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1. Introduction

Solid propellants are highly filled elastomers used for
propulsion of rockets and launchers. Highly filled elasto
mers have a filler volume fraction of up to 80%. As
a consequence, only a small quantity of binder holds the
particles together and assures the viscoelastic properties of
the composite up to the large strains. Due to the high filler
fraction, the material exhibits highly nonlinear mechanical
behaviour, and predictive material models are needed in
rs.
lastic mechanical
lled materials is
models are either
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(i) phenomenological [1 5], which lead to imprecise pre
dictions of the material behaviour under complex loadings
or extreme environmental conditions (temperature), or
(ii) based on homogenization theories [6 10] and extra
polated to high filler ratios where their assumptions are not
precisely verified. The difficulty of determining models
based on the physics of the material (non phenomenolog
ical models) arises from the complexity of the microscopic
structure and the induced local deformation mechanisms.
An additional obstacle arises from the involved binder filler
and filler filler interactions. Measuring the mechanical
behaviour of the material under complex loading opens
doors to a better understanding of local deformation
mechanisms.

The viscoelastic behaviour under prestrain has been
previously studied by superimposing a tensile prestrain
with small strain oscillations on unfilled rubber in tensile
mode [11,12], on carbon black and silica filled elastomers



in tensile and shear mode [13–20], and on highly-filled
elastomers in torsion mode [21] and uniaxial tensile
mode [22].

Suphadon et al. [23,24] compared the loss modulus of
unfilled and filled rubbers subject to a uniaxial tensile
prestrain and either tension or torsion strain oscillations.
They showed that the loss modulus becomes anisotropic at
large prestrains.

The objective of this paper is to present a series of
measurements of the viscoelastic behaviour of propellant
under two orthogonal prestrains. The prestrained Dyn-
amic Mechanical Analysis (DMA) measurements are per-
formed on cross-shaped specimens with two constant
additional orthogonal prestrains. Using a simple formula,
we estimate the stress and strain fields in the center of the
specimen and establish a nonlinear model for the visco-
elastic behaviour of the composite under orthogonal
prestrains.
2. Materials

The solid propellants studied here are highly-filled
elastomers characterized by a filler fraction larger than
86%wt. The fillers are ammonium perchlorate and alumi-
num particles. The binder is based on hydroxy-terminated
polybutadiene (HTPB) prepolymer (the functionality of the
polymer is slightly higher than 2) cured with a methylene
diicyclohexyl isocyanate (MDCI). The properties of the
system depend on the cross-link density of the binder,
which can be characterized by the NCO/OH ratio. The latter
is the ratio of the molar quantities of MDCI and HTPB
prepolymer introduced during manufacture. If the NCO/OH
ratio is lower than 1, the system does not contain enough
cross-linking agents to create a complete network and,
consequently, part of the HTPBmolecules remains unlinked
to the network.

A plasticizer, dioctyl azelate (DOZ) molecules, is intro-
duced in the mixture. Filler-binder bonding agents (FBBA)
can also be added. These molecules react chemically with
the fillers and with the polymer chains, creating links
between the surface of the fillers and the polymer mole-
cules. These chemical links have an influence on the
mechanical behaviour of the material.

The materials are thermally cured at 50 �C for two
weeks.

In this study, we compare five solid propellants,
differing in filler fraction, NCO/OH ratio, plasticizer content,
and presence or absence of FBBA. Their composition is
detailed in Table 1.
Table 1
Composition of the studied propellants. FBBA: presence (�) or absence (�).

Filler fraction
(%wt)

NCO/OH
ratio (�)

Plasticizer
(%wt of the binder)

FBBA (�)

A 86 0.80 10.0 �
B 88 0.80 22.5 �
C 90 0.80 30.0 –

D 88 0.88 25.0 –

E 90 0.95 20.0 –
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3. Experimental procedure

3.1. Specimen and loading

Cross-shaped specimens were cut from thick plates of
eachmaterial (Fig. 1). The arms of the cross were connected
with large radii in order to limit stress concentrations due
to the orthogonal strain field. Overall dimensions of the
specimens are 50 mm � 45 mm � 5 mm.

