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The large coupling rate between the acoustic and optical fields confined in GaAs/AlAs superlattice
cavities makes them appealing systems for cavity optomechanics. We have developed a mathematical
model based on the scattering matrix that allows the acoustic guided modes to be predicted in
nano and micropillar superlattice cavities. We demonstrate here that the reflection at the surface
boundary considerably modifies the acoustic quality factor and leads to significant confinement at the
micropillar center. Our mathematical model also predicts unprecedented acoustic Fano resonances
on nanopillars featuring small mode volumes and very high mechanical quality factors, making them
attractive systems for optomechanical applications.

I. INTRODUCTION

Quantum optomechanics is a rapidly developing field
of research. The optomechanics archetypal setup consists
of a high-finesse optical cavity whose optical mode is cou-
pled to the displacement of a mechanical resonator. In
the past few years, several research groups using different
device designs have reached a regime where the optical
radiation pressure cools the motion of the mechanical res-
onator [1–4]. This technique has been used to bring the
mechanical resonator to the quantum ground state [5, 6].
A remarkable progress in the linear regime [7] has been
achieved; highlights include optomechanically induced
transparency [8, 9], generation of squeezed light [10–12],
and mechanically mediated state transfer [13]. Consider-
able efforts are now dedicated to reaching the nonlinear
regime, which holds immense promise for the study of
large-scale quantum phenomena such as the preparation
of nonclassical states of mechanical resonators [14, 15].
In the canonical system this regime is achieved when the
single photon coupling strength g0 is comparable to the
mechanical frequency of the resonator ωm and the decay
rate of the optical cavity κ [16, 17]. These conditions
are far from reach with current devices, and to enhance
the nonlinearity several alternative techniques have been
proposed [18–20]. These approaches still require large
optomechanical coupling rates

GaAs/AlAs superlattice cavities, where a λ/2 cavity is
enclosed by two distributed Bragg reflector (DBR) mir-
rors, can simultaneously confine the light field and the
mechanical field [21, 22]. The great advantage of super-
lattice planar cavities is that the large overlap between
both optical and vibrational fields in the cavity region
and the photoelastic effect leads to high optomechanical
coupling rates [21]. Micropillar superlattice cavities can
be obtained by etching a superlattice planar cavity [see
Fig. 1(a)]. Optical quality factors exceeding 200 000 have
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been demonstrated [23, 24] in micropillar superlattice
cavities and high quality factors for the mechanical mode
are also expected and are calculated here. In addition
higher optomechanical coupling rates are expected for
micropillar cavities, compared to planar superlattice cav-
ities, because of the reduced acoustic and optical-mode
volumes. All these qualities make them excellent candi-
dates for optomechanical experiments.

However, the acoustic confinement in micropillar cav-
ities differs significantly from the acoustic confinement
in planar cavities. At the air-semiconductor boundary of
the micropillar there is conversion between the longitudi-
nal and transverse vibrations. In addition the 100 % re-
flection which occurs at the micropillar air-semiconductor
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FIG. 1. (a) Micropillar cavity. (b) Magnitude of the
Pochhammer–Chree formula [given in Eq. (3)] for complex
wave numbers of a GaAs waveguide. R = 1.5µm and
ω/2π = 5 GHz. The roots of the Pochhammer–Chree equa-
tion are represented by white points. (c) and (d) Dispersion
curves of the real modes.
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boundary surface can considerably modify the mechani-
cal quality factor and the acoustic-mode shape.

II. THEORY

Here we study the acoustic confinement in superlat-
tice micropillar cavities taking into account the effect of
the air-semiconductor boundary. We have developed a
semi-analytical model that combines the scattering ma-
trix and the acoustic modal expansion of each layer of the
micropillar. First we calculate the eigenmodes of each
single layer and then we impose continuity of the dis-
placement and stress fields at the boundaries between the
layers. Each layer is modeled as an individual cylindrical
acoustic waveguide and the acoustic modes are calcu-
lated along the cylinder axis z in cylindrical coordinates
r, θ, and z. We consider only axisymmetric modes be-
cause, for symmetry reasons, only these modes are cou-
pled with the optical field. Thus, the displacement and
stress components are independent of θ. We can define
p = (ω2/c2l − k2)1/2 and q = (ω2/c2t − k2)1/2 where k is
the acoustic wavenumber, ω is the angular frequency, cl
is the speed of sound for longitudinal waves, and ct is the
speed of sound for transverse waves. It can be shown [25]
that the displacement components for the axisymmetric
modes in the radial and longitudinal directions can be
written in terms of the Bessel functions of the first kind:

ur = − [pAJ1(pr) + ikCJ1(qr)] ei(ωt−kz) (1)

uz = − [ikAJ0(pr) + qCJ0(qr)] ei(ωt−kz) (2)

where A and C are related constants with 2ikpJ1(pR)A+
(q2 − k2)J1(qR)C = 0. Similar expressions can be found
for the stress components σij (see Appendix A).

