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Abstract: Conditions under which compositions of component systems form a well-defined
system-of-systems are here formulated at a fundamental level. Statement of what defines
a well-defined composition and sufficient conditions guaranteeing such a result offers insight
into exemplars that can be found in special cases such as differential equation and discrete event
systems. For any given global state of a composition, two requirements can be stated informally as:
(1) the system can leave this state, i.e., there is at least one trajectory defined that starts from the state;
and (2) the trajectory evolves over time without getting stuck at a point in time. Considered for every
global state, these conditions determine whether the resultant is a well-defined system and, if so,
whether it is non-deterministic or deterministic. We formulate these questions within the framework
of iterative specifications for mathematical system models that are shown to be behaviorally
equivalent to the Discrete Event System Specification (DEVS) formalism. This formalization supports
definitions and proofs of the afore-mentioned conditions. Implications are drawn at the fundamental
level of existence where the emergence of a system from an assemblage of components can be
characterized. We focus on systems with feedback coupling where existence and uniqueness of
solutions is problematic.

Keywords: emergence; uniqueness; existence of solutions; input/output system; system specifications;
Discrete Event System Specification

1. Introduction

Emergence has been characterized as taking place in strong and week forms. Mittal [1] pointed out
that strong emergent behavior results in generation of new knowledge about the system representing
previously unperceived complex interactions. This can occur in the form of one or more of new
abstraction levels and linguistic descriptions, new hierarchical structures and couplings, new component
behaviors, and new feedback loops. Once understood and curated, the behavior returns to the
weak form, as it is no longer intriguing, and then can begin to be treated in regularized fashion.
Emergent behavior is likely an inherent feature of any complex system model because abstracting
a continuous real-world system (e.g., any complex natural system) to a constructed system-model
must leave gaps of representation that may diverge in unanticipated directions. In [2] philosophically,
following Ashby [3] and Foo and Zeigler [4], the perceived global behavior (holism) of a model might
be characterized as: Components (reductionism) + interactions (computation) + higher-order effects
where the latter can be considered as the source of emergent behaviors [5,6].

The Discrete Event Systems Specification (DEVS) formalism has been advocated as
an advantageous vehicle for researching such structure–behavior relationships because it provides the
components and couplings for models of complex systems and supports dynamic structure for genuine
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adaption and evolution. Furthermore, DEVS enables fundamental emergence modeling because it
operationalizes the closure-under-coupling conditions that form the basis of well-defined resultants of
system composition especially where feedback coupling prevails [7,8].

In this paper, we formulate conditions under which a composition of component systems
form a well-defined system-of-systems at a fundamental level. Formal statement of what defines
a well-defined composition and sufficient conditions guaranteeing such a result offer insight into
exemplars that can be found in special cases such as differential equation and discrete event systems.
Informally stated, we show that for any given global state of a composition, two requirements can be
stated as: (1) the system can leave this state, i.e., there is at least one trajectory defined that starts from
the state; and (2) the trajectory evolves over time without getting stuck at a point in time. Considered for
every global state, these conditions determine whether the resultant is a well-defined system and if so,
whether it is non-deterministic or deterministic. We formulate these questions within the framework of
iterative specifications for mathematical system models that are shown to be behaviorally equivalent to
the Discrete Event System Specification (DEVS) formalism. This formalization supports definitions and
proofs of the afore-mentioned conditions and allows us to exhibit examples and counter-examples of
condition satisfaction. Drawing on Turing machine halting decidability, we investigate the probability
of legitimacy for randomly constructed DEVS models. We close with implications for further research
on the emergence of new classes of well-defined systems.

Let us start with a well-known concept, the Turing Machine (TM) (cf. [9]). Usually, it is presented
in a holistic, unitary manner but as shown in Figure 1b, we can decompose it into two stand-alone
independent systems: the TM Control (S1) and the Tape System, (S2). Foo and Zeigler [4] argued
that the re-composition of the two parts was an easily understood example of emergence wherein
each standalone system has very limited power but their composition has universal computation
capabilities. Examining this in more depth, the Tape system shown in Figure 1a is the dumber of the
two, serving a memory with a slave mentality, it gets a symbol (sym) and a move (mv) instruction as
input, writes the symbol to the tape square under the head, moves the head according to the instruction,
and outputs the symbol found at the new head location. The power of the Tape system derives from
its physicality—its ability to store and retrieve a potentially infinite amount of data—but this can only
be exploited by a device that can properly interface with it. The TM Control by contrast has only finite
memory but its capacity to make decisions (i.e., use its transition table to jump to a new state and
produce state-dependent output) makes it the smarter executive. The composition of the two exhibits
“weak emergence” in that the resultant system behavior is of a higher order of complexity than those
of the components (logically undecidable versus finitely decidable), the behavior that results can be
shown explicitly to be a direct consequence of the component behaviors and their essential feedback
coupling—cross-connecting their outputs to inputs as shown by the arrows of Figure 1b. We are going
to use this example to discuss the general issues in dealing with such compositions.

Figure 1. Turing Machine decomposition (a) and modular composition (b).