In order to apply the orthogonal prestrain, a particular
set up was constructed out of grips and calibrated beams
(Fig. 1).

The loading of the specimen is performed in three steps
(Fig. 2):

Step 1: A horizontal prestrain is applied using a stan-
dard tensile machine. e1 ¼ 0%, 2%, 5%, or 7.5%.

Step 2: The displacement is maintained with rigid
beams. Grips are stuck to the surfaces of the specimen
facing the vertical direction. The stresses within the spec-
imen are then relaxed for at least 48 h and are considered to
have reached a stable value.

Step 3: The set up is finally placed into the DMA appa-
ratus (Metravib Viscoanalyseur VA3000) and is loaded on
the vertical axis with a prestrain e2,i ranging between 0.01
and 7.5%, added to strain oscillations with a frequency
f ¼ 5 Hz and an amplitude ea ¼ 0.01%. In the end, the total
strain in the direction of the axes according to time is

e1ðtÞ ¼ e1 in the horizontal axis (1)

e2ðtÞ ¼ e2 þ ea sinð2pftÞ in the vertical axis (2)

The tests are performed at room temperature. A sche-
matic representation of the imposed loading is proposed in
Fig. 2d.
Fig. 1. The orthogonally prestrained set up in the DMA testing device.
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Fig. 2. Steps of the DMA test under orthogonal prestrain.
In the final step, the DMA apparatus computes the loss
factor, tan d, and the apparent stiffness of the specimen, K,
defined as the ratio between the vertical measured forces
and the imposed displacement. Consequently, K depends
on the shape and dimensions of the cross-shaped spec-
imen. The strain field, 3, is represented in Fig. 3 under the
assumption of small strain and an imposed displacement of
1 mm in both orthogonal directions. Fig. 3 illustrates the
fact that the strain and stress fields are not homogeneous in
the specimen and, therefore, that K is not an intrinsic
material property.
Fig. 3. The heterogeneity of the strain field (horizontal and vertical component
displacement of 1 mm in both orthogonal directions.
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The key point is to estimate the local mechanical fields
in the center of the cross-shaped specimen. To achieve this,
one could perform full field strain measurements on
the surface of the specimen. However, due to the transi-
ent character of the measured fields, the experimental
setup would be complex and would need additional
interpretation.

The method developed here is to determine the local
strain and stress fields in the center of the cross-shaped
specimen from the measured forces and imposed
displacements at the grips using a localization operator.
s, i.e. 311 and 322) under the assumption of small strains and an imposed



The localization operator was computed using a finite
element modelling that is presented in the next section.

3.2. The localization operator

The localization operator is represented by twomatrices
that permit an estimation of the strain and stress fields at
the center of the specimen from the measured forces and
the imposed displacements at the grips. This is done under
a series of simplifying assumptions. The material is con-
sidered to be under small strains and to exhibit linear
viscoelastic behaviour. Therefore, one can further accept
that the phase shift angle d is constant over the specimen
and that the local strain and stress fields are obtained using
an elastic computation taking advantage of the superposi-
tion principle as:

bs ¼ Lss; (3)

b3¼ L 3e; (4)

where bs and b3denote the stress and strain tensors at the
center of the specimen (Fig. 4), and s and e denote the
stress and strain defined hereafter. Numerical computa-
tions showed that only the stress components along the
horizontal and vertical coordinate axes are significant. A
similar observation holds for the strains with the exception
of the through-thickness strain component, which is
related to the horizontal and vertical components by the
incompressibility constraint of the material. As a conse-
quence, we only consider the stress and strain components
along the horizontal and vertical axes, which are denoted bsi

and b3i for i ¼ 1,2. The macroscopic values s ¼ (s1, s2) and
e ¼ (e1, e2) are computed with the formulae:

si ¼ Fi
Si
; (5)

ei ¼ Ui

Di
; (6)
a b

Fig. 4. The characteristics defining the macroscopic values s and e: exper-
imental forces F, surfaces S, displacements U, and dimensions D.
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from forces Fi, surfaces Si, displacements Ui, and dimensions
Di, for i ¼ 1,2 (see Fig. 4a).