The allowed values for the wave number can be found
from the dispersion relation, which is given by the
Pochhammer–Chree equation [25]

2p

R
(q2 + k2)J1(pR)J1(qR)− (q2 − k2)2J0(pR)J1(qR)

− 4k2pqJ1(pa)J0(qR) = 0 (3)

where R is the radius of the cylindrical waveguide. The
solutions of this equation can be real or complex [see
Fig. 1(b)]. The modes with a real wave number are prop-
agative whereas the modes with a complex wave number
are evanescent. Figures 1(c) and 1(d) show the disper-
sion curves for small and large real wavenumber ranges
respectively. The lowest frequency mode is the only one
with no cut-off frequency, therefore for small wavenum-
bers the waveguide is monomode with only one propaga-
tive mode and for large wavenumbers the waveguide is
multimode. For small wavenumbers the waveguide be-
haves as a one-dimensional solid and the speed of sound
is given by cu =

√
E/ρ where E is the Young’s mod-

ulus and ρ is the density. For large wavenumbers the
lowest frequency mode corresponds to a surface acoustic

wave and the second lowest frequency mode corresponds
to a transverse mode. None of the modes from the dis-
persion curve corresponds to a pure longitudinal mode,
since a pure longitudinal mode is not an eigenmode of
the system. However, it is possible to prepare a longi-
tudinal wave as a linear combination of the eigenmodes
that have a phase velocity close to the longitudinal phase
velocity [see inset from Fig. 1(d)].

The solutions of the Pochhammer–Chree equation of
an infinite cylindrical waveguide, which we denote by
(Ψj) = (σjαβ , u

j
α), provide an orthogonal basis of the dis-

placement with respect to the following bilinear form:

(Ψj ,Ψl) =∫ R

0

[
σjrzu

l
r − σjzzulz + σlrzu

j
r − σlzzujz

]
r dr (4)

To demonstrate the orthogonality of the basis we cal-
culate the relationship between the components of the
modes k∗j and kj . If we set C = 1 in Eq. A10 we can cal-
culate the relations between the displacement and stress
fields for k∗j and kj .

Aj =
(q2
j − k2

j )J1(qjR)

2ikjpjJ1(pjR)
(5)

Aj
∗

=
(q2
j∗ − k2

j∗)J1(qj∗R)

2ikj∗pj∗J1(pj∗R)
(6)

Aj
∗

= −(Aj)∗ (7)

uj
∗

r = −(ujr)
∗ (8)

uj
∗

z = (ujz)
∗ (9)

σj
∗

rr = −(σjrr)
∗ (10)

σj
∗

rz = (σjrz)
∗ (11)

σj
∗

zz = −(σjzz)
∗ (12)

If there are no acoustical sources in the volume Γ and
(σAαβ , u

A
α ) and (σBα , u

B
α ) are two solutions of the acous-

tics wave equation in that volume, the reciprocity theo-
rem [26] can be written in the frequency domain as∫

∂Γ

[
σAαβ(uBα )∗nβ − (σBαβ)∗uAαn

β
]
dS = 0 (13)

where the vector nβ represents the outward normal to
the surface ∂Γ that encloses the volume Γ. As shown in
Fig. 2(a), we consider the cylindrical volume Γ that is
bounded by sections z1, z2 and the boundary surface of
the cylinder. Since we consider that the air-waveguide
boundary is free, the integral is equal to zero at the
waveguide boundary because σrz|r=R = σrr|r=R = 0

and the vector nβi is perpendicular to the axis z. If we
apply equation (13) to two solutions of the Pochhammer-
Chree equation with wavenumbers kj and k∗l in the vol-
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FIG. 2. (a) Acoustic waveguide. The volume Γ is bounded by
sections z1, z2 and the boundary surface of the cylinder. (b)
Labeling scheme for the forward and backward propagating
modes ai and bi in a multilayered structure.

ume Γ we obtain

− 2π
[
e−(ikj−ikl)z1 − e−(ikj−ikl)z2

]
×∫ R

0

[
σjrzu

l
r − σjzzulz + σlrzu

j
r − σlzzujz

]
rdr = 0 (14)

If kj = kl then the first factor is equal to zero, oth-
erwise the second factor has to be equal to zero. The
bilinear form of the Eq. (4) is not a scalar product since
(Ψj ,Ψj) can take negative values if kj is complex. The
bilinear form is positive definite when kj is real since in
this case (Ψj ,Ψj) corresponds to the Poynting vector.
It is convenient to normalize the eigenvectors (Ψj) such
that (Ψj ,Ψl) = δjl.