The interdependent form of the interaction between the TM control and the tape system illustrates
a pattern found in numerous information technology and process control systems and recognized early
on by simulation language developers [10] (though not necessarily in the modular form described
here). In this interaction, each component system alternates between two phases, active and passive.
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When one system is active the other is passive—only one can be active at any time. The active system
does two actions: (1) it sends an input to the passive system that activates it (puts it into the active
phase); and (2) it transits to the passive phase to await subsequent re-activation. For example, in the
re-composed Turing Machine, the TM control starts a cycle of interaction by sending a symbol and
move instruction to the tape system then waiting passively for a new scanned symbol to arrive.
The tape system waits passively for the sym, mv pair. When it arrives, it executes the instruction and
sends the symbol now under the head to the waiting control.

Such active–passive compositions provide a class of systems from which we can draw intuition
and examples for generalizations about system emergence at the fundamental level. We will employ
the modeling and simulation framework based on system theory formulated in [10] especially focusing
on its concepts of iterative specification and the Discrete Event Systems Specification (DEVS) formalism.
Special cases of memory-less systems and the pattern of active–passive compositions are discussed
to exemplify the conditions resulting ill-definition, deterministic, and non-deterministic as well as
probabilistic systems. We provide sufficient conditions, meaningful especially for feedback coupled
assemblages, under which iterative system specifications can be composed to create a well-defined
resultant and that moreover can be simulated in the DEVS formalism.

However, to address more fundamental issues, we need to start with a more primitive and perhaps
more intuitive notion of a system. As in Figure 2, consider a concept of system with states, transitions,
and times associated with transitions. For example, there are transitions from state S1 to state S3 and
from S3 to S4 which each takes 1 time unit and there is a cycle of transitions involving S4, . . . , S7 each
of which take zero time. There is a self-transition involving S2 which consumes an infinite amount
of time (signifying that it is passive, remaining in that state forever.) This is distinguished from the
absence of any transitions out of S8. A state trajectory is a sequence of states following along existing
transitions, e.g., S1, S3, S4 is such a trajectory.

Figure 2. System with tuned transitions.

This example gives us a quick understanding of the conditions for system existence at the
fundamental level.

We say that the system is:

• not defined at S8 because there is no trajectory emerging from it;
• non-deterministic at S1 because there are two distinct outbound transitions defined for it; and
• deterministic at S2 and S4 because there is only one outbound transition for each.

We say that the system is well-defined if it is defined at all its states. These conditions are relative to
static properties, i.e., they relate to states not how the states follow one another over time. In contrast,
state trajectories relate to dynamic and temporal properties. When moving along a trajectory, we keep
adding the time advances to get the total traversal time, e.g., the time taken to go from S2 to S4
is 2. Here, a trajectory is said to be progressive in time if time always advances as we extend the
trajectory. For example, the cycle of states S4 . . . S7 is not progressive because as we keep adding the
time advances the sum never increases. Conceptually, let us start a clock at 0 and, starting from a given
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state, we let the system evolve following existing transitions and advancing the clock according to the
time advances on the transitions. If we then ask what the state of the system will be at some time later,
we will always be able to answer if the system is well-defined and progressive. A well-defined system
that is not progressive signifies that the system gets stuck in time and after some time, it becomes
impossible to ask what the state of the system is in after that time. Zeno’s paradox offers a well-known
metaphor where the time advances diminish so that time accumulates to a point rather than continue
to progress and offers an example showing that the pathology does not necessarily involve a finite
cycle. Our concept of progressiveness generalizes the concept of legitimacy for DEVS [10] and deals
with the “zenoness” property which has been much studied in the literature [11]. We return to it in
more detail later.

Thus, we have laid the conceptual groundwork in which a system has to be well-defined
(static condition) and progressive (temporal dynamic condition) if it is to have achieved independent
existence when emerging from a composition of components.

2. Formal Background

Hereafter are presented basic and coupled specifications.

2.1. Basic Discrete Event System Specification

As presented in [12], a Discrete Event System Specification (DEVS) is a structure

M =< X, S, Y, δint, δext, λ, ta >

where X is the set of input values, S is a set of states, Y is the set of output values, δint : S → S is the
internal transition function, δext : Q× X → S is the external transition function, where Q = {(s, e)|s ∈ S,
0 ≤ e ≤ ta(s)} is the total state where e is the time elapsed since last transition, λ : S → Y is the
output function, ta : S→ R+

∞ is the time advance function.
In the Turing machine example of Figure 1, the tape system and control engine are each atomic

DEVS. For the tape system, a state is a triple (tape, pos, mv) where the tape is an infinite sequence
of zeros and ones (symbols), pos represents the position of the head, and mv is a specification for
moving left or right. An external transition accepts a symbol, move pair, writes the symbol in the
square of the current head position and stores the move for the subsequent internal transition that
executed the specified move. For the control engine, a state is a pair (st, sym) where st is a control
state and sym is a stored symbol. An external transition stores the received symbol for subsequent
use. An internal transition applies the TM transition table to the (st, sym) pair and transitions to the
specified control state.

The core of this concept simplifies when the system is input-free (or autonomous, i.e., not responding
to inputs) and outputs are not considered. Then, we have a transition system

M =< S, δ, ta >

where δ ⊆ S× S and ta : S× S→ R+
∞.

Here, we are allowing the transition system to be non-deterministic so that rather than δ and ta
being functions they are presented as relations.

For example, in Figure 2, we have S = {S1, S2, S3, S4, S5, S6, S7} , δ = {(S1, S3), (S3, S4), ...},
and ta(S1, S3) = 1, ta(S3, S4) = 1,...

