as a function of the
number of segments L: (a) Indianapolis and (b) Sidney.

if a sufficiently large value is chosen. However, the range of
suitable values of L has to be estimated for each image, since
it depends on the number of objects present in the scene, as
well as on the image size, being the output of BPT constituted

by connected regions.

The main analysis is devoted to the comparison of the
performance achievable by the GSA and GLP pansharpening
algorithms. By focusing attention on the two groups of seven
methods reported at the bottom of Tab. I, one can easily note
that the coefficient estimation technique based on image seg-
mentation turns out to be particularly advantageous, achieving
the best performance for both the GSA and GLP approaches.
Giving more insight into the comparison of the segmentation
methods, the approaches using the spectral features of the
images, derived through the application of the BPT and the
KMC algorithms to the M̃S image, achieve superior quality
images. Generally, better results are obtained by the BPT with
respect to KMC corroborating the choice of the algorithm
made in this work.

In the specific case of the GLP methods, the further
comparisons to the GLP-HPF and the GLP-HPM method are
surely remarkable, since they represent two very efficient im-
plementations of pansharpening algorithms, employing MTF-
matched filters for detail extraction [53]. The execution times,
calculated on an Intel R⃝CoreTMI7 3.2GHz processor, point
out that the ovlp method mainly constitutes a theoretical
approach, since the computational burden results unaffordable
taking into account the actual size of images used in the prac-
tice. On other hand, the execution times of the bpt methods
are not significantly greater than those of the competitors.
The reported values do not include the time to complete
the segmentation step, which is not strictly related to the
fusion phase; it is required only when the segmentation of
the illuminated scene has never been performed or is out-
of-date. Fig. 4 justifies the numerical results by showing the
comparison of the errors committed in estimating the optimal
coefficients given by (4). The figure refers to the GLP case and
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shows the difference between the error related to the proposed
bpt approach and three commonly employed procedures,
i.e. the HPF scheme, the HPM scheme, and the regression-
based approach applied on the whole image (glob). In all
the cases the green zones, highlighting the pixels for which
the proposed method entails an advantage, are wider than
the complementary red zones. In particular, the figure points
out that the proposed scheme achieves a fruitful compromise
between the parts of the images that require a point-wise
estimation of the injection coefficients, i.e., where the HPM
approach is advisable, and more homogeneous zones that
benefit from a global estimation procedure, as obtained by
the HPF and the glob approach.

Despite the current study is focused on the different ways
for estimating the injection coefficients in the GSA and GLP
pansharpening schemes, some other high performance meth-
ods have been added to link the measured values to an absolute
quality scale. Since the original GSA and GLP algorithms
are already reference approaches within the CS and the MRA
classes [4], respectively, we expected very high performance
for the proposed methods. Indeed, the comparison with the
other state-of-the-art methods highlights the superior perfor-
mance obtained, in particular, by the GLP-bpt algorithm.
High-quality results are also attained by compressive sensing
algorithms that exploit a local injection of coefficients as well,
being the image divided in patches during the pansharpening
process. However, at the same time, Tab. I evidences that the
computational burden of these algorithms remains their main
drawback.

The visual analysis, here reported with reference to the Indi-
anapolis dataset, allows for several further considerations. In
Fig. 5 we show a portion of the pansharpened images obtained
by employing the four versions of the GS-based methods
and by some other considered algorithms. The comparison
is not simple, but it can be facilitated by also inspecting
the weighted injected details, i.e., the difference between the
fused image M̂ and the interpolated MS image M̃, which are
reported in Fig. 6. In both the figures, the artifacts involved
by the block and, to a minor extent, by the ovlp methods
are particularly clear. On the contrary, only with the help of
Fig. 6 the spectral improvements achievable by employing
the bpt approach instead of the glob estimation approach
can be easily remarked. Indeed, the presence of the reference
image allows to appreciate the similarity of the detail image
colors yielded through the bpt method. The valuable accuracy
of the injected details is also confirmed after comparing the
corresponding images produced by the other three reported
algorithms. In particular, the proposed approaches employing
the BPT segmentation are able to obtain a well-balanced
reproduction of the missing information, strongly limiting
under- and over-injection effects.

