N
N

N

HAL

open science

Hidden Markov Model Based Automated Fault

Localization for Integration Testing
Ning Ge, Shin Nakajima, Marc Pantel

» To cite this version:

Ning Ge, Shin Nakajima, Marc Pantel. Hidden Markov Model Based Automated Fault Localization
for Integration Testing. 4th International Conference on Software Engineering and Service Science

(ICSESS 2013), May 2013, Beijing, China. pp. 1-4. hal-01402565

HAL Id: hal-01402565
https://hal.science/hal-01402565

Submitted on 24 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01402565
https://hal.archives-ouvertes.fr

OATAQO

Open Archive Toulouse Archive Ouverte

Open Archive TOULOUSE Archive Ouverte (OATAQO)

OATAO is an open access repository that collects the work of Toulouse researchers and
makesit freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toul ouse.fr/
EprintsID : 15151

The contribution was presented at ICSESS 2013:
http://www.ieee.org/conferences events/conferences/conferencedetail s/index.
html?Conf 1D=30490

Tocitethisversion : Ge, Ning and Nakajima, Shin and Pantel, Marc Hidden
Markov Model Based Automated Fault Localization for Integration Testing.
(2013) In: 4th International Conference on Software Engineering and Service
Science (ICSESS 2013), 23 May 2013 - 25 May 2013 (Beijing, China).

Any correspondence concerning this service should be sent to the repository
administrator: staff-oatao@listes-diff.inp-toulouse.fr

Hidden Markov Model Based Automated Fault
Localization for Integration Testing

Ning Ge
University of Toulouse - IRIT/INPT
Toulouse, France
ning.ge @enseeiht.fr

Abstract—Integration testing is an expensive activity in soft-
ware testing, especially for fault localization in complex systems.
Model-based diagnosis (MBD) provides various benefits in terms
of scalability and robustness. In this work, we propose a
novel MBD approach for the automated fault localization in
integration testing. Our method is based on Hidden Markov
Model (HMM) which is an abstraction of system’s component
to simulate component’s behaviour. The core of this method is
a fault localization algorithm that gives out the set of suspect
faulty components and a backward algorithm that calculates
the matching degree between the HMM and the real system
to evaluate the confidence degree of the localization conclusion.
The proposed method is evaluated on a specific test bed and is
applied to a simple helicopter control system case study.

Index Terms—Model-Based Diagnosis; Hidden Markov Model;
Automated Fault Localization; Integration Testing;

I. INTRODUCTION

Automated integration testing is an efficient way to detect
the faults caused by the interactions between components.
However, detecting and locating faults in a complex system
with large amount of components are expensive activities.
Models, as the abstraction of real system, contain enough core
information to represent the desired behaviour of a system
under test. Model-based diagnosis (MBD) [1] provides various
benefits in terms of scalability and robustness. Improving
integration testing by using automated fault localization ap-
proach based on model is still an important subject. Fault
localization algorithms follow two paradigms: cause-effect and
effect-cause analyses. Cause-effect analysis [2]-[4] starts from
possible causes (fault models). A simulator is used to predict
system’s behaviour in the presence of various faults. Then
predictions are matched against observed behaviour. Effect-
cause analysis [5], [6] reasons faulty localization based on
observed behaviour and expected good functions. It back-
traces faulty causes from the identified suspect components.

In this work, we make a tradeoff of cause-effect and effect-
cause analyses and propose an Hidden Markov Model (HMM)
[7] based approach for the automated localization of faulty
components in integration testing. The component can be
hardware device, software modules or functional blocks in
the system. Let 7' = {7y, 72, ..., 7T} be test cases of a faulty
system S, where 73, = (ix,0r)(k = 1...n) is a test case with
i as input and oy as expected output. The test output of
T is 0 = S(i). T is a passed test case, if and only if

Shin Nakajima
National Institute of Informatics
Tokyo, Japan
nkjm@nii.ac.jp

Marc Pantel
University of Toulouse - IRIT/INPT
Toulouse, France
marc.pantel @enseeiht.fr

O = oy, otherwise, 71 is a failed case. We automatically
locate the set of suspect faulty components, with given in-
formation (S, T'). This method combines forward localization
analysis and backward confidence degree evaluation. HMM,
as a component’s abstraction, provides statistically identical
information to component’s real behaviour. The core of this
method is a fault localization algorithm that gives out the set
of suspect faulty components and a backward algorithm that
calculates the matching degree between the HMM and the real
system to evaluate the confidence degree of the localization
conclusion. The proposed method is evaluated on a specific
test bed and then is applied to a simple helicopter control
system case study.

This paper is organized as follows: Section II briefly in-
troduces HMM; In Section III, the modeling method based
on HMM and the fault localization algorithms are discussed;
The experimental results in our specific test bed and in the
helicopter control system case study are presented in Section
IV; Section V gives some concluding remarks.