In this formal version of the informal statements above, the transition system, M, is

• not defined at S8 because there is no transition pair with S8 as the left member in δ;
• non-deterministic at S1 because it is a left member of two transition pairs (S1, S2) and (S1, S3); and
• deterministic at S2 and S4 because there is only one transition pair involving each one as

a left member.

This gives concrete and formal expression to the earlier definition of these concepts.
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2.2. Coupled DEVS Models

DEVS models can be coupled to form coupled models that themselves are DEVS models
manifesting closure under coupling. To keep the presentation as straightforward as possible in this
paper we will limit the discussion to coupling of two components without external inputs or outputs.
This is illustrated in Figure 1b where the coupling recipe maps the output of the control engine
(symbol, move pair) to the input of the tape system and likewise, the output of the tape system (symbol)
to the input of the control engine. This mapping is assumed to take zero time (any delay in a real
manifestation can be modeled by inserting delay components). To sketch the way the resultant of
coupling is computed and show that it is expressed as a DEVS, let M =< X, S, Y, δint, δext, λ, ta > and
M′ =< X′, S′, Y′, δ′int, δ′ext, λ′, ta′ >.

Then, the resultant is a DEVS:

Mcoup =< Qcoup, δcoup, tacoup >

where Qcoup = Q × Q′, tacoup : Qcoup → R+
∞, δcoup : Qcoup → Qcoup and ta((s, e), (s′, e′)) =

min{ta(s)− e, ta′(s′)− e′}.
To explain, the next event will occur according the time advance and will be driven by the

imminent component (whose next event time is the minimum of the two—neglecting ties for simplicity
here). For illustration, let t∗ be the time advance and let the second component be imminent.
This component generates its output and sends it to the first via the coupling which reacts to it
using its external transition function establishing its next state δext(s, t∗, λ′(s′)); at the same time,
the imminent component applies its internal transition function to establish its next state δ′int(s

′). Thus,
we have δcoup((s, e), (s′, e′)) = (δext(s, t∗, λ′(s′)), δ′int(s

′)).
Having briefly reviewed the basics of DEVS, we are ready to consider the general case of iterative

specification of which DEVS is an example.

3. Iterative System Specifications

We briefly review an approach to Iterative Specification of Systems that was introduced in [12]
and provide more detail in Appendix B. I/O systems describe system behavior with a global transition
function that determines the final state given the initial state and the applied input segment. Since input
segments are left segmentable and closed under composition, we are able to generate the state and
output values along the entire input interval. However, such an approach is not very practical. What we
need is a way to generate state and output trajectories in an iterative way going from one state along
the trajectory to the next.

Iterative specification of systems is a general scheme for defining systems by iterative applications
of generator segments. These are elementary segments from which all input segments of a system can
be generated. Having such a concept we define a generator state transition function and iteratively
apply generator segments to the generator state transition function. The results produced by the
generator state transitions constitute the state trajectory for the input segment resulting from the
composition of the generator segments. The general scheme of iterative specification forms a basis
for more specialized types of specifications of systems. System specification formalisms are special
forms of iterative specifications with their special type of generator segments and generator state
transition functions.

Consider (Z, T) the set of all segments {ω :< 0, t1 >→ Z | t1 ∈ T}. Here, the notation,
ω :< 0, t1 >→ Z} means that ω is a mapping from an interval of time base, T to a set of
values Z. For a subset Γ of (Z, T), the concatenation closure of Γ is denoted Γ+. Example generators
are bounded continuous segments, and constant segments of variable length generating bounded
piecewise continuous segments piecewise constant segments, respectively. Unfortunately, if Γ generates
Ω, we cannot expect each ω ∈ Ω to have a unique decomposition by Γ. A single representative,
or canonical decomposition can be computed using a Maximal Length Segmentation (MLS). First we
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find ω1, the longest generator in Γ that is also a left segment of ω. This process is repeated with what
remains of ω after ω1 is removed, generating ω2, and so on. If the process stops after n repetitions,
then ω = ω1ω2 . . . ωn. We say that Γ is an admissible set of generators for Ω if Γ generates Ω and for
each ω ∈ Ω, a unique MLS decomposition of ω by Γ exists.

The following is the basis for further analysis in this paper:

Theorem 1. Sufficient Conditions for Admissibility. If Γ satisfies the following conditions, it admissibly
generates Γ+:

1. Existence of longest initial segments: ω ∈ Γ+ ⇒ max{t | ωt> ∈ Γ} exists
2. Closure under right segmentation: ω ∈ Γ ⇒ ω<τ ∈ Γ for all τ ∈ dom(ω)

An iterative specification of a system is a structure

G =< T, X, ΩG, Y, Q, δG, λ >

where T, X, Y, and Q have the same interpretation as for I/O systems, ΩG is an admissible set of input
segment generators, δG : Q×ΩG→Q is the single segment state transition function, and λ : Q× X→Y
is the output function.

An iterative specification G =< T, X, ΩG, Y, Q, δG, λ > specifies a time invariant system,
SG =< T, X, Ω+

G , Y, Q, δ+G , λ >. The system is well-defined if δ+G , the extension of δG, has the
composition property, i.e., δ+G (q, ω1 •ω2) = δ+G (δ+G (q, ω1), ω2), for all ω1, ω2 ∈ Ω+

G .
For more details, see Appendix B.