The link between the quantitative and the qualitative an-
alyzes can be found by inspecting the distribution of the
ERGAS, depicted in the subplots of Fig. 7. Even from this
point of view, the homogeneity of the committed error is the
most valuable quality of the proposed method; indeed the areas
characterized by a large error, which correspond to red pixels,
are rather small. For instance, with regard to the reported

portion of the image, a remarkable behavior is exhibited by
the GLP-bpt method on the areas occupied by the red roofs
and in the bottom-right vegetated zone, where the chance of
injecting the marked discontinuities present in the PAN image
is highly probable.

B. Full Resolution Validation

The full resolution assessment is hard to tackle by a quan-
titative point of view, but it constitutes a necessary step for
evaluating the performance of the pansharpening algorithms
at the real scale. A starting point is represented by the
consistency property of the Wald’s protocol, which requires
that the original MS image is obtained again by degrading
the pansharpened image [28]. This procedure has to be imple-
mented by preserving the characteristics of the corresponding
sensor, i.e. by employing a degradation filter matched to the
MTF of the MS acquisition device. With this caveat, the
consistency property has been widely used for the spectral
assessment of the final products, by comparing the degraded
pansharpened image to the original MS image. Indeed, this
procedure constitutes the basis for calculating classical quality
indexes, as the SAM, and novel accuracy measures, as the
spectral distortion Dλ employed in the Khan’s protocol [54],
which coincides with the complement to one of the Q2n

value between the two low frequency images. In this work
we report both these values, while we commit the evaluation
of the spatial quality of the pansharpened images to the spatial
distortion DS of the QNR protocol [55]. The suitability of
the joint evaluation of such spatial and spectral distortions for
assessing the overall quality of the image has been recently
stated in [56], where the comprehensive index obtained by
multiplying the quantities 1−DS and 1−Dλ has been named
as Hybrid QNR (HQNR).

In the case of tunable algorithms the choice of a suitable
index, computable at the original resolution, is required for op-
timizing the design parameters. As anticipated in the previous
section, the Q2n has been shown to be the most predictable
classical index at full resolution [31]. Accordingly, we maxi-
mize the Extrapolated Q2n (abbreviated as Q2n −E) to tune
the free parameters characterizing the various approaches. For
the quantitative evaluation of the compared algorithms, the
values of the SAM, DS, Dλ, and HQNR are reported in
Tab. II, which also contains the maximum value of Q2n −E
achievable with each method and the corresponding value Val
of the optimal parameter.

The full scale assessment procedure underlines the need
for a local estimation of the coefficients. Indeed, the com-
parison among the different approaches indicates that the
glob method often achieves very low performance, when
compared to the other techniques. In particular, only a slight
improvement can be observed by employing the block
estimation procedure, while the segmentation of the image
can appreciably help the pansharpening process by properly
partitioning the pixels in homogeneous classes. In that way,
the bpt method reaches very high performance for both
the datasets. Analogously, the ovlp method represents the
strongest competitor, sometimes achieving comparable, or else
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TABLE II: Quality indexes obtained by the compared algorithms for the two full resolution datasets. Values of the Q2n,
SAM, DS, Dλ and HQNR are reported. Val indicates the block dimension for the block method, the window size for
the ovlp approach, and the number of segments for the bpt, kmc-m, kmc-p and the C-BDSD methods. For each dataset,
the best results are pointed out in boldface and the second best in italic characters. The best results among the GSA and GLP
approaches are underlined.