II. HMM MODELING AND ANALYSIS

An HMM is defined as a statistical model used to represent
stochastic processes, where the states are not directly observed.
A basic HMM can be described as follows:

o IN: number of states

¢ M: number of observations N

« M: initial probability distribution; » ~ M (i) = 1
—
o M probability distribution of transitions from states (o
N

states; ZMT(i,j) =1,i=1.N
j=1
o« Mg: emission distribution for the observations associated
M

with states; ZME(i,j) =1,i=1.N
j=1

HMM is statistically identical to system’s real behaviour.
HMM separates the concept into two conceptually independent
paradigms: behaviour and observation. Behaviour refers to
what the system really is; while observation relates the ele-
ments exhibited by the system that are used for its recognition.
My, Mt and Mg can be obtained by modelling or through
a learning process. Once all these matrix parameters are
estimated, HMM is capable to deduce the maximum likelihood

estimation of inner-state transition sequences. The trained
HMM will be used to estimate system’s past condition, predict
system’s future condition and compute a future observed
sequence’s occurrence probability.

Our goal is to find out how the system performs in terms of
behaviour, however, the only available information source for
the external world is the observation. Therefore a backward
analysis is necessary to recover the behaviour from the ob-
servation. The core issue is to construct HMM representing a
system with probable fault. The learning task cannot be used
here. Because the learning task will train all the parameters
in HMM, while in our method, the parameters in M~y are
calculated by using the test results.

ITII. AUTOMATED FAULTS LOCALIZATION BASED ON
HIDDEN MARKOV MODEL

This approach is based on component analysis. Each com-
ponent is mapped to an HMM. If all the input/output pair of a
component can be exhaustively listed, we can get an exact
distribution of how this component respects the functional
constraints. This approach can be explained by using Fig. 1.
An HMM, as a component’s abstraction, provides statistically

Simulate Component
Revise / Testing -
Refine Results Specify
. \/
Evaluation & ficat]
Metrics Evaluate pecification

Fig. 1. HMM Local Approach

similar information to simulation by M. That is equally
saying, a component can be simulated by HMM if we can
be sure they behave statistically in the same way. To measure
whether they behave the same, we introduce an evaluation
approach by using test results. The evaluation metrics returned
are used to revise or refine the parameters in HMM, until it
approximates the component’s real behaviour.

A. System States

A component C' is mapped to an HMM. HMM’s states are
the combination of component’s faulty status and its inputs
faulty status. System’s behaviour is modeled by 4 states:

e PI,: Cis not faulty, C’s inputs are passed

e PI;: C is not faulty, C’s inputs are failed

e FI,: Cis faulty, C’s inputs are passed

o F1Iy: C is faulty, C’s inputs are failed

B. Observations & Observed Sequence
The observation is defined by the test result of component’s
outputs. There are only 2 observations:

e O,: outputs are passed
e Oy: outputs are failed

By defining HMM states and observations in this way, the
dependency between components is built. For component C,
its output observation is the input (contained in the defined
states) of the successor.

C. Initial Probability Distribution My

Assume components’ faulty probability is w, My is defined

as follow. If w is not available, we assume each state has

identical initial faulty probability, i.e. w = %

Pl,
T—w

Pl
T—-—w w w
2 2 2 2

Fl, FI;

Init

D. Transition Probability Matrix M

M is statistical values derived from test results. If n test
cases are observed, a component with m inputs corresponds
to m - n input sequences. Using the m - n input sequences,
we can calculate the fault probabilities «, 3,7, d respectively
for the transitions O, ~ O,,0, ~ Oy, 05 ~ O,, 0 ~ Oy,
where oo+ 3+ v+ 6 = 1. M is then calculated as follows.
1

If w is not available, we assume w = 3.

7T, PI; Fl, FI;
PI a=w) BO=w) aw Bw_
p a+p ot/ a+p a+p3
PI y(1—w) d(1—w) yw dw
f v+d v+3 v+3d v+3d
FI a(l—w) B-w) aw Bw
p a+ a+f3 a+p8 a+f
FI y(1—w) d(1—w) yw dw
f PE) Y¥3 e Y

E. Emission Probability Matrix Mg

The key of this approach is evaluating Mg. According to
previous analysis, we need to measure how well an HMM
statistically simulates a given component, which is represented
by Matching Level.

Definition 1 (Matching Level (1)). Matching level evaluates
how HMM simulates a component’s real behaviour.

The objective is to find an HMM with the highest matching
level. This turns the problem to be an optimization problem,
and many techniques can be applied, e.g. exhaustive search
by minimum internal, heuristic algorithm, evolution algorithm,
experimental design, etc. In this work, the matching level
is derived by calculating the probability that a component’s
outputs pass the tests through HMM observations. However,
this matching level is a local value relative to one component,
making it have no meaning to compare with others. Therefore,
only the forward search is not enough to guarantee the
matching level. We introduce the concept of Confidence Level
to evaluate the global confidence of matching level.