3.1. DEVS Simulation of Iterative Specification

As reviewed in Appendix B, the notion of iterative specification was introduced to characterize
diverse classes of systems such as differential equation systems and discrete time systems. With the
motivation of including discrete event systems under the same umbrella as more familiar systems,
DEVS was defined using iterative specification. Here we show that the converse is also true,
namely, that DEVS can directly represent iterative specifications. Given an iterative specification
G =< T, X, ΩG, Y, Q, δG, λ > , we construct a DEVS model M =< X, S, Y, δint, δext, λ, ta > that can
simulate it in a step-by-step manner moving from one input segment to the next. The basic idea is that
we build the construction around an encoding of the input segments of G into the event segments of
M as illustrated in Figure 3. This is based on the MLS which gives a unique decomposition of input
segments to G into generator subsegments. The encoding maps the generator subsegments. ωi in the
order they occur into corresponding events which contain all the information of the segment itself.
To do the simulation, the model M stores the state of G. It also uses its external transition function
to store its version of G’s input generator subsegment when it receives it. M then simulates G by
using its internal transition function to apply its version of G’s transition function to update its state
maintaining correspondence with the state of G.

Figure 3. DEVS Simulation of an Iterative Specification.
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Details of the construction are provided in Appendix C. We note that the key to the proof
is that iterative specifications can be expressed within the explicit event-like constraints of the
DEVS formalism, itself defined through an iterative specification. Thus DEVS can be viewed as
the computational basis for system classes that can be specified in iterative form satisfying all the
requirements for admissibility.

3.2. Coupled Iterative Specification

Although closure of coupling holds for DEVS, the generalization to iterative specification does not
immediately follow. The problem is illustrated in Figure 4 where two iterative system specifications,
ISP1 and ISP2, are cross-coupled such as exemplified by the Turing machine example in Figure 1.
The cross-coupling introduces two constraints shown by the equalities in the figure, namely, the input
of ISP2, ω2 must equal the output of ISP1, ρ1, and the input of ISP1, ω1 must equal the output of ISP2,
ρ2. Here we are referring to input and output trajectories over time as suggested graphically in Figure 4.
Since each system imposes its own constraints on its input/output relation, the conjunction of the four
constraints (two coupling-imposed, two system-imposed) may have zero, one, or multiple solutions.

Figure 4. Input and output trajectories of coupled systems.

Definition 1. A Coupled Iterative Specification is a network specification of components and coupling where
the components are iterative specifications at the I/O System level.

As indicated, in the sequel, we deal with the simplified case of two coupled components. However,
the results can be readily generalized with use of more complex notation. We begin with a definition
of the relation of input and output segments that a system imposes on its interface. We need this
definition to describe the interaction of systems brought on through the coupling of outputs to inputs.

Definition 2. The I/O Relation of an iterative specification is inherited from the I/O Relation of the system that
it specifies. Likewise, the set of I/O Functions of an iterative specification is inherited from the system it specifies.
Formally, let SG =< T, X, Ω+

G , Y, Q, δ+G , λ > be the system specified by G =< T, X, ΩG, Y, Q, δG, λ >.
Then the I/O Functions associated with G is β : Q × Ω+

G → Ω+
G where for q ∈ Q, ω ∈ Ω+

G ,
β(q, ω) = λ(δ+G (q, ω)).

Let β1 and β2 represent the I/O functions of the iterative specifications, ISP1 and ISP2,
respectively. Applying the coupling constraints expressed in the equalities above, we make
the definition:

Definition 3. A pair of output trajectories (ρ1,ρ2) is a consistent output trajectory for the state pair (q1,q2) if
ρ1 = β1(q1,ρ2) and ρ2 = β2(q2,ρ1).

Definition 4. A Coupled Iterative Specification has unique solutions if there is a function, F:Q1 × Q2→ Ω;
with F(q1,q2) = (ρ1,ρ2), where there is exactly one consistent pair (ρ1,ρ2) with infinite domain for every initial
state (q1,q2). Infinite domain is needed for convenience in applying segmentation.
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Definition 5. A Coupled Iterative Specification is admissible if it has unique solutions.

The following theorems are proved in Appendix D.

Theorem 2. An admissible Coupled Iterative Specification specifies a well-defined Iterative Specification at
the I/O System level.

Theorem 3. The set of Iterative Specifications is closed under admissible coupling.

Theorem 4. DEVS coupled model can component-wise simulate a coupled Iterative Specification.

Proof. The coupled model has components, which are DEVS representations of the individual Iterative
Specifications (according to Theorem D in Appendix D) and also a coordinator as shown in Figure 5.

Figure 5. DEVS Component-wise simulation of Coupled Iterative Specifications.

The coordinator receives the current states of the components and applies the F function to
compute unique consistent output segments. After segmentation using the MLS as in the proof of
Theorem D in Appendix D, it packages each as a single event in a DEVS segment as shown. Each DEVS
component computes the state of its Iterative Specification at the end of the segment as in Theorem D.
Then it sends this state to the coordinator and the cycle repeats. This completes an informal version of
the proof which would formally proceed by induction.