By using this bilinear form we can calculate the in-
terface transfer matrices between two adjacent layers of
the structure. If we do not consider the layer thickness,
the calculation of the interface matrix between layers n
and n + 1 can be done by using the continuity of the
displacement and stress components σrz and σzz at the
boundary between the two layers. In this case, it is
straightforward to demonstrate that the interface ma-
trix P(n+ 1) between the layers n and n+ 1 is given by
Pjl(n + 1) = (Ψj

n,Ψ
l
n+1). If we consider that the layers

have a finite thickness, the evolution matrix F(n) of the
nth layer has to be taken into account. The evolution
matrix is a diagonal matrix with Fjj(n) = e−ik

n
j ∆z. The

interface matrix is given by I(n+ 1) = F(n)−1 ·P(n+ 1).
Now we consider a multilayered waveguide with N

layers [see Fig. 2(b)] and forward- and backward-
propagating modes with coefficients ai and bi at each
interface i, respectively. We use here a scattering-matrix
method which provides great numerical stability [27, 28],
where the coefficients of the outgoing modes (aN ,b0)

can be related to the coefficients of the incoming modes
(a0,bN ) via the scattering matrix S(0, N):(

aN
b0

)
= S(0, N)

(
a0

bN

)
(15)

An iterative method can be used for the calculation of
the scattering matrix [27] and the acoustic fields of the
layered structure (see Appendix B).

III. RESULTS

Having established the mathematical model we can
now study superlattice micropillar cavities where the
phononic mode is confined in a λ/2 cavity by two
GaAs/AlAs DBR mirrors. We define the layers such
that a longitudinal resonance is expected at 20 GHz.
The thicknesses for the GaAs/AlAs pairs are 59.1 nm
and 70.4 nm respectively. The GaAs cavity length is
118.2 nm.

All the modes with a real wave number are considered
in the calculation, and evanescent modes are included
to ensure continuity of the displacement and stress at
the layer boundaries. A numerical cut off is applied
for the high-wave-number evanescent modes once their
contribution becomes negligible. The calculations for a
15µm diameter micropillar requires 157 real wavenum-
ber modes and 920 complex wave-number modes. If the
diameter is smaller than the wavelength, the micropil-
lar is single mode. In the limit of a very small diameter
the speed of sound is given by cu. A one-dimensional
transfer-matrix calculation using cu shows that the me-
chanical resonance should be found at 17 GHz, which co-
incides with the value obtained with our mathematical
model [see Fig. 3(a)]. If the diameter is bigger than the
wavelength, the micropillar is multimode: in our struc-
ture the pillar is multimode for diameters bigger than
150 nm. The fundamental mode at 9.6 GHz for the larger
diameter pillars corresponds to the surface-acoustic-wave
resonance and the mode at 10.4 GHz corresponds to the
transverse-mode resonance. These two resonance modes
correspond well with individual modes in the dispersion
curve from Fig. 1(c), indicating that only a single eigen-
mode per layer participates in the micropillar resonance.
This is not the case for the longitudinal mode that can
be found at 20 GHz which, as discussed earlier, is formed
by a combination of the modes that have a phase ve-
locity close to the longitudinal phase velocity [see inset
from Fig. 1(d)]. To calculate the resonance frequency
of the longitudinal mode we excite the first layer with
a longitudinal Gaussian beam that has been constructed
as a linear combination of the eigenmodes given by the
solution of the Pochhammer–Chree equation. The calcu-
lation of the longitudinal and transverse resonance modes
using a one-dimensional transfer-matrix calculation [21]
gives the same result as our model in the limit of a large
diameter.
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FIG. 3. (a) Mechanical frequency resonances of a GaAs/AlAs DBR micropillar cavity as a function of diameter: The funda-
mental mode (black), transverse mode (red), and longitudinal mode (blue). (b) Quality factor of the longitudinal mode as
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Now we do an in-depth analysis of the longitudinal
mode. This mode provides the highest coupling rate with
the optical field because longitudinal vibrations mod-
ify considerably the effective length of the optical cav-
ity whereas the contribution of transverse vibrations to
the optomechanical coupling rate is minimum. The air-
semiconductor boundary of the micropillar, which is a
perfect reflector, can modify the shape and the mechani-
cal quality factor of the longitudinal mode depending on
the reflectivity of the upper and lower DBR mirrors, as
shown in Figs. 3(d) and 3(e). We can define lc = Qλ as
the length traveled by vibrations inside the cavity and zR
as the Rayleigh length of the acoustic Gaussian beam.
If the number of pairs is small, the mechanical quality
factor is small, zR is bigger than lc, and the resonance
mode has a Gaussian shape because there is no reflec-
tion at the boundaries [see Fig. 3(d)]. In this case the
micropillar can be modeled as a one-dimensional device.
As shown in Fig. 3(b), in this regime the quality factor
obtained with a one-dimensional transfer matrix calcula-
tion [21] coincides with the quality factor obtained with
the mathematical model from this paper; this validates
our model. If the number of pairs per mirror is increased,
the quality factor is increased and lc becomes much larger
than zR; as a result the mode volume is considerably re-
duced because of the reflections at the air-semiconductor
boundary of the micropillar [see Figure 3(e)].

