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2 ANKER

1. INTRODUCTION

Dunkl theory is a far reaching generalization of Fourier analysis and special function
theory related to root systems. During the sixties and seventies, it became gradually
clear that radial Fourier analysis on rank one symmetric spaces was closely connected
with certain classes of special functions in one variable :

e Bessel functions in connection with radial Fourier analysis on Euclidean spaces,

e Jacobi polynomials in connection with radial Fourier analysis on spheres,

e Jacobi functions (i.e. the Gauss hypergeometric function 5 F;) in connection with radial
Fourier analysis on hyperbolic spaces.

See [51] for a survey. During the eighties, several attempts were made, mainly by the
Dutch school (Koornwinder, Heckman, Opdam), to extend these results in higher rank
(i.e. in several variables), until the discovery of Dunkl operators in the rational case
and Cherednik operators in the trigonometric case. Together with g—special functions
introduced by Macdonald, this has led to a beautiful theory, developed by several authors
which encompasses in a unified way harmonic analysis on all Riemannian symmetric
spaces and spherical functions thereon :

e generalized Bessel functions on flat symmetric spaces, and their asymmetric version,
known as the Dunkl kernel,

e Heckman-Opdam hypergeometric functions on positively or negatively curved sym-
metric spaces, and their asymmetric version, due to Opdam,

e Macdonald polynomials on affine buildings.

Beside Fourier analysis and special functions, this theory has also deep and fruitful
interactions with

e algebra (double affine Hecke algebras),

e mathematical physics (Calogero-Moser-Sutherland models, quantum many body prob-
lems),

e probability theory (Feller processes with jumps).

There are already several surveys about Dunkl theory available in the literature:

e [67] (see also [27]) about rational Dunkl theory (state of the art in 2002),
e [64] about trigonometric Dunkl theory (state of the art in 1998),

e [29] about integrable systems related to Dunkl theory,

e [54] and [18] about g—Dunkl theory and affine Hecke algebras,

e [40] about probabilistic aspects of Dunkl theory (state of the art in 2006).

These lectures are intended to give an overview of some analytic aspects of Dunkl theory.
The topics are indicated in red in Figure 1, where we have tried to summarize relations
between several theories of special functions, which were alluded to above, and where
arrows mean limits.

Let us describe the content of our notes. In Section 2, we consider several geometric
settings (Euclidean spaces, spheres, hyperbolic spaces, homogeneous trees, ...) where
radial Fourier analysis is available and can be applied successfully, for instance to study
evolutions equations (heat equation, wave equation, Schrédinger equation, ... ). Section 3
is devoted to the rational Dunkl theory and Section 4 to the trigonometric Dunkl theory.
In both cases, we first review the basics and next address some important analytic issues.
We conclude with an appendix about root systems and with a comprehensive bibliogra-
phy. For lack of time and competence, we haven’t touched upon other aforementioned
aspects of Dunkl theory, for which we refer to the bibliography.
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FIGURE 1. Relation between various special function theories

2. SPHERICAL FOURIER ANALYSIS IN RANK 1

2.1. Cosine transform. Let us start with an elementary example. Within the frame-
work of even functions on the real line R, the Fourier transform is given by

]?()\) =fRdx f(x) cos Az

and the inverse Fourier transform by
f(x) = if d\ f()\) COS AT .
R

The cosine functions ¢y(z) = cos Az (A € C) occurring in these expressions can be
characterized in various ways. Let us mention

e Power series expansion :

+00 (_1\¢
pa(@) =D, GEr Qe ¥ AzeC.

o Differential equation : the functions ¢ = ¢, are the smooth eigenfunctions of (%)2,
which are even and normalized by ¢(0)=1.

e Functional equation : the functions ¢ = @, are the nonzero continuous functions on R
which satisfy

elz+y) +p(z—y)

2 = p(z) p(y) Vx,yeR.