Definition 2 (Confidence Level (p)). Confidence level eval-
uates the confidence of the matching level.

Algorithm 1 (Mg Evaluation Algorithm). The following
algorithm is used to evaluate the Mg in HMM (h)
corresponding to component C. Ty = {T1,72, s Tntm
are test cases results for m outputs of C. The threshold of

matching level p and confidence level p are pre-defined.

1: procedure EVALUATE(h, i, p, S, Tm,n)

2 =

3 while e < 1 do

4 pE=p

5: while p < pdo

6 Mg < Generate_Mpg()

7 p < ™3/FEvaluate_Confidence(h, Ty,)
8 end while

9: states <= Get_behaviour_States(h)

10: iNpmm <= Get_Input(h, states)

11: outpre <= Get_Output(Pre(C))

12: e < Evaluate_Matching(inpmm,outpre)
13: end while

14: end procedure

We explain the core functions in the algorithm.

1) Generate_MEg(): randomly generates an M. Mg is
the emission probability from states (PI,, PIy, FI,, Fly)
to observations (Op, Oy). It is thus a 4-by-2 matrix with 4
variables, because sum of row is 1. Each time an Mg is
generated, we get a complete HMM for one component.

2) Evaluate_Confidence(h, T,) : evaluates how the
generated HMM approximates the real behaviour of current
component by using the output test cases results 1., p,
which represents real behaviour. As HMM can calculate the
occurring probability of an observed sequence, this probability
means how probable a component’s behaviour happens in
the evaluated HMM. If this probability is high enough, the
evaluated HMM’s similarity to real component is also high.
This probability is calculated by multiplying all the proba-
bilities on the sequence’s path. The value is normalized to
make the confidence level comparable to the values of other
components.

3) Get_behaviour_States(h, T,): calculates the
states behaviour of HMM. HMM can give out the most
probable states behaviour once the observation sequence is
given.

4) Get_Input(h, states): Since HMM states is a union of
input passed results and component passed result, the input
sequence can be derived from the states behaviour.

5) Get_Output(Pre(C)): gets the result about the out-
put of component C’s predecessor, which is the real input
behaviour of C.

6) Evaluate_Matching(inpym, outpre): evaluates the
matching level between the input derived from test results and
the input derived from HMM states. The former represents
component’s real behaviour, while the later represents HMM’s
simulation.

F. Estimating System’s behaviour & Locating Fault

When the HMM with high matching level and high
confidence level is confirmed, we can estimate the com-
ponent’s status. With the states calculated from function
Get_behaviour_States(h, T,), e.g. a states behaviour
sequence like

(FI, FI, PI; FI, FI; FI, ..)

In the states behaviour sequence, we focus on the status
of component, as follow. The status with higher occurrence
probability is confirmed as this component’s faulty status.

(F F PF - F F .)

This result’s confidence is guaranteed by the confidence
level (p), and the HMM’s similarity to the component is guar-
anteed by the matching level (u). p and p are calculated within
system’s topological structure, therefore we can compare all
the faulty component’s p and u, and give a set of suspect
faulty components ordered by p and pu.

IV. EXPERIMENTAL RESULTS
A. Test Bed

We design a specific test bed to evaluate the method’s accu-
racy and efficiency by generating a large quantity of use cases.
Each use case includes: the system architecture which defines
the components and the ports, and their interconnections;
the failure probability of each component; the functional
specification corresponding to the inputs/outputs;

The method assumes that: Each component in the system
has a chance to fail if it has design problem. This probability
will be 0 if no design fault is presumed for this component. All
functional constraints are based on input/output’s value itself,
and for simplification, they are all range constraint, which
means they delimit only the min/max value of the input/output.

If a faulty component exists, the test bed will by chance
give out an out-of-range value for this component’s output.
This emulates how a system fails, whatever the model is.

Each component’s input and output will be allocated to a
variable by the test bed. It guarantees that the interconnected
ones share the same variable. The variable will be associated
with a random range, which is the functional specification. If
a device is more probable to fail, the test-bed-generated value
for its entire output variables will be more probable to go out
of the defined range.

The approach will use the generated data and the functional
specification to automatically locate the faulty component. The
test bed will then compare this computed conclusion with the
initial context to deduce whether the method is efficient.

B. Experiments

Our test bed has generated 1000 use cases to evaluate the
method’s performance in terms of accuracy. The criteria that
impacts the accuracy is the complexity of system’s architec-
ture. This can be measured by component number. (Fig. 2) and
component’s average input & output number (Fig. 3). We find
out that this method is more sensible to the average input &
output number, while it is more scalable to component number.
This method deals with the fault localization for middle-range
systems with a accuracy superior to 90%.