The horizontal stress s1 was estimated from numerical
computations with imposed displacements. As a conse-
quence, the evolution of this value outside the linear
domain is unknown.

The main assumptions leading to the localization oper-
ator are: (a) small strains, (b) homogeneous strains and
stresses in the local elementary volume, and (c) the simi-
larity of the spatial distributions of the fields in linear
elasticity and viscoelasticity. To assess the accuracy of the
results, the validity of the assumptions (a) and (b) was
verified by several computational tests, for a quasi-
incompressible (Poisson’s ratio n ¼ 0.48) model material
with unit Young modulus (E ¼ 1 Pa).

The small strain assumption was numerically tested for
strains e between 0 and 10%. The range of validity of the
approximation of stress and strain fields in the center using
the localization matrix is obtained for maximal strains in
the horizontal and vertical directions of emax

1 ¼ 4:0% and
emax
2 ¼ 4:5%, respectively. For these strains, the error
between the stress components computed in large strains
and small strains is of 5.9% in direction 1 and of 5.1% in
direction 2.

Because the experiments imposing a horizontal pre-
strain e1 ¼7.5% lie outside of the validated range, they were
not interpreted using this technique. Nevertheless, if either
e1 or e2 is small and the other is reasonably greater than 5%,
the small strains assumption is still relevant. As an example,
for e1 ¼ 5.0% and e2 ¼ 2.0%, the assumption of small strains
introduces a 0.8% error on the stress components.

The assumption of a homogeneous elementary cell in
the center of the specimen is also valid for some given
loadings. The stress field in one element is compared to the
values obtained in the neighboring elements, again at
e1 ¼ 4.0% and e2 ¼ 4.5% (the obtained values of the stress
components are displayed in Fig. 5). Similar results can be
obtained for the strain components. We can conclude that
the relative heterogeneity is up to 6.3% in stress and 16% in
strain for e1 ¼ 4.0% and e2 ¼ 4.5%.

Finally, the last assumption, namely the similarity of the
spatial distributions of the fields in linear elasticity and
viscoelasticity, is discussed. Although the influence of the
loading history on the distribution of strain and stress fields
in the specimen was not quantified, several observations
led to this assumption. During step 2 of the experimental
procedure, the stresses in the specimen were relaxed for
48 h after applying the horizontal prestrain. The stress state
reached at the end of step 2 is considered fully relaxed
compared to the timescale of the DMA test [25]. At step 3,
the duration between the application of the vertical pre-
strain and the application of the DMA cyclic loading was
a few minutes, which has been checked to allow for
a constant measurement value [25]. Consequently, the
simulation of the field distributions in a linear elastic
specimen is assumed to be a close approximation of those
same field distributions in a linear viscoelastic material. In
addition, the phase shift d between the stress and strain
fields in the center of the specimen, bs and b3, is assumed to
be identical to the phase shift between the macroscopic
stress and strain values, s and e.
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Fig. 6. Schematic representation of the quantification of the viscoelastic
behaviour.

Fig. 5. Heterogeneous stress components s11 and s22 in the cross-shaped specimen, loading e1 ¼ 4.0%, e2 ¼ 4.5%.
4. The model

The magnitude of the complex modulus kE� k is deter-
mined from the ratio of the amplitude of the sinusoidal
stress bs2 and strain b32. We recall that the loss factor is
assumed to be constant over the whole geometry. The
storage and loss moduli, E0 and E00, are deduced from kE� k
and tan d using Equation (7).

��E��� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E02 þ E002

p
; tand ¼ E00

E0 (7)

The storage modulus E0 quantifies the elastic part of the
behaviour, while the loss modulus E00 corresponds to the
quantity of heat dissipated by friction between polymer
chains during a strain cycle [26].

For both the storagemodulus E0 and the lossmodulus E00,
we define a unique model, Equation (8), which approxi-
mates the dependency of both curves on the prestrain e2.