2.2. Hankel transform on Euclidean spaces. The Fourier transform on R" and its
inverse are given by

Flo) = f dz f(z) e"i<6®) (1)

n

and

f(x) = @) f i F(e) et 2)

n
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Notice that the Fourier transform of a radial function f= f(r) on R" is again a radial
function f= f(A). In this case, (1) and (2) become

~ n 400
FOy =3 | ar e o) daatine) 3)
and
+0o0 =R
F0) = s | AN T s i), ()

Instead of the exponential function or the cosine function, (3) and (4) involve now the
modified Bessel function j nz, which can be characterized again in various ways :

e Relation with classical special functions and power series expansion. For every zeC,

2—n

joza(2) = T(2) (%) # Juai2)
20
- Zé 0 elr 2)
= oF1(5; 4) = €_Z1F1(n7_1§n—1522)7
where J,, denotes the classical Bessel function of the first kind and

+o y
pE(ar, . ap;by, ... by 2) =Zé OHZ_

the generalized hypergeometric function.
e Differential equations. The function ¢, (r) = janz(z')\r) is the unique smooth solution
to the differential equation

et 52 (3 ert ¥n =0,

which is normalized by ¢,(0)=1. Equivalently, the function

z— oxA(|2]) = Juz (1A]2]) ()

is the unique smooth radial normalized eigenfunction of the Euclidean Laplacian

Bae = B0 (5 = (3452 () + 4 e

7=1

corresponding to the eigenvalue —\?.

Remark 2.1. The function (5) is a matriz coefficient of a continuous unitary represen-
tation of the Euclidean motion group R™x O(n).

The function (5) is a spherical average of plane waves. Specifically,

90)\(|l’|) = J dk e Mwhkz) LZ)J dv eiA(U,x>7
O(n) gn—1

27?2

where u is any unit vector in R". Hence the integral representation

I'(3)

SO)\(T) = mj‘ do (sin@)"_Qei/\rcosg
2 0

= %TQ”LCZS (r?—s?) 2" CcosAs.
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FIGURE 2. Real sphere S™

2.3. Spherical Fourier analysis on real spheres. Real spheres
S"={z=(0,71,...,00) eER"" ||z =2+ ... +22 =1}

of dimension n > 2 are the simplest examples of Riemannian symmetric spaces of com-
pact type. They are simply connected Riemannian manifolds, with constant positive
sectional curvature. The Riemannian structure on S™ is induced by the Euclidean metric
in R ", restricted to the tangent bundle of S™, and the Laplacian on S™ is given by

Af = A f \ sn» Where A = Z ? denotes the Euclidean Laplacian in R**" and

f(:p) = f(lwl) the homogeneous extensmn of f to R1""~ {0}. In spherical coordinates
(

rg = cosby,
r1 = sin#; cosby,
3
Tp_1=sinbsinfs, ... sinb,_; cosb,,
T, =sinf;sinfby ...sind,_;sinb,,

\
the Riemannian metric, the Riemannian volume and the Laplacian read respectively

ds* = ijl(sin 01)%. .. (sin;_1)*(db;)?,
dvol = (sin#y)" ... (sinf,_,)dé; ...do,

and

2 4
A= Z] 1 (sin61)2 smej 1)2{(£) +(n_])(COt0J)£}

Let G = O(n+1) be the 1sometry group of S™ and let K ~ O(n) be the stabilizer of

eo = (1,0,...,0). Then S™ can be realized as the homogeneous space G/K. As usual,

we identify right— K—invariant functions on GG with functions on S™, and bi— K—invariant

functions on G with radial functions on S™ i.e. functions on S™ which depend only on

ro = cos 6. For such functions,

J dvol f = 2 ’E:J df; (sin6,)" " f(cos 6,)
n 2 0

and
Af = + (n— 1)(Cot91)§Tf
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The spherical functions on S™ are the smooth normalized radial eigenfunctions of the
Laplacian on S™. Specifically,

AQOg = —f(ﬁ—l—n—l)gog,
ve(eo) =1,

where /eN. They can be expressed in terms of classical special functions, namely

n—1

2 (n=2)! ~(*7) (3-L3-1)
we(ro) = ﬁcz * zo) = (%) pPy* (o)

or

@e(costy) = 2F1( (,0+n—1;%;sin 91)

DR

where C é are the Gegenbauer or ultraspherical polynomials, Pz ) the Jacobi polyno-
mials and 5 F; the Gauss hypergeometric function.

Remark 2.2. We have emphasized the characterization of spherical functions on S™ by
a differential equation. Here are other characterizations:

o The spherical functions are the continuous bi—K-invariant functions ¢ on G which
satisfy the functional equation

\Ldkwm%y%=w@ﬁ¢@) e (7)

o The spherical functions are the continuous bi—K-invariant functions ¢ on G such that

f%ﬁjﬁ@ﬂ@ (8)

defines a character of the (commutative) convolution algebra C.(K\G/K).
e The spherical functions are the matriz coefficients

p(z) = (n(z)v,0),

where 7 is a continuous unitary representation of G, which has nonzero K-fixed vec-
tors and which is irreducible, and v is a K-fized vector, which is normalized by |v|=1.
o Integral representation:

@e(cosby) = %J df (sin 6,)"*[cos 6 + i (sin 0, ) (cos 92)]6
r(2) sin 61 s (9)
= Wi%l) (sin@l)znf_smglds (sin?6 — s%)" 2 (cosf+is)".