As shown in Fig. 3(b) the reflections at the air-
semiconductor boundary can considerably modify the
quality factor. Figure 3(b) shows that the mechanical
quality factor can be improved by increasing the num-
ber of pairs per mirror, but this improvement is con-
siderably reduced for small micropillar diameters. The

coupling rate G, representing the optical resonance fre-
quency shift per unit displacement amplitude, is reduced
with the number of pairs per mirror because the over-
lap between the mechanical mode from Figs. 3(d) and
3(e) with the optical mode from Figs. 3(f) and 3(g) is
significantly reduced. For the calculation of the opti-
cal field we have used a semi-analytical approach [29].
On the other hand the zero-point amplitude of the me-
chanical resonator, xzpf , increases with the number of
pairs per mirror because the mode volume and the effec-
tive mass decreases. Interestingly, as shown in Fig. 3(c),
these two effects compensate each other and g0 = G ·xzpf

is almost independent of the number of pairs per mir-
ror. The optomechanical coupling rate g0 has been cal-
culated with a perturbative approach [30–32] which ac-
counts for the geometric and the photo-elastic contribu-
tions. We used bulk photoelastic coefficients for GaAs,
(p11, p12, p44) = (−0.165, 0.140,−0.072) [33]. With these
values, the photoelastic contribution to g0 is roughly
15%. However, large photoelastic coefficients have been
observed in GaAs/AlAs multiple quantum wells close to
the exciton-polariton resonance [34].

To obtain a small mechanical mode volume and a large
g0, the micropillar diameter has to be considerably re-
duced, but as shown above, it is not possible to obtain
high mechanical quality factors with small micropillar di-
ameters. Here we propose an alternative approach that
allows high mechanical quality factors with very small
mode volumes to be obtained. The structure consists of
a GaAs region with two propagative modes that is en-
closed by two monomode AlAs regions [see Figure 4(a)].
The first propagative mode of the GaAs region is very
well coupled to the propagative mode of the AlAs region
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placement mode shape of the resonance. The lines represent
the interface between the regions.

because the spatial mode shapes are very well matched.
The impedance mismatch at the GaAs/AlAs boundary
leads to small reflections, resulting in smooth oscillations
of the transmission as a function of the GaAs region
thickness [see Figure 4(b)]. On the other hand the second
propagative mode of the GaAs region is not well coupled
to the single propagative mode of the AlAs region and is
strongly reflected at the interface. As a result the second
propagative mode of the GaAs region is well confined,
giving rise to high-(Q) trapped modes.

The result of the interaction between these two trans-
mission pathways from GaAs to AlAs leads to Fano line-
shape resonances [35] characterized by an asymmetrical
lineshape that has been observed in various physical sys-
tems ranging from carbon nanotubes [36] to intersub-
band transitions in coupled quantum well systems [37].
Fig. 4(c) shows a Fano resonance from a 182 nm GaAs
layer embedded between AlAs cladding layers. The res-
onance has a quality factor of 1.3 × 106 and also has a
very small mode volume as can be seen in Fig. 4(d). In
this device there is no optical cavity, but it is possible
to couple the mechanical mode through strain [38, 39]
to the optical transition of a quantum dot that can be
placed in the GaAs region. This would allow the mechan-
ical mode to be cooled down to the ground state [40, 41]

and has interesting applications such as quantum state
transfer between the mechanical resonator and the two
level system [42].