Xðe2Þ ¼
8<:

aþ blogðe2Þ if e2 < et ;

aþ blogðe2Þ þ g

�
log

�
e2
et

��z
otherwise;

(8)

where X stands for E0 or E00 and a, b, et, g, and z are real
numbers considered as material parameters. Each
modulus, E0 or E00, is thus defined by its set of material
parameters. A similar model with a piece-wise loglinear
function and a uniaxial prestrain is described in [22,27].

This mathematical model is optimized to the experi-
mental results using a least-squares optimization algorithm
in Mathematica�. More precisely, a and b are first deter-
mined fromat least fourmeasurements at lowprestrain. The
optimal values of least square distance with respect to et, g,
and z are then determined from the second case of Equation
(8). Confidence intervals at a 95% level are computed
numerically for each parameter in Mathematica�.

The viscoelastic behaviour measured by DMA is char-
acterized by three quantities, as described in Fig. 6. The
plateau value P is chosen to be the model value at e2 ¼ ep,
see Equation (9). The nonlinearity threshold T is directly
5

given by et. The nonlinearity slope S is defined as the slope
of the logarithmic asymptote of the curve (Fig. 6) and is
determined from constants et, b, g, and z according to
Equation (10).

P ¼ aþ blog
�
ep
	
; (9)

S ¼ 1
N

XN
i¼1

0@bþ gz

"
log

�
et þ e2;i

et

�#z�1
1A; (10)

where ep ¼ 0.01%, e2,i˛[3%,6%], and N ¼ 16.
In the following sections, the superscripts ð$Þ0 and ð$Þ00

are added to the parameters of the model to denote the
application for the storage and loss modulus, respectively.
Confidence intervals at a 95% level for P, T, and S are
computed from the ones of the model parameter a, b, et, g,
and z.

5. Results and discussion

The experimental results are presented and discussed
using the model defined in Equation (8). Only the
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experiments with a horizontal prestrain e1 of 0, 2, and 5%
are used, as the results at 7.5% lie outside the limit of
accuracy of the localization formulae. However, using the
scores obtained at high vertical prestrains e2 stabilized the
identification of the model, especially the threshold.

5.1. Comparison of the behaviour under uniaxial and
orthogonal prestrain

Before comparing the results, it is important to note that
the two experiments are not equivalent. In uniaxial DMA,
the horizontal stress s1 is zero, whereas in the orthogonally
prestrained DMA, the horizontal macroscopic strain e1 is
fixed at zero. The material behaviour under orthogonal
prestrain is qualitatively similar to that observed under
uniaxial prestrain. The model defined in (8) was used for
identification in both experiments.

Let us start with an inspection of the parameters of the
model in uniaxial and orthogonal prestrain as presented in
Fig. 6.

Fig. 7 displays the value of the parameter P character-
izing the height of the plateau for each material composi-
tion. The displayed table represents the relative changes of
the parameter P for the orthogonal measurement with
respect to the uniaxial measurement. More precisely, the
first and second rows of the table are defined as:

P0
orthogonal � P0

uniaxial

P0
uniaxial

and
P00
orthogonal � P00

uniaxial

P00
uniaxial

: (11)

Materials C and E, which are more heavily loaded
compared to the others, exhibit particular behaviour.
Material E manifests higher plateau values P0 than the ones
of the other materials, whether in uniaxial or orthogonal
prestrained DMA. In addition to being heavily loaded, this
material is highly cross-linked, which leads to a dense
network. The high storage modulus quantifies the large
elastic part of the behaviour.

Although material C is heavily loaded, it is also plasti-
cised and less cross-linked. As a consequence, the plateau
values are low compared to material E. However, one can
note that the relative increase in P is significantly larger for
material C. The nonlinear behaviour under orthogonal
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Fig. 7. Comparison of the plateau values P of DMA tests under uniaxial and
orthogonal prestrain (e1 ¼ 0).
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prestrain probably originates from the combination of
a high filler fraction and a low cross-link density network.