The spherical Fourier expansion of radial functions on S™ reads

flz) = ZzeNd5<f’ pe)pe(T),

where

_ n(n+20-1)(n+£-2)!
dy = nle!

and

(=) )

ooy =152 | des@oa) - S

) J d6y (sin )"t f(cos0y) py(cos ;).
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FIGURE 3. Hyperboloid model of H"

2.4. Spherical Fourier analysis on real hyperbolic spaces. Real hyperbolic spaces
H™ are the simplest examples of Riemannian symmetric spaces of noncompact type. They
are simply connected Riemannian manifolds, with constant negative sectional curvature.
Let us recall the following three models of H".

e Model 1: Hyperboloid
In this model, H" consists of the hyperboloid sheed
{r=(20,21,...,2,) eR""=RxR" | L(z,0) = — 1, 3 > 1}

defined by the Lorentz quadratic form L(z,z) = —x3+2? + ... + 22. The Riemannian
structure is given by the metric ds? = L(dx,dx), restricted to the tangent bundle of

H", and the Laplacian by Af = L(a%> a%)ﬂHn, where f(x) = f(ﬁ) denotes the

homogeneous extension of f to the light cone {ze R ™| L(z,2)< 0, 2o >0}.

e Model 2: Upper half-space

In this model, H" consists of the upper half-space R} = { yeR" |y, > 0} equipped with
the Riemannian metric ds? = g2 |dy|>. The volume is given by dvol = y,;"dy; ... dy,
and the Laplacian by

2 noop2 0
A=yn ) Fr— (=2t
Yn

K-orbit

N—orbit

Rnfl

FIGURE 4. Upper half-space model of H"
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FIGURE 5. Ball model of H"

e Model 3: Ball
In this model, H" consists of the unit ball B" = {2z € R™||z| < 1}. The Riemannian
"dz ... dz,, the

and the Laplacian by

metric is given by ds? = (1_7‘2‘2)_2 |dz|?, the volume by dvol = (—1_2‘2‘2)
1+|z]
1—|z]

_ (=222 N 22 122 N\ i
A=(E) 2 == ) st

Remark 2.3. Model 1 and Model 3 are mapped onto each other by the stereographic
projection with respect to —eq, while Model 2 and Model 3 are mapped onto each other by
the inversion with respect to the sphere S(—ey,/2). This leads to the following formulae

distance to the origin by r =2 artanh |z| = log

T+ [y _ 14z

Lo = 2y 1—]z|2
L Yo 2% i —
Tj= b= 1pp (7=1,...,n—1)
T, = 17|y‘2 — 2zn
T 2y, 12
o T o 2z; . .
Yj = zo+zn 142|242z, (j_l”n 1>
S U et ]
Yn = To+Tn 1422+ 22p

— T _ 2y; P
%= 1o = s (G=1-n—1)
= Tn — 1-— |y‘2

n 1+ x0 1+ |yl2+2yn -~

Let G be the isometry group of H"” and let K be the stabilizer of a base point in H".
Then H"™ can be realized as the homogeneous space G/K. In Model 1, G is made up
of two among the four connected components of the Lorentz group O(1,n), and the
stabilizer of ey is K = O(n). Consider the subgroup A ~R in G consisting of

o the matrices
coshr 0 sinhr

a, = 0 1 0 (reR)
sinhr 0 coshr
in Model 1,
e the dilations a,:y — e "y in Model 2,
and the subgroup N ~ R™ ! consisting of horizontal translations n, : y — y+0v
(veR™ 1) in Model 2. Then we have

e the Cartan decomposition G = KATK, which corresponds to polar coordinates in

Model 3,
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e the Iwasawa decomposition G = NAK, which corresponds to Cartesian coordinates in
Model 2.

We shall denote by a, and aj(g) the AT and A components of geG in the Cartan and
Iwasawa decompositions.

Remark 2.4. In small dimensions, H? ~ SL(2,R)/SO(2) and H? ~ SL(2,C)/SU(2).