IV. CONCLUSION

The mathematical model presented here provides the
foundation for the acoustic analysis of layered struc-
tures with lateral confinement. Our calculations show
that the total reflection of vibrational modes at the air-
semiconductor boundaries of superlattice micropillar cav-
ities has a dramatic effect on the acoustical quality fac-
tor and mode volume. In particular, the acoustic-mode
volume is strongly dependent on the number of mirror
repeats, unlike the optical-mode volume. Our model re-
veals as well novel acoustic Fano cavities based on a sim-
ple waveguide structure patterned into nanopillars, which
are an attractive alternative to superlattice micropillar
cavities for optomechanical experiments.
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Appendix A: Cylindrical acoustic waveguide

The displacement vector U of a cylindrical acoustic
waveguide can be derived from a scalar potential φ and a
vector potential Ψ [25]. These two potentials satisfy the
following wave equations

∇2φ− 1

c2l

∂2φ

∂t2
= 0 and ∇2Φ− 1

c2t

∂2Φ

∂t2
= 0 (A1)

where cl and ct are the speed of sound for bulk longitu-
dinal and transverse waves.

It is convenient to adopt the cylindrical coordinates r,
θ and z. We consider only the axisymmetric modes be-
cause, for symmetry reasons, only these modes are cou-
pled with the optical field. The displacement and stress
components of the modes are independent of θ and can
be written as

Uα(r, z, t) =
1

2π

∫
ω

uαe
i(ωt−kz)dω (A2)

Σαβ(r, z, t) =
1

2π

∫
ω

σαβe
i(ωt−kz)dω (A3)

where k represents the wave number, ω is the angular fre-
quency, and t is the time. The coefficients of the Fourier
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transform are given by [25]

ur = − [pAJ1(pr) + ikCJ1(qr)] (A4)

uz = − [ikAJ0(pr) + qCJ0(qr)] (A5)

σrr = −AJ0(pr)(λk2 + λp2 + 2µp2) (A6)

+
2µpAJ1(pr)− 2iCkµ(qrJ0(qr) + J1(qr))

r

σrz = µ
[
2iAkpJ1(pr) + C

(
q2 − k2

)
J1(qr)

]
(A7)

σzz = [AJ0(pr)
(
−λk2 − 2k2µ− λp2

)
+ 2iCkµqJ0(qr)] (A8)

where p = (ω2/c2l − k2)(1/2) and q = (ω2/c2t − k2)(1/2).
At the boundary surface of the cylindrical waveguide,

the stress components σrr and σrz are equal to zero:

0 =
[
−(q2 − k2)J0(pR) + 2

p

R
J1(pR)

]
A

+ 2ik

[
−qJ0(qR) +

1

R
J1(qR)

]
C (A9)

0 = 2ikpJ1(pR)A+ (q2 − k2)J1(qR)C (A10)

where R represents the radius of the waveguide. These
conditions are satisfied only if the determinant is equal to
zero, giving the dispersion relation for the wave vector,
also known as the Pochhammer–Chree equation:

2p

R
(q2 + k2)J1(pR)J1(qR)− (q2 − k2)2J0(pR)J1(qR)

− 4k2pqJ1(pa)J0(qR) = 0 (A11)

Appendix B: Scattering matrix

To avoid numerical instabilities the scattering matrix
approach is used [27, 28]. For a N -layer structure, the
coefficients aN and b0 of the outgoing modes are related

to the coefficients a0 and bN of the incoming modes via
the scattering matrix S(0, N)(

aN
b0

)
= S(0, N)

(
a0

bN

)
(B1)

The matching conditions for the wave functions at the
(n + 1)th interface can be expressed as function of the
interface matrix:(

an
bn

)
= I(n+ 1)

(
an+1

bn+1

)
(B2)

It is convenient to divide the scattering and interface
matrices in submatrices

S =

(
S11S12

S21S22

)
(B3)

I =

(
I11I12

I21I22

)
(B4)

To calculate the transfer matrix S(0, N) an iterative
process based on the following expressions [27, 28] can
be used:

S11(0, n+ 1) = (I11 − S12I21)−1S11 (B5)

S12(0, n+ 1) = (I11 − S12I21)−1(S12I22 − I12) (B6)

S21(0, n+ 1) = S22I21S11(0, n+ 1) + S21 (B7)

S22(0, n+ 1) = S22I21S12(0, n+ 1) + S22I22 (B8)

To calculate the stress and displacement fields of the
whole structure the coefficients of all the layers have to
be calculated by using the expressions [27, 28]

an = (1− S12(0, n)S21(n,N))−1

(S11(0, n)a0 + S12(0, n)S22(n,N)bN ) (B9)

bn = (1− S21(n,N)S12(0, n))−1

(S21(n,N)S11(0, n)a0 + S22(n,N)bN ) (B10)
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