Val Q2n-E SAM DS Dλ HQNR Time Val Q2n-E SAM DS Dλ HQNR Time
EXP 0.9317 1.0751 0.0814 0.0227 0.8978 0.0 0.9171 2.1570 0.0723 0.0270 0.9027 0.0
IHS 0.9574 1.6583 0.2112 0.0608 0.7409 0.1 0.9523 2.7568 0.0779 0.0502 0.8758 0.1
Brovey 0.9623 1.1327 0.1773 0.0477 0.7835 0.1 0.9516 2.1214 0.0740 0.0496 0.8801 0.1
PRACS 0.9658 1.1299 0.0776 0.0179 0.9059 1.8 0.9752 2.0748 0.0505 0.0194 0.9311 5.4
AWLP 0.9698 1.0929 0.1205 0.0150 0.8664 1.7 0.9831 1.9006 0.0573 0.0125 0.9309 3.2
SR-Li 0.9666 0.7254 0.0766 0.0065 0.9174 17184.1 0.9722 1.4605 0.0667 0.0056 0.9281 20580.1
SR-Zhu 0.9380 0.9112 0.0738 0.0097 0.9171 159.4 0.9329 2.8342 0.0780 0.0215 0.9022 317.1
GLP-HPF 0.9688 1.1408 0.1319 0.0177 0.8528 0.1 0.9587 2.1980 0.1036 0.0160 0.8820 0.2
GLP-HPM 0.9681 1.0760 0.1250 0.0158 0.8612 0.1 0.9686 2.1619 0.0835 0.0150 0.9028 0.2
G-BDSD 0.9720 1.5771 0.1017 0.0300 0.8714 0.6 0.9817 2.7971 0.0221 0.0226 0.9558 0.8
C-BDSD 1 0.9720 1.5771 0.1017 0.0300 0.8714 0.4 50 0.9884 2.9921 0.0257 0.0289 0.9462 3.0

GSA

block 512 0.9690 1.1953 0.1440 0.0247 0.8348 0.2 64 0.9850 2.2067 0.0568 0.0160 0.9281 0.6
ovlp 55 0.9619 1.2190 0.0872 0.0202 0.8944 557.3 45 0.9856 2.1765 0.0499 0.0157 0.9352 945.4
glob 0.9683 1.2021 0.1488 0.0247 0.8301 0.4 0.9848 2.2094 0.0722 0.0164 0.9125 0.7
bpt 500 0.9730 1.0869 0.1104 0.0183 0.8734 10.6 1000 0.9916 2.1246 0.0579 0.0154 0.9276 43.8
kmc-m 50 0.9725 1.2107 0.1150 0.0217 0.8658 1.6 100 0.9894 2.5062 0.0613 0.0173 0.9225 5.5
kmc-p 3 0.9696 1.1623 0.1436 0.0232 0.8365 0.4 10 0.9874 2.4028 0.0495 0.0160 0.9352 1.2

GLP

block 512 0.9700 1.1051 0.1227 0.0179 0.8616 0.2 64 0.9849 1.9251 0.0465 0.0136 0.9406 0.7
ovlp 45 0.9639 1.0824 0.0711 0.0141 0.9159 464.7 45 0.9856 1.8757 0.0438 0.0131 0.9437 900.8
glob 0.9693 1.1127 0.1274 0.0177 0.8572 0.4 0.9848 1.9668 0.0601 0.0137 0.9270 0.7
bpt 500 0.9744 1.0191 0.0906 0.0133 0.8973 10.2 1000 0.9916 1.8769 0.0469 0.0128 0.9409 39.9
kmc-m 10 0.9730 1.0463 0.0980 0.0150 0.8885 0.6 100 0.9894 2.1632 0.0343 0.0192 0.9472 6.3
kmc-p 3 0.9705 1.0846 0.1217 0.0169 0.8635 0.4 10 0.9874 1.9918 0.0438 0.0136 0.9432 1.3

Quickbird Indianapolis dataset WV-3 Sidney dataset

(a) GSA glob details (b) GSA segm details (c) SAM difference (d) Equivalent PAN error difference

(e) GLP glob details (f) GLP segm details (g) SAM difference (h) Equivalent PAN error difference

Fig. 8: Sidney dataset: comparison of the details injected through the global (glob) and segmentation-aided (bpt) estimation
of the injection coefficients: GSA method (first row) and GLP method (second row). (a) and (e): details injected through the
glob approach; (b) and (f): details injected through the bpt approach; (c) and (g): difference of SAM related to the glob
and bpt methods; (d) and (h): difference of the equivalent PAN error related to the glob and bpt methods. Green values
indicate better results for the bpt method, while red values indicate better results for the glob method.

better, performance; however the required computational effort
surely recommends the bpt technique as the most viable

approach to implement a spatially variant version of the
injection procedure. Notably, the ranking of the proposed
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algorithms after the comparison to the other state-of-the-art
algorithms is well-preserved at full resolution. As expected,
more fluctuations can be observed among the quality indexes,
but the best average behavior is surely exhibited by the GLP-
bpt approach that often achieves the best results.