As usual, we identify right—K—invariant functions on G with functions on H", and bi
—K—invariant functions on G with radial functions on H" i.e. functions on H" which
depend only on the distance r to the origin. For radial functions f = f(r),

n (o
f dvol f =22 f dr (sinh )"~ f(r)

re J,

and ,

Af = ST]; + (n—1)(cothr) % )
The spherical functions ¢, are the smooth normalized radial eigenfunctions of the Lapla-
cian on H". Specifically,

Apy = —{)\2+/)2}<an
90)\(0) =1,

where p = "T_l

Remark 2.5. The spherical functions on H™ can be characterized again in several other
ways. Notably,

e Differential equation: the function px(r) is the unique smooth solution to the differ-
ential equation

(£) er+ (n—1)(cothr) (£) oa+ (A +p%) o2 = 0,
which is normalized by @(0)=1.
e Relation with classical special functions:

n—2 _1
2 7 2

oa(r) = ¢, (r) =2F1(“Ti’\,%i’\;%;—sinh2r),

where gpf\y’ﬁ are the Jacobi functions and o Fy the Gauss hypergeometric function.
e Same functional equations as (7) and (8).
e The spherical functions are the matriz coefficients

NE) (@)1, 1),

27r%
of the spherical principal series representations of G on L?*(S™1).
e According to the Harish—Chandra formula

K

the function py is a spherical average of horocyclic waves. Let us make this integral
representation more explicit:

pa(r) =

ox(r) = Z(%E)J dv { coshr — (sinhr) v, e, Y* 77
T2 Jgn-1
_ " ("4 (sin0)" 2 [coshr — (sinh o)
= Fres |, (sin@)"~*[coshr — (sinhr) (cos 6) ] (10)
2"TIL) L. an f ns
= ——— (sinhr ds (coshr —coshs) 2 cosAs.
i (s [ s )
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Remark 2.6. The asymptotic behavior of the spherical functions is given by the Harish—
Chandra expansion

pa(r) = c(A) ©x(r) + c(=A) @_(r),

where ) _ a1
c(N) = TG torrn
and
®y(r) = (2coshr)? 7, Fy (252 =21 i)\ cosh™r)
IA—p)T oo —24r
= ¢ (@A=p) Zzzow()\)e 2¢ ’

The spherical Fourier transform (or Harish-Chandra transform) of radial functions on
H™ is defined by
(%)

i) = [ do s er@ = B [ ey

272 0

and the inversion formula reads
+0

flz) = 2" 3 0() f dX (V)2 HEON) oa(a). (12)

0
Remark 2.7.
e The Plancherel density reads

n—3

lc(N)] 72 = W HT()\zJFjQ)

=0
in odd dimension, and
-2 ™ -1 5 ) 9
(M) = sz=rpczys A tanh 7A szo (M4 (j+1)?]

22n—4 F(%
i even dimension. Notice the different behaviors
—2 m n—1
e ~ s

at infinity, and B
e[ ~ S X
22n—4 F(%)Q

at the origin.
e Observe that (11) and (12) are not symmetric, unlike (1) and (2), or (3) and (4).

The spherical Fourier transform (11), which is somewhat abstract, can be bypassed by
considering the Abel transform, which is essentially the horocyclic Radon transform
restricted to radial functions. Specifically,

Af) = " [ dnf(na,)

LS 5
_ (@m? J ds sinh s (cosh s — cosh'r’)nTS f(s).
\

r(%5%)

|
Then the following commutative diagram holds, let say in the Schwartz space setting:
Seven (R)
H NF
Sra H™ - Seven R
a(H") 2 (R)

Here S,.q(H") denotes the L? radial Schwartz space on H", which can be identified
with (cosh7)™” Seven(R), F the Euclidean Fourier transform on R and each arrow is an
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isomorphism. Thus the inversion of the spherical Fourier transform H boilds down to

the inversion of the Abel transform A. In odd dimension,
n—1 n—1
Ag(r) = 2m)7F (@i a)  9(r)

2 _ L
sinhr or

while, in even dimension,
0 A
_) (_sinlhs %)2 g(8>

+00
-1 . 1 ds _
A g(T) - Z"T_IW% Jr v/cosh s — coshr ( 0s

Consider finally the transform
Argla) = | dker" gh(ka)).

which is dual to the Abel transform, i.e.,
+o0

| dns@age) = | dr sy g),
(R) and Cy(H™). It is given explicitly by

Q0
even

T

and which is an isomorphism between C

n-1 =
i (sinh ) [ ds (coshr — cosh )T g (s)

