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Abstract. This paper applies homogeneous and heterogeneous ensem-
bles to perform the complex question answering task. For the homo-
geneous ensemble, we employ Support Vector Machines (SVM) as the
learning algorithm and use a Cross-Validation Committees (CVC) ap-
proach to form several base models. We use SVM, Hidden Markov Mod-
els (HMM), Conditional Random Fields (CRF), and Maximum Entropy
(MaxEnt) techniques to build different base models for the heteroge-
neous ensemble. Experimental analyses demonstrate that both ensemble
methods outperform conventional systems and heterogeneous ensemble
is better.

Keywords: Complex Question Answering, Homogeneous Ensemble,
Heterogeneous Ensemble.

1 Introduction

This paper is concerned with the application of ensemble based methods for
the complex question answering task. We use query-focused supervised extrac-
tive multi-document summarization technique for this purpose [1–3]. Ensemble
methods are learning algorithms that construct a set of classifiers and then
classify new data points by taking a (weighted) vote of their predictions [4].
Generation of ensembles can be categorized into two types: 1) homogeneous, if
the base learning model is built from the same learning algorithm, and 2) het-
erogeneous, where different learning algorithms are combined to generate the
base learning models [12]. Many methods for constructing ensembles have been
developed over the years which consider Bayesian voting, manipulation of the
training examples, input features and output targets, injecting randomness and
so on [2, 6, 14]. The next section presents our experimental design and evaluation
framework, and then we conclude the paper with future directions.



2 Experimental Settings and Evaluation

We use the query-focused summarization task proposed in DUC1 (2005-2007)
to simulate our complex question answering experiments. We use the DUC-2006
data to train all the systems and then produce extract summaries for the DUC-
2007 data. Supervised classifiers are typically trained on data pairs, defined by
feature vectors and corresponding class labels. We use an automatic labeling ap-
proach to annotate the training data using ROUGE [1, 3, 9]. From each sentence
of the training (and testing) data, we extract different query-related features and
importance-oriented features such as: n-gram overlap, Longest Common Subse-
quence (LCS), Weighted LCS (WLCS), skip-bigram, exact word overlap, syn-
onym overlap, hypernym/hyponym overlap, gloss overlap, Basic Element (BE)
overlap, syntactic tree similarity measure, position of sentences, length of sen-
tences, Named Entity (NE) match, cue word match and title match [1, 3, 5, 13].

For homogeneous ensemble, we divide the training data into 4 equal-sized
fractions. Then, according to the CVC algorithm [2, 4, 11, 12], each time we
leave separate 25% data out and use the rest 75% data for training. Thus, we
generate 4 different SVM models. Next, we feed the test data to each of the
generated SVM models which produces individual predictions (decision scores
along with a label +1 or −1). The decision scores are the normalized distance
from the separating hyperplane to each sample. To create the SVM ensemble, we
combine the predictions by simple weighted averaging. We increment a particu-
lar classifier’s decision value by 1 (giving more weight) if it predicts a sentence as
positive and decrement by 1 (imposing penalty), if the case is opposite. The re-
sulting prediction values are used later for ranking the sentences. During training
steps, we use the third-order polynomial kernel for the SVM keeping the value
of the trade-off parameter C as default. For our SVM experiments, we use the
SVM light package2 [7]. The individual classifier settings for the heterogeneous
ensemble formation are as follows. For SVM, we use the same setup as homoge-
neous ensemble. We implement the HMM model by Lin’s HMM package3. We
use the MALLET NLP toolkit [10] to implement the CRF. We modify its Sim-
pleTagger class in order to include the provision for producing corresponding
posterior probabilities of the predicted labels which were used later to rank the
sentences. We build the MaxEnt system using Lin’s MaxEnt package4. We com-
bine the decision values of the four different classifiers by a weighted voting to
build an ensemble. We impose a positive weight (ranging from 1 to 5 depending
on the individual classifier’s performance, more weight if it is declared positive
by a better performer based on scores) to each positively classified sentence. We
take no action for the negatively classified sentences so that they could fall back
during ranking. The combined weighted votes of all the classifiers are used to
rank the sentences to produce 250-word summaries [1].

1 http://duc.nist.gov/
2 http://svmlight.joachims.org/
3 http://www.cs.ualberta.ca/~lindek/hmm.htm
4 http://www.cs.ualberta.ca/~lindek/downloads.htm



We consider the multiple “reference summaries” of DUC-2007 to automat-
ically evaluate our summaries using the ROUGE toolkit [9]. We compare the
ensemble systems’ performance with a baseline system. The baseline system’s
approach is to select the lead sentences (up to 250 words) from each topic’s
document set. In table 1, we present the ROUGE F-scores of different systems.
We can see that the homogeneous ensemble improves the ROUGE-1, ROUGE-2
and ROUGE-SU scores over the baseline system by 16.2%, 26.6% and 30.3% re-
spectively. The heterogeneous ensemble improves the ROUGE-1, ROUGE-2 and
ROUGE-SU scores over the baseline system by 18.3%, 37.5% and 36.6% and
over the homogeneous system by 1.80%, 8.64% and 4.79% respectively. Three
native English speaking university graduate students judged5 all the system gen-
erated summaries for readability (fluency) and overall responsiveness according
to the TAC 2010 summary evaluation guidelines6. Table 2 presents the average
readability and overall responsive scores of all the systems. The results again
show that the ensemble systems perform better than the baseline system and
heterogeneous ensemble performs the best in terms of overall responsiveness.

Table 1. ROUGE F-Scores for different systems

Systems ROUGE-1 ROUGE-2 ROUGE-SU

Baseline 0.334 0.064 0.112
Homogeneous 0.388 0.081 0.146
Heterogeneous 0.395 0.088 0.153

Table 2. Readability and overall responsiveness scores for all systems

Systems Readability Overall Responsiveness

Baseline 4.24 1.80

Homogeneous 3.41 3.30

Heterogeneous 3.85 3.63

3 Conclusion and Future Work

In this paper, we presented the use of two ensemble methods: homogeneous and
heterogeneous to perform the complex question answering task. Our experiments
suggested the following: (a) ensemble methods outperform the conventional sys-
tems, and (b) heterogeneous ensemble performs the best for this problem. Future
work is foreseen to use different learning algorithms for homogeneous ensemble
and to improve the base classifiers’ performance for both ensemble methods.
5 The inter-annotator agreement of Fleiss’ κ = 0.63 is computed for the three judges
indicating a substantial degree of agreement [8].

6 http://www.nist.gov/tac/2010/Summarization/

Guided-Summ.2010.guidelines.html
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