The visual analysis of the pansharpened images allows to
draw very similar considerations with respect to the reduced
resolution assessment. Even in this case, we focus on the
analysis of the injected details, which turn out to be easier
to read with respect to the final product. The images related
to the Sidney full resolution dataset are reported in Fig. 8.
For both the GSA and the GLP techniques, the comparison
of the images related to the glob and bpt methods shows a
desirable inhomogeneity of the colors obtained with the latter
method, whose correctness however cannot be assessed due to
the lack of the reference image. For that reason, we report in
the third column of Fig. 8 the difference between the SAM
maps related to the glob and bpt approaches, highlighting
in green the positive values and in red the negative ones. The
superior extent of the green zones indicates that the spectral
accuracy is surely improved through the bpt approach. We
further show, in the last column of Fig. 8, a comparison among
the spatial precision of the details of the pansharpened image.
To this aim, since the sole full resolution available image is
the PAN, we compare it to an equivalent high resolution PAN
image obtained as the linear combination of the channels of the
pansharpened product. The combination weights are estimated
through a MMSE procedure performed at reduced resolution.
Fig. 8(d) and Fig. 8(h) report the difference of the local values
of the spatial Correlation Coefficient (sCC) [57] between the
original PAN image and the equivalent PAN image related
to the glob and the bpt methods, in the case of GSA and
GLP pansharpening methods, respectively. The presence of
an almost similar (and small) number of green and red pixels
testifies that no significant improvement is obtained in terms of
the spatial quality of the image details that is in fact primarily
related to the common extraction phase. Namely, as expected,
the most significant contribution of the proposed method based
on the image segmentation is obtained in terms of an increase
of the spectral accuracy.

V. CONCLUSIONS AND FUTURE DEVELOPMENTS

This paper has focused on the estimation of the coefficients
used for weighting the spatial details extracted from a PAN
image when injected into the MS channels, which is a key
step in classical pansharpening approaches. In particular, we
have proposed a context-adaptive (i.e., local) estimation of
the coefficients based on image segmentation. The injection
coefficients are then region-dependent, meaning that all pixels
belonging to the same region in the segmentation map will
share the same coefficients (which can be different with respect
to those estimated on other regions). The image partition,
defining the set of regions on which the coefficients are
computed, is obtained by a segmentation based on the Binary
Partition Tree applied to the MS image. The proposed context-
adaptive estimation of the injection coefficients has been
integrated into two widely used pansharpening schemes. The

first one belongs to the component substitution family (i.e. it
is based on the Gram-Schmidt orthogonalization procedure),
whereas the second one falls into the multi-resolution analysis
class based on the generalized Laplacian pyramid decomposi-
tion.

The proposed segmentation-based context-adaptive ap-
proach has been compared to several other local schemes for
the estimation of the injection coefficients considering two
real images acquired by the QuickBird and the WorldView-
3 satellites. The experimental analysis, conducted both at
reduced and at full resolution, demonstrated the significant
improvement in performance for both the proposed context-
adaptive pansharpening algorithms with respect to their clas-
sical global implementation. Furthermore, the comparison to
other credited state-of-the-art approaches proved that the pro-
posed coefficient estimation method based on binary partition
tree segmentation is able to obtain, on one hand, very high
performance, especially when it is used in conjunction with the
generalized Laplacian pyramid decomposition scheme, and, on
other hand, a reasonable computational burden.

An interesting different testbed that deserves further in-
vestigations is represented by hyperspectral images. Another
further investigation line goes towards the application of other
segmentation techniques in order to yield a better estimate of
the injection coefficients.
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