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NONSMOOTH MODAL ANALYSIS OF PIECEWISE-LINEAR IMPACT SYSTEMS

Anders Thorin�1, Pierre Delezoide , and Mathias Legrand1

1Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada

Summary Periodic solutions of autonomous and conservative second-order dynamical systems of finite dimension n undergoing a single
unilateral contact condition are investigated in continuous time. The unilateral constraint is complemented with a purely elastic impact
law conserving total energy. The dynamics is linear away from impacts. It is proven that the phase-space is primarily populated by one-
dimensional continua of periodic solutions, generating an invariant manifold which can be understood as a nonsmooth mode of vibration
in the context of vibration analysis. Additionally, it is shown that nonsmooth modes of vibration can be calculated by solving only k � 1
equations where k is the number of impacts per period. Results are illustrated on a mass-spring chain whose last mass undergoes a contact
condition with an obstacle.

MOTIVATION

Nonlinear modal analysis consists in calculating, in the phase space, two-dimensional manifolds which are continuous
families of periodic trajectories [1]. When dealing with nonsmooth systems, i.e. systems subjected to impact and friction [2],
the induced discontinuities are usually regularized [3]. The novelty of the proposed work here is to incorporate the dis-
continuities in the formulation to exhibit continuous families of periodic nonsmooth trajectories, thus leading to nonsmooth
modal analysis. The results hold for all autonomous linear dynamical systems subjected to a single contact condition modeled
through a unilateral linear sceleronomic constraint complemented with a perfectly elastic impact law.

FORMULATION

The vector of generalized coordinates x is an element of Rn where n is the number of dofs of the system. During free
flights, that is away from impacts, the dynamics is governed by MRx C Kx D 0 where M and K are the mass and stiffness
matrices. Introducing x D Œx>; Px>�>, this differential equation can be reformulated in the first-order form as Px D Ax hence if
no impact occurs in time interval Œt; t 0�, x.t/ D S.t � t 0/x.t 0/ with S.t/ D exp.tA/. The signed contact distance (gap function)
is g.x/ D w>xC g0. It is shown that the impact law, written in terms of normal contact velocities C D ��, reads in terms
of as xC D Nx� where N DM�1=2.I� 2rr>/M1=2 and r is the unit vector given by r> D Œ01;n;M1=2w.w>M�1w/�1=2�> 2
R2n. We introduce the times of impact t0; : : : ; tk with the convention t0 D 0 and period T D tk so that k is the number of
impacts per period (ipp). The dynamics is a succession of free flights of duration ti � ti�1 and impacts at ti , i 2 J1; kK, so for
t 2 Œti�1; ti /:

x.t/ D S.t � ti /NS.ti � ti�1/N : : :NS.t � t0/x.t0/: (1)

This expression shows that there exists a linear mapping from a vector of initial conditions to the current state at t . Let u be
the endomorphism of matrix NS.tk � tk�1/N : : :NS.t1 � t0/ in the canonical basis of R2n. The problem of finding periodic
solutions of the dynamics with impact times t1; : : : ; tk is formulated in three necessary conditions (NC) to be satisfied by x0:
Given T 2 R� and k 2 N�, find x0 2 R2n and t1; : : : ; tk such that:8̂̂̂<̂

ˆ̂:
u.x0/ D x0 NC1
x determined by x0 using (1) is such that:
8i 2 J1; kK; g.x.ti // D 0 NC2
8t 2 Œ0; T �; g.x.t// � 0 NC3

(2a)

(2b)
(2c)

with g.x/ WD g.x/. Eq. (2a) enforces periodicity through a sequence of free flights over .ti�1; ti / punctuated by perfectly
elastic impacts at ti , i 2 J1; kK. Eq. (2b) guarantees that the impact law only applies when the separating gap is closed.
Ineq. (2c) is necessary to ensure that the unilateral contact condition is not violated during the free flights.

MATHEMATICAL RESULTS

We can show that there is an isomorphism ' between the invariant (maximal) subspace of u and the kernel of a known
skew-symmetric matrix … of size k � k and function of the impact times. This implies that NC1 is satisfied if and only if
there exists a � 2 Rk such that ….t1; : : : ; tk/� D 0, and then x0 can be retrieved using x0 D '.�/. We also know that NC2
is satisfied by x if and only if †.t1; : : : ; tk/'.x0/ D �g0j where † is a symmetric k � k matrix and j D Œ1; : : : ; 1�> 2 Rk .
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The expressions of …, † and ' are known explicitly but are not provided here; they depend only on M, K, g and t1; : : : ; tk .
Satisfying NC1 and NC2 reduces to finding t1; : : : ; tk and � such that …� D 0 and †� D �g0j. Then, † is generically
invertible so it suffices to find t1; : : : ; tk such that …†�1j D 0, and then recover x0 D '.�g0†

�1j/. The non-generic cases
exhibit very specific properties which are not described here. If x0 satisfies NC1 and NC2, it is a solution iff it satisfies NC3.
This last condition has to be tested numerically.

It is then proved that if x0 is a solution for g0 ¤ 0 then, generically, it lies on a two-dimensional manifold of the phase
space. As opposed to smooth nonlinear modes, here the manifolds feature discontinuities, corresponding to the discontinuities
at impact times. The positions and velocities as a function of time emanating from the initial conditions x0 can then be
calculated. The results are summarized in Fig. 1.
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Figure 1: Summary of the mathematical results in the generic case with g0 ¤ 0. When s D .t1; : : : ; tk/ travels along the red
curve S, the periodic solution describes a nonsmooth mode with k impacts per period.

APPLICATION TO A MECHANICAL SYSTEM

The mathematical developments prove the existence of nonsmooth modes yet also give a constructive way of calculating
them by solving k � 1 equations (…†�1j D 0) independently of the number of dofs. Results are illustrated on a simple
spring-mass chain whose free mass is subjected to an elastic Newton impact law, see Fig. 2. A nonsmooth mode with 7-ipp
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Figure 2: Simple spring-mass chain whose free mass is subjected to impacts.

was calculated following the methodology of Fig. 1 for this system with n D 5. The position of the last mass is represented
for two initial conditions on the nonsmooth mode in Fig. 3, illustrating the possibilities given by the derivations.
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Figure 3: Two periodic trajectories with 7 ipp belonging to the same nonsmooth mode represented in . Pxn; t /. Dashed lines
correspond to impact times.
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