The solution function F represents an idealization of the fixed point solutions required for
Differential Equation System Specification (DESS) and the local solution approaches of Discrete
Time System Specification (DTSS) and Quantized DEVS [12]. Generalized Discrete Event System
Specification (GDEVS) [13] polynomial representation of trajectories is the closest realization but the
approach opens the door to realization by other trajectory prediction methods.

3.3. Special Case: Memoryless Systems

Consider the case where each component’s output does not depend on its state but only on
its input.

Let gr represent the ground state in which the device is always found (all states are represented
by this state since output does not depend on state.) In the following R1 and R2 are the I/O relations
of systems 1 and 2, respectively. In this case, they take special forms:

ρ1 = β1(gr, ω1)⇔ (ω1, ρ1) ∈ R1
ρ2 = β2(gr, ω2)⇔ (ω2, ρ2) ∈ R2
ω2 = ρ1
ω1 = ρ2
ρ2 = β2(q2, ω2)⇔ (ρ1, ω1) ∈ R2⇔ (ω1, ρ1) ∈ R2−1

i.e., (ρ2, ρ1) is consistent⇔ (ρ2, ρ1) ∈ R1∩ R2−1
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Let f and g be defined in the following way:

f (ρ2) = β1(gr, ρ2)

g(ρ1) = β2(gr, ρ1)

So for any ρ1, ρ1 = f (ρ2) = f (g(ρ1)) and g = f−1 (considered as a relation).
Finally, F(q1, q2) = (ρ1, f−1(ρ1)) has:

• no solutions if f−1 does not exist, yielding no resultant;
• a unique solution for every input if f−1 exists, yielding a deterministic resultant; and
• multiple solutions for a given segment ρ if f−1(ρ) is multivalued, yielding a non-deterministic resultant.

For examples, consider an adder that always adds 1 to its input, i.e.,

β(gr, ρ) = f (ρ) = ρ + 1

i.e., ∀t ∈ T, β(gr, ρ)(t) = ρ(t) + 1

Cross-coupling a pair of adders does not yield a well-defined resultant because f−1(ρ) = ρ− 1 6= f .
However, coupling an adder to a subtracter, its inverse, β(gr, ρ) = ρ − 1, yields a well-defined
deterministic system.

For other examples, consider combinatorial elements whose output is a logic function of the input
and consider a pair of gates of the same type connected in a feedback loop:

• A NOT gate has an inverse 0 → 1, 1 → 0, so the composition has two solutions one for each of
two complementary assignments, i.e., F(gr, gr) = {(1, 0), (0, 1)} yielding a non-deterministic system.

• An AND gate with one of its input held to 0 always maps the other input into 0 so has a solution
only for inputs of 0 to each component, i.e., F(gr, gr) = (0, 0), yielding a deterministic system.

• An AND gate with a stuck-at input of 1 is the identity mapping and has multiple solutions i.e.,
F(gr, gr) = {(0, 0), (1, 1)}, yielding a non-deterministic system.

3.4. Active-Passive Systems

We now show that active–passive systems as described earlier offer a class of systems for which
the iterative specifications of components satisfy the admissibility conditions specified in Theorem 4.
As in Figure 6a, consider a pair of cross-coupled systems each having input generators that represent
null and non-null segments.

Figure 6. Active–Passive Example of Admissible Progressive Coupled Iterative Specifications.

A null generator represents the output of a passive system whereas a non-null generator represents
the output of an active system. For example in the TM case, a non-null generator is a segment that
represents transmission of a symbol by the tape unit and of a symbol, move pair for the TM control.
As in Figure 6b let S1 and S2 start as active and passive, respectively. Then, they output non-null
and null generators, respectively. Since the null generator has infinite extent, the end-time of the
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non-null generator determines the time of next event, t* (as defined earlier) and we apply the transition
functions in Figure 6a to find that at t* the systems have reversed phases with S1 in passive and S2
in active.

Definition 6. Define a triple < Q, δG, λ > by Q = {active, passive} × {active, passive} with
F(active, passive) = (non-null, null) δG(active, passive) = (δ(active, nullt∗>) = δ(passive, non-nullt∗>)) =
(passive, active) with t∗(active, passive)= endtime of the non-null generator segment λ(active, passive) =

(non-null, null)

Let the non-null and null generators stand for sets of concrete segments that are equivalent
with respect to state transitions and outputs. Then, such a scheme can define a deterministic or
non-deterministic resultant depending on the number of consistent pairs of (non-null, null) generator
segments are possible from the (active, passive) state. Furthermore, mutatis-mutandis for the state
(passive, active).

4. Temporal Progress: Legitimacy, Zenoness

Although we have shown how a DEVS coupled model can simulate a coupling of iterative
specifications, it does not guarantee that such a model is legitimate [12]. Indeed, backing up,
legitimacy of the simulating DEVS is reflective of the temporal progress character of the original
coupling of specifications. We see that the time advance has a value provided that the function F
is defined for current state. However, as in the case of zenoness, a sequence of such values may
accumulate at a finite point thus not allowing the system to progress beyond this point. Consequently,
we need to extend the requirements for coupled iterative specifications to include temporal progress in
order to fully characterize the resultant composition of systems. Thus, we can extend the definitions:

Definition 7. An Iterative Specification is progressive if every sequence of time advances diverges in sum.