A0 = e 0
and its inverse by
VT ns ne
= (sinlhr sinahr) ’ {(Slnh T) Qf(r>}

*\—1 o
(A 0) = =

in odd dimension and by
0 ( 1 0
sinhr or

*)—1 _
(A 0) = s

1 g (7 . _
: : )2 JO \/Cosh;"is— cosh s (Slnh 5)" 1f($)

in even dimension.
Remark 2.8. Notice that the spherical function py(r) is the dual Abel transform of the

cosine function cos \s.
Applications. Spherical Fourier analysis is an efficient tool for solving invariant PDEs

on H". Here are some examples of evolution equations.

u(z,0) = f(z)
can be solved explicitly by means of the inverse Abel transform. Specifically,

u(x,t) = frhi(x),

e The heat equation
{ Oru(z,t) = Agu(z,t)

M)

where the heat kernel is given by
1 1 2 nol 2
_ pit (1 0\ 2
hi(r) = QnT_Hw%t te M (—mray) T e T
in odd dimension and by
ds 2 1 o\3-l -
A WA WA - RSl v
( 65)( sinh s 65) e 4

+1 1 2 +o
n
| 4/ cosh s — coshr
r

he(r)=(2m)" 2 t

in even dimension. Moreover, the following global estimate holds:
2 t2 (1+7) if t>1+r,
T 0<t <147

ho(r) = e P tePre ™ x N
t(r) 5 (147)"
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e Similarly for the Schrodinger equation

{i(?tu(a:,t) = Ayu(x,t),

u(z,0) = f(z).
In this case u(x,t) = f*h_;(z), where
h _ 1 iZsign(t) 14|~ % o—ip%t 1o\ i
—it(r) - QRTHW% e | | € (_ sinhr 5) € '

in odd dimension,

h_i(r) = (QW)JLTH e i) |t|_% e it

+o0 )
d 0 1oyl i
" J‘ | VCoshsicoshr (_g) (_sinhs g)z et
s
in even dimension, and
t]=2 (147) if [t>1+7
3 if 0<[t|<1+4r

|h_it(r)] < e P" x {

in all dimensions.

e The shifted wave equation
fu(z,t) = (Ay+ p?)u(x, )
U(l’,O) = f(x)a at|t=0u(l‘7t) = g(l‘)

can be solved explicitly by means of the inverse dual Abel transform. Specifically,

1 n=3
o) = s d ()T i [ i)

n—3

1 =9
+ e ()™ (i | dvow)
S(x,[t])

272 w1 2

in odd dimension and

| =

_ o o \5—1 fy)
u(t,x) - 2%W% o|t| (6(cosht)) J‘B(m M)dy \/coshtfcoshd(y,m)

1 . 9 -1 9(y)
+ T sign(l ’ d
2_2+_17T§ g ( ) (6(Cosht)) JVB(x’tl) Y \/coshtfcoshd(y,:v)

in even dimension.

2.5. Spherical Fourier analysis on homogeneous trees. A homogeneous tree is a
connected graph, with no loop and with the same number of edges at each vertex. Let
us denote by T, the set of vertices of the homogeneous tree with ¢ +1> 2 edges. It is
equipped with the counting measure and with the geodesic distance, given by the number
of edges between two points. The volume of any sphere S(z,r) of radius reN is given

by
1 if =
5(r) = o 0,
(g+1)q" if reN*,

Once we have chosen an origin 0e T, and an oriented geodesic w : Z — T, through 0,
let us denote by |z|€N the distance of a vertex xeT, to the origin and by h(x)€Z its
horocyclic height (see Figure 7). Let G' be the isometry group of T, and let K be the
stabilizer of 0. Then G is a locally compact group, K is a compact open subgroup, and

T, ~G/K.
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sphere

FI1GURE 6. Ball picture of Ty

Remark 2.9. If q is a prime number, then T, ~ PGL(2,Q,)/PGL(2,Z,).

The combinatorial Laplacian A on T, is defined by Af = Af — f, where A denotes the
average operator

Af(z) = 77 fy)-

yeS(z,1)
Remark 2.10. Notice that f is harmonic, i.e., Af = 0 if and only if f has the mean
value property, i.e., f=Af.

The spherical functions ¢, on T, are the normalized radial eigenfunctions of A, or
equivalently A. Specifically,
Apyx =N er,
_ ' { QOA(O) =1,
where () = % .