The computation of Mg parameters by iteratively searching
algorithm consumes time, which is bounded by the iteration
limit. This Monte-Carlo algorithm runs from several seconds

Component

09

08

0,7

localization method gives a good rate of accuracy throughout
the test, as shown in Table 1.

TABLE I
HELICOPTER CONTROL SYSTEM CASE STUDY TEST RESULTS

gos Comp. | Testhed | HMM | Matching [Confidence | Approach
205 ID. Status | Conclu. Level Level Accuracy
< 1 P P T 0.024181 YES
o 2 P P 1 0.024181 YES
03 3 P P 1 0996539 YES
4 P P 1 0.996539 YES
02 5 F F 0905 0.024181 YES
01 6 F P 0.975 0.024181 NO
7 P P 1 099654 YES
00
0 & 10 15 20 25 30 35 40 45 50 8 P P] 0024 1 81 YES
Component Number 9 P P 1 0.996573 YES
|— Min Ratio: component === Max Ratio: component === Aver Ratio: componentl 10 p p 1 099654 YES
11 F F 0.71 0.54545 YES
. 12 P P 1 0.024181 YES
Fig. 2. Accuracy by Component Number 13 p p 1 099654 YES
Input / Output 14 F F 0675 0.024181 YES
. 15 F F 0.67 0.541556 YES
09) . a -
08
V. CONCLUSION
0‘7 . . .
In this paper, we proposed an automated fault localization
06
g approach based on HMM for integration testing in system
8°° engineering. Benefiting from HMM, we propose to model

03

0,2

0,1

0,0

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Average Input / Output Number Per Component

|— Min Ratio: I/O === Max Ratio: I/O === Aver Ratio I/Ol

Fig. 3. Accuracy by Input Number
to several minutes. However, as the computation of each com-
ponent is independent, the whole method is linearly scalable.
For a large system, a parallel cluster will locate the probable
design faults within minutes.

C. Helicopter Control System Case Study

After certifying statistically the method’s performance using
the test bed, we rely on a classical Simulink teaching model
of simple helicopter control system [8] to evaluate, whether
the proposed approach works also well for real system. A
complete mathematical model, including propeller dynamics,
forces generated by the propellers, static and dynamic friction
of the bearings, etc. is an overkill for method proofing objec-
tives, therefore a simplified version is chosen. Regarding the
functional specification, this helicopter is a linear 4** order
system, where the 6 control matrices are pre-defined.

In order to introduce faults into the case study, we modify
the Simulink model to have some components generating
faulty outputs in some test cases. These components will have
a computed failure probability which is based on the ratio
between failure count and total test case number. The fault

faulty component’s behaviour. Instead of estimating HMM’s
parameters by classic learning process, a forward analysis
method to estimate parameters using system’s topological
structure and tests results was introduced. To compute the
matching degree between HMM and component’s behaviour
and to evaluate the confidence degree of the localization
conclusion, a backward analysis algorithm was introduced.
Experimental results shows that, this method can deal with
the fault localization problem for middle-range systems with
accuracy superior to 90%.

REFERENCES

[1] W. Hamscher, L. Console, and J. de Kleer, Eds., Readings in model-based
diagnosis. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1992.

[2] H. Takahashi, K. Boateng, K. Saluja, and Y. Takamatsu, “On diagnosing
multiple stuck-at faults using multiple and single fault simulation in
combinational circuits,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, vol. 21, no. 3, pp. 362 -368, mar
2002.

[3] A. Zeller, “Isolating cause-effect chains from computer programs,” in
Proceedings of the 10th ACM SIGSOFT symposium on Foundations of
software engineering, ser. SIGSOFT "02/FSE-10. New York, NY, USA:
ACM, 2002, pp. 1-10.

[4] B. Jobstmann, S. Staber, A. Griesmayer, and R. Bloem, “Finding and
fixing faults,” J. Comput. Syst. Sci., vol. 78, no. 2, pp. 441-460, 2012.

[5] M. Abramovici and M. Breuer, “Multiple fault diagnosis in combinational
circuits based on an effect-cause analysis,” Computers, IEEE Transactions
on, vol. C-29, no. 6, pp. 451 —460, june 1980.

[6] A. Smith, A. Veneris, M. Ali, and A. Viglas, “Fault diagnosis and
logic debugging using boolean satisfiability,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 24, no. 10,
pp. 1606 — 1621, oct. 2005.

[7]1 L. Rabiner, “A tutorial on hidden markov models and selected applications
in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257
—286, February 1989.

[8] B. Cazzolato, Automatic Control II - 2DOF Helicopter Tutorial & Lab.