Definition 8. A Coupled Iterative Specification is progressively admissible if its components are each
progressive and the resultant Iterative Specification at the I/O System level is progressive.

Definition 9. A progressive Iterative Specification can be simulated by a legitimate DEVS.

Definition 10. A progressively admissible Coupled Iterative Specification can be component-wise simulated
by a legitimate DEVS.

Zeigler et al. [12] showed that the question of whether a DEVS is legitimate is undecidable.
The approach was to express a Turing Machine as a DEVS and showing that solving the halting
problem is equivalent to establishing legitimacy for this DEVS. We can transfer this approach to the
formulation of the TM in Figure 1 by setting the time advances of both components to zero except
for a halt state which is a passive state (and has an infinite time advance). Then a TM DEVS is
legitimate just in case the TM it implements ever halts. Since there is no algorithm to decide whether
an arbitrary TM will halt or not the same is true for legitimacy. Since DEVS is an iterative specification,
the problem of determining whether an Iterative Specification is progressive is also undecidable.
Likewise, the question of whether a coupled iterative specification is progressive is undecidable.

Fundamental Systems Existence: Probabilistic Characterization of Halting

The existence of an iteratively specified system requires temporal progress and there is no
algorithm to guarantee in a finite time that such progress is true. The underlying point is that,
given an arbitrary TM, we have to simulate it step-by-step to determine if it will halt. Importantly,
if a TM has not halted after some time, however long, this gives us no further information on its
potential halting in the future. However, while this is true for individual TMs, the situation may be
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different for the statistics of subclasses of TMs. In other words, for a given class of TMs, the probability
of an instance halting may be found to increase or decrease for the future given that it has not yet halted.

We performed an empirical study of randomly generated TMs described in Appendix E.
The results seem to show that TMs break into two classes—those that halt within a small number
of steps (e.g., 16) and those that do not halt. Indeed, the data suggest that approximately one-third
of the sampled TMs halt, while two-thirds do not. For those that halt, the probability of halting at
the first step is greatest and then decreases exponentially and so is well-described by a geometric
distribution with probability of success approximately 1/6. In other words the probability of halting is
1/6 at each step given the TM has not halted earlier for the set that will eventually halt.

Summarizing, the existence of an iteratively specified system is not algorithmically decidable but
there may be useful probabilistic formulations that can be applied to sub-classes of such specifications.
For example, it seems to be that with high probability the halting of a two-symbol, three-state TM
can be decided within 16 simulation steps. Therefore, it might be tractable for an assemblage of
components to find a way to solve its composition problems in a finite time for certain classes of
components couplings.

5. Discussion: Future Research

The discussion presented here was limited to compositions having two components with
cross-coupled connections. However, this scope was sufficient to expose the essential effect
of feedback in creating the need for consistent assignments of input/output pairs and the
additional—distinct—requirement for time progression. Further development can extend the scope
to arbitrary compositions generalizing the statement of consistent assignments to finite and perhaps,
infinite sets of components.

Further, when extending to arbitrary composition sizes, the analysis revealing fundamental
conditions for the emergent existence of systems from component systems suggests new classes
of systems that can be defined using iterative specifications. For example, we might consider the
active–passive systems in a more general setting. First allowing any finite number of them in a coupling
can satisfy the requirement for at most one active component at any time by restricting the coupling
to a single influencer for each component. In fixed coupling exhibiting feedback, this amounts to
a cyclic formation in which activity will travel around the cycle from one component to the next.
Another common pattern is a single component (root) influencing a set of components (branches) each
of which influences only the root. Several possibilities for interaction of the root with the branches
can result in admissible compositions. For example, the root might select a single branch to activate
to satisfy the single active component requirements. Alternatively, it might activate all branches and
count the number of branches as they successively go passive, becoming active when all the branches
have become passive. These alternative configuration require knowledge of the protocol underlying
the interaction but this only means that proofs of emergent well-defined resultants will be conditioned
to narrower sub-classes of systems rather than to broad classes such as all differential equation systems.

After much progress in understanding how dynamic structure can be managed in DEVS-based
simulations [14–16], a framework that incorporates several insights has recently been developed [17].
This framework, formulated in the DEVS formalism, can be extended to iterative specifications
and investigated for conditions of existence as done here. The extension will probably increase the
complexity required to state and establish the conditions but would, if successful, bring us closer to
understanding the emergence of systems from assemblages of components in the real world.

Appendix A. Turing Machine as a DEVS

Appendix A.1. Tape System

A state is a triple (tape, pos, mv) where tape : I→ {0, 1}, pos ∈ I, mv ∈ {−1, 1} and I is the integers;
in other words, the tape is an infinite sequence of bits, where pos represents the position of the head,
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and mv is a specification for moving left or right. An internal transition moves the head as specified;
an external transition accepts a symbol, move pair, stores the symbol in the current position of the
head and stores the move for subsequent execution. The slot for storing the move can also be null,
which indicates that a move has taken place.

Each function can be described as follows:

δint(tape, pos, mv) = (tape, move(pos, mv), null)
δext((tape, pos, null), e, (sym, mv)) = (store(tape, pos, sym), pos, mv)
ta(tape, pos, mv) = 1
ta(tape, pos, null) = ∞
λ(tape, pos, mv) = getSymbol(tape, pos)

where

move(pos.mv) = pos + mv
store(tape, pos, sym) = tape′ where tape′(pos) = sym, tape′(i) = tape(i)
getSymbol(tape, pos) = tape(pos)

Appendix A.2. TM Control

A state is a pair (st, sym) where st is a control state and sym is a stored symbol. An internal
transition applies the TM transition table to the (st, sym) pair and transitions to the specified control
state. An external transition stores the received symbol for subsequent use.