The observed differences between heavily loaded
materials and the others could be explained by the filler
rearrangement mechanism proposed in [3] or by the
formation of stress concentration bands as shown by [28]
and observed in [29].

The nonlinearity of the material as a function of the
vertical prestrain e2 is also modified by the presence of
a horizontal prestrain e1 (Figs. 8 and 9). The nonlinearity
thresholds T0 and T00 decrease by at least 71.2% and 48.4%,
respectively (Fig. 8).

The identification results obtained through different
runs of the algorithm showed a small confidence interval
for the plateau P and the slope S, and a large one for the
threshold T. This is to be expected as a small change in S
induces a larger change in T.

The elongation at failure of a propellant is divided by
two in equibiaxial loading with respect to uniaxial loading
[29]. Therefore, a decrease of the nonlinearity threshold T
measured under orthogonal prestrain is expected when
compared to measurements under uniaxial prestrain.

It appears that the nonlinearity, as expressed by the
slope S, is accentuated by the presence of an orthogonal
prestrain e1 (see Fig. 9). However, a larger number of
experiments have to be performed to assess the physical
interpretation.
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Fig. 10. Storage and loss modulus of propellant A, measured under orthogonal prestrain, (f ¼ 5 Hz, ea ¼ 0.01%).
5.2. Nonlinear domain

The orthogonal experiments were interpreted using the
proposed model for uniaxial DMA experiments (Equation
(8)) producing a reasonable correlation (see Figs. 11–15).
The plotted 95% confidence intervals of the model are small
and express a good fit of the model with experiments. An
exception is encountered around the threshold values
between the plateau and the slope, which was already
found to be a weak point in the model. One can also note
large confidence intervals for large vertical prestrains e2
(see Fig. 15), but this phenomenon could probably be
reduced by using a larger number of measurements.

Fig. 10 displays the storage and loss moduli, E0 and E00, as
functions of e2. In order to highlight the model parameters
P, T, and S, the next figures (Figs. 11–15) are plotted in
loglinear coordinates.
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Fig. 11. Storage and loss modulus of propellant A, measure
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One can note that the curves are largely spread in the
region of the linear plateau, but they cluster once the
threshold is reached. Starting from a level of prestrain
(e2 ¼ et) that depends on the composition, the curves for
the different values of prestrain e1 merge and present
similar behaviour. This observation indicates that the
vertical prestrain e2 compensates the effect of the hori-
zontal prestrain e1. Thus, if one supposes that the prestrain
leads to a rearrangement mechanism of the anisotropic
microstructure, then the previous observation implies that
the rearrangement is cancelled out by a prestrain in an
orthogonal direction.

The study of the model parameters P, T, and S, as func-
tions of e1 confirms these visual observations. The influence
of the prestrain e1 on the value of the horizontal plateau is
the same for every material composition, see Table 2. When
e1 increases from 0 to 5%, the values of P0 and P00 increase on
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d under orthogonal prestrain, (f ¼ 5 Hz, ea ¼ 0.01%).
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Fig. 12. Storage and loss modulus of propellant B, measured under orthogonal prestrain, (f ¼ 5 Hz, ea ¼ 0.01%).
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Fig. 13. Storage and loss modulus of propellant C, measured under orthogonal prestrain, (f ¼ 5 Hz, ea ¼ 0.01%).
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Fig. 15. Storage and loss modulus of propellant E, measured under orthogonal prestrain, (f ¼ 5 Hz, ea ¼ 0.01%).
average by 33 and 26%, respectively. This evolution is
coherent with the effect of orthogonality observed in the
previous paragraph.

Table 2 presents a peculiar value of the threshold when
e1 ¼ 2%. This is a known defect of the proposed model [22].
The interpretation of these results is subject to much
uncertainty. The uniaxial experiments showed that the
uniaxial nonlinearity threshold is lower than 1.5% for every
material. Moreover, the proposed model has different
behaviour before and after the threshold. These two facts
lead to a high variability in the model parameters for
a prestrain e1 close to the uniaxial nonlinearity threshold.
The variability of the model parameters in the case of
e1 ¼ 2% can be recognized as a consequence of the
perturbation of the behaviour around the uniaxial nonlin-
earity threshold.