Each function can be described as follows:

δint(st, sym) = (TMState(st, sym), null)
δext((st, null), e, sym) = (st, sym)

ta(st, sym) = 1
ta(st, null) = ∞
λ(st, sym) = TMOutput(st, sym)

where

TMState(st, sym) = st′

TMOutput(st, sym) = sym′

Appendix B. Iterative Specification of Systems

The following is extracted from [12] Chapter 5.

Appendix B.1. Generator Segments

Consider (Z,T) the set of all segments {ω :< 0, t1 >→ Z | t1 ∈ T}, which is a semigroup under
concatenation. For a subset Γ of (Z,T), we designate by Γ+ the concatenation closure of Γ (also called
the semigroup generated by Γ). Example generators are bounded continuous segments, and constant
segments of variable length generating bounded piecewise continuous segments piecewise constant
segments, respectively. Unfortunately, if Γ generates Ω (a subset of segments), we cannot expect
each ω ∈ Ω to have a unique decomposition by Γ; that is, there may be distinct decompositions
ω1, ω2, . . . , ωn and ω′1, ω′2, . . . , ω′n such that ω1 •ω2 • · · · •ωn = ω and ω1′ •ω′2 • · · · •ω′n = ω.

A single representative, or canonical decomposition can be computed using a maximal length
segmentation. First, we find ω1, the longest generator in Γ that is also a left segment of ω. This process
is repeated with what remains of ω after ω1is removed, generating ω2, and so on. If the process stops
after n repetitions, then ω = ω1ω2 . . . ωn.

It is not necessarily the case that MLS decompositions exist (i.e., that the just-mentioned processes
will stop after a finite number of repetitions). Thus, we are interested in checkable conditions on a set
of generators that will guarantee that each segment generated has an MLS decomposition. Fortunately,
a segment can have at most one MLS decomposition. We say that Γ is an admissible set of generators
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for Ω if Γ generates Ω and for each ω∈Ω, a unique MLS decomposition of ω by Γ exists. (We also say
Γ admissibly generates Ω.) The following is proved in [12]:

Theorem B1. Sufficient Conditions for Admissibility. If Γ satisfies the following conditions, it admissibly
generates Γ+:

1. Existence of longest initial segments: ω ∈ Γ+ ⇒ max{t | ωt> ∈ Γ} exists
2. Closure under right segmentation: ω ∈ Γ ⇒ ω<t ∈ Γ for all τ ∈ dom(ω)

Appendix B.2. Generator State Transition Systems

Having established a terminating process for obtaining MLS decompositions, we wish to use
these decompositions to help us generate a transition function given only that function’s action on the
generators. In other words, let ΩG be an admissible generating set for Ω and suppose we have defined
a function δG : Q×ΩG → Q, which we call a single segment transition function.

Let ω1, ω2, . . . , ωn be the MLS decomposition of ω. Having δ defined for each segment ωi, we wish
to piece together these parts to obtain compound transition associated with ω itself.

An iterative specification of a system is a structure

G =< T, X, ΩG, Y, Q, δ, λ >,

where T, X, Y, and Q have the same interpretation as for I/O systems; ΩG is the set of input segment
generators; δG : Q×ΩG → Q is the single segment state transition function; λ : Q× X → Y is the
output function, with the restriction that ΩG ⊆ (X, T); and, most important, ΩG is an admissible set of
generators and δ+G : Q×Ω+

G → Q has the composition property.
An iterative specification G =< T, X, ΩG, Y, Q, δG, λ > specifies a time invariant system,

SG =< T,X, Ω+
G , Y, Q, δ+G , λ > where δ+G is the extension of δG which is well-defined according to

the following:

Theorem B2. Sufficient Conditions for Iterative Specification. Let G =< T, X, ΩG, Y, Q, δG, λ > be
a structure as just defined. Then, if the following conditions hold, G is an iterative specification and
SG =< T, X, Ω+

G , Y, Q, δ+G , λ > is a system.

1. Existence of longest prefix segments: ω ∈ Ω+
G ⇒ max{t | omegat> ∈ ΩG} exists

2. Closure under right segmentation: ω ∈ ΩG ⇒ ω<t ∈ ΩG for t ∈ dom(ω)
3. Closure under left segmentation: ω ∈ ΩG ⇒ ωt> ∈ ΩG for t ∈ dom(ω)
4. Consistency of composition: δ+G (q, ω1 •ω2 • · · · •ωn) = δG(δG(. . . δG(δG(q, ω1), ω2), . . . ), ωn)

Appendix C. DEVS Atomic Model Simulation of an Iterative Specification

Theorem C1. A DEVS atomic model can simulate an Iterative Specification.