Finally, increasing the prestrain e1 decreases the slope of
the nonlinearity as a function of e2, see Table 2. That means
that the nonlinearity slope decreases as the prestrain varies
from a uniaxial to an equibiaxial state. The slopes decrease
between 2 and 50%, except those of material B, which
Table 2
Parameters P0, P00, T0, T00, S0 , S00 for all studied materials and prestrains e1 in
orthogonal experiments.

e1 (%) P0 (MPa) P00 (MPa) T0 (%) T00 (%) S0 (MPa) S00 (MPa)

A 0 21.0 10.1 0.29 0.49 60.0 7.5
2 23.1 10.8 0.18 0.32 67.1 8.1
5 27.3 12.0 0.32 0.32 54.1 5.7

B 0 17.6 8.7 0.27 0.15 139.3 30.4
2 25.4 11.9 0.16 0.32 157.8 54.2

C 0 17.5 9.4 0.13 0.24 110.0 23.3
2 16.5 9.3 0.13 0.32 96.4 21.5
5 19.8 10.2 0.10 0.15 98.6 19.6

D 0 21.0 9.3 0.03 0.06 62.1 12.0
2 24.0 9.7 0.32 0.32 42.5 6.8
5 29.6 12.5 0.50 0.50 45.0 5.8

E 0 54.7 17.3 0.08 0.27 263.2 45.8
2 57.5 17.8 0.10 0.10 90.5 13.7
5 74.7 22.8 0.08 0.10 274.3 32.2

9

increase. However, adding measurements at prestrains e2
higher than 2% would change the extrapolated value of the
slopes for material B. The decrease of the slope explains the
fact that the measurements are identical for large vertical
prestrains e2, despite the wide variation in thresholds.
6. Conclusions and perspectives

The material viscoelastic behaviour under orthogonal
prestrain is complex and difficult to characterize experi-
mentally. This study presents a method of conducting DMA
experiments with orthogonal prestrain. The prestrain was
applied in two orthogonal directions in two distinct steps
separated by a resting period. The performed measure-
ments provided the values of the apparent stiffness K and
the loss factor tan d at different prestrains in the vertical
and horizontal directions.

In order to interpret themeasurements and obtain some
intrinsic material properties, a relationship between the
mean strain and stress at the arms of the cross specimen
and the local stress and strain fields in the center of the
cross specimen was proposed. The relations were obtained
under a series of assumptions, essentially small strains and
linear material behaviour, using finite element computa-
tions. The limit of the approximations was clearly identified
and did not restrain the validity of the present results.
These relations allowed estimating the storage and loss
modulus of the material from the measurements.

The measurements under an orthogonal prestrain were
then identified using a mathematical model proposed for
the results of uniaxial DMA. Themodel predictions of E0 and
E00 were close to the measured values and provided a small
confidence interval with respect to the model parameters.

The material behaviour under orthogonal prestrain is
qualitatively similar to that observed under uniaxial pre-
strain. The nonlinearity is highly modified by imposing
a zero horizontal prestrain, which is different from the zero
horizontal stress in the uniaxial case. An increase in the
horizontal prestrain modifies the material behaviour, but



this modification is cancelled out by an increase of the
orthogonal vertical prestrain, without obtaining the uni-
axial behaviour. The nonlinear behaviour could be exp-
lained by fillers aligning in the direction of the applied
prestrain, leading to the observed moduli increase.

If this experiment is technically accessible, the inter-
pretation of the measurements required a series of ass-
umptions to estimate the local stress and strain fields.
Modifying the experimental set up would limit the amount
of approximations needed, for example by adding (i) the
measurement of the reaction force in the axis orthogonal to
the DMA direction and (ii) the full-field strain measure-
ments in the center of the cross specimen. The drawback is
an actual increase of the complexity of the experimental set
up. Further experiments are needed in order to estimate
precisely the experimental and modelling errors.
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