Proof. As shown in Figure 3 and in Figure 5, given an iterative specification G =< T, X, ΩG, Y, Q, δG, λ >,
we construct a DEVS model M =< X, S, Y, δint, δext, λ, ta >, such that

g : ΩG → ΩDEVS using mls
g(ω) = [ω]l(ω)> = [ω] φl(ω)>

h : Q→ Q×ΩG
h(q) = (q, dummy)

According to the definition of the simulating DEVS:

S = Q×ΩG
δint(q, ω) = (δG(q, ω), dummy)
ta(q, ω) = l(ω)

δext((q, ω), e, ω′) = (δG(q, ωe>), ω′)
λ(q, dummy) = λG(q)
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In the Iterative Specification:

δ+G (q, ωω′) = δG(δG(q, ω), ω′)

In the DEVS, let δDEVS be the transition function of the system specified by the DEVS. We want to
show that h(δ+G (q, ωω′)) = δDEVS(h(q), g(ωω′)), i.e.,

δDEVS(h(q), g(ωω′))
= δDEVS((q, dummy), g(ω)g(ω′))
= δDEVS((q, dummy), [ω]l(ω)> , [ω′]l(ω′)>)
= δDEVS(δext((q, dummy), [ω]), φl(ω)>), ω′l(ω′)>)

= δDEVS((q, [ω]), φl(ω)>), ω′l(ω′)>)

= δDEVS(δint(q, [ω]), φl(ω)>), ω′l(ω′)>)

= δDEVS((δG(q, ω), dummy), ω′l(ω′)>)

= (δG(δG(q, ω), ω′), dummy)

Thus,

h(δ+G (q, ωω′))
= h(δG(δG(q, ω), ω′))
= (δG(δG(q, ω), ω′), dummy)
= δDEVS(h(q), g(ωω′))

Appendix D. Coupled Iterative Specification at the I/O System level

Theorem D1. An admissible Coupled Iterative Specification specifies a well-defined Iterative Specification at
the I/O System level.

Proof. Given two iterative specifications, Gi and their state sets, Qi i = 1, 2, let Q = Q1×Q2, eventually
the state set of the iterative specification to be constructed. For any pair (q1,q2) in Q, let (ρ1, ρ2) be
a consistent output trajectory for (q1, q2), i.e., ρ1 = β(q1, ρ2) and ρ2 = β(q2, ρ1) and F(q1, q2) = (ρ1, ρ2).

Define an autonomous Iterative Specification < Q, δG, λ > by

δG(q1, q2) = (δ(q1, ρ2t∗(q1,q2)>), δ(q2, ρ1t∗(q1,q2)>))

where t∗(q1, q2) = min{t∗1 , t∗2} and t∗1 , t∗2 are the times of the MLS for ρ1 and ρ2.
In other words, since each of the component iterative specifications have maximum length

segmentations we take the time of next update of the constructed specification to be determined by
earliest of the times of these segmentations for the consistent pair of output trajectories. This allows us
to define a step-wise transition for the constructed transition function. Closure under composition for
this transition function can be established using induction on the number of generators in the segments
under consideration. Similarly, the output function is defined by: λ(q1, q2) = (λ(q1), λ(q2)).

Theorem D2. The set of Iterative Specifications is closed under admissible coupling.

Proof. This theorem is a corollary of the previous theorem.

Appendix E. A Statistical Experiment Sampling from 2-Symbol, 3-State TMs

We performed a statistical experiment sampling from two-symbol, three-state TMs. Each sampled
TM fills in the xs in Table E1 with values from the sets shown, where one of the rows is chosen at
random and its next state change to the halt state (e.g., the first row can be (A,−1,0) meaning jump to
state A, move back, and print 0). The number of TMs in this class is (2× 2× 3)2×3 = 126. We generated
1000 samples randomly and simulated them until they halted or for a maximum of 1000 time steps.
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Table E1. Template for two-symbol, three-state TMs.

State Symbol Next State {A, B, C} Move {1,−1} Print Symbol {0, 1}
A 0 x x x
A 1 x x x
B 0 x x x
B 1 x x x
C 0 x x x
C 1 x x x

The results are shown in the first two columns of Table E2. They seem to show that TMs break into
two classes—those that halt within a small number of steps (e.g., 16) and those that do not halt. Indeed,
the data in the table suggest that approximately one-third of the sampled TMs halt, while two-thirds
do not. For those that halt, the probability of halting at the first step is greatest and then decreases
exponentially (cf. Figure E1). The third row shows the probabilities computed from a geometric success
model using probability of success as 0.161. The agreement of the observed and predicted distributions
are in close agreement. This suggests that for the set that will eventually halt, the probability of a TM
halting at each step is approximately 1/6, given that it has not halted earlier.

Table E2. Empirical Frequency Distribution for halting step vs. Geometric Model.

Halts at N Frequency Geometric Model

1 0.161 0.161
2 0.1 0.09
3 0.042 0.039
4 0.023 0.022
5 0.016 0.015
6 0.005 0.00488
7 0.004 0.00390
11 0.001 0.000990
16 0.001 0.000985

10000 0.647

Figure E1. Empirical frequency vs. geometric model.

Summarizing, the existence of an iteratively specified system is not algorithmically decidable but
there may be useful probabilistic formulations that can be applied to sub-classes of such specifications.
For example, it seems to be that with high probability the halting of a two-symbol, three-state TM
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can be decided within 16 simulation steps. Therefore, it might be tractable for an assemblage of
components to find a way to solve its composition problems in a finite time for certain classes of
components couplings.
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