Remark 2.11. The spherical functions on T, can be characterized again in several other
ways. Notably,

h

--> €

1+ horocycle

FIGURE 7. Upper half-space picture of T3
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e Explicit expression :

(r) c(A) g TV2HINT 4 (= \) g(F12=iNr gy AeCN\1Z, ”
@A) = - 1/2 _ ,—1/2 o ) o
L if A=37,
1 1/2+iX _ g=1/2—i)

where c(\) = PiEE e e and T = . Notice that (14) is even and
T —periodic in \.

e Same functional equations as (7) and (8).

e The spherical functions are the bi—K—invariant matriz coefficients of the spherical

principal series representations of G on L*(0T,).

—q- log

The spherical Fourier transform of radial functions on T, is defined by

HIO) = 3] F@)pale) = JO) + 25522 37 0 fn)ealr) (1)

and the inversion formula reads

f(r) = st * fOT/QdA e[ HF(N) galr). (16)
Consider the Abel transform
Af(h) = q% 3] f(lal)
h(z)=h
= a7 Sl + 52D T f(lhl+2).

which is essentially the horocyclic Radon transform restricted to radial functions. Then
the following commutative diagram holds, let say in the Schwartz space setting:

even(R/T Z)

H NF
Srad (Tq> 7 Seven (Z)

Here Seven(Z) denotes the space of even functions on Z such that
Sup s | ()] < 400 V meN,
Sraa(T,) the space of radial functions on T,, whose radial part coincides with ¢~2 S(N),
_ ixh
FIN =Y ™ f(h)

is a variant of the Fourier transform on Z, and each arrow is an isomorphism. The inverse
Abel transform is given by

A7 (r) = Z:Oo q*Q*j{f(r—ij) — f(?“+2j+2)}.

Consider finally the transform

which is dual to the Abel transform, i.e.,

3o F@) Agllal) = 3, AR g(h),

and which is an isomorphism between the space of all even functions on Z and the space
of all radial functions on T,. It is given explicitly by A*g(0) =0, and

.A*g(’f’) = %quf(,,,) + Z_ﬁq*% 2 —r<h<r f<h>

h has same parity as r
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if reN*. Its inverse is given by (A*)71f(0) = f(0),

(A" (h) = L2502 055 f(h)

- Zo<rodd<h q"f(r)

if heN is odd, and

(A7 f(h) = L5 g5 f(h) — SR 7 £(0)

— h

_g-! _h .
— 4 2q q 20<reven<hq f(?")

if heN* is even.

Applications. Let us use spherical Fourier analysis to study discrete evolution equations
on T,, as we did in the differential setting on H".

e Consider the heat equation with discrete time teN

u(z,t+1) —u(z,t) = Ayu(z, t)
u(z,0) = f(z)

or, equivalently, the simple random walk

u(z,t) = A'f(x) = frhe(w).
Its density h;(z) vanishes unless |z|< t have the same parity. In this case,

ho(z) = — b g5 e tv (55 (17)

(1+1) /1+t—a]
where 9(z) = 132 log(142) — 352 log(1—2) and o =(0) = W <1 is the spectral
radius of A.

e The shifted wave equation with discrete time teZ

{ Yo A%u(x, t) = (Aqu +1- 70) U(ZL‘, t)
u(@,0) = f(z), {u(z,1) —ulz, ~1)}/2 = g(z)

can be solved explicitly by using the inverse dual Abel transform. Specifically,

u(z,t) = Cy f(x) + Sig(x),

where
C, = M|t|—2M|t|—2
St = Slgn(t) M|t\—1
and
Mfle)=q2),, . fW)

t—d(y,x) even

if t>0, while M, =0 if t<0.

2.6. Comments, references and further results.
e Our main reference for classical special functions is [1].

e The spherical Fourier analysis presented in this section takes place on homogeneous
spaces G/K associated with Gelfand pairs (G, K).
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The sphere S™ and the hyperbolic space H" are dual symmetric spaces. By letting
their curvature tend to 0, the Euclidean space R" is obtained as a limit. At the level
of spherical functions, the duality is reflected by the relation

7 (costr) = o} (r)
between (9) and (10), when we specialize A = +i(p+¢) ((eN) and take r = +i6;.
And (6) is a limit of (10) and (9):
Ar

O5(r) = lim._o @5 (e7) = lim 1, 0 ¢5 (cos )

Homogeous trees may be considered as discrete analogs of hyperbolic spaces. This is
for instance justified by the structural similarity between H? ~ PSL(2,R)/PSO(2)
and T, ~ PGL(2,Q,)/PGL(2,Z,) when ¢ is a prime number. At the analytic level,
an actual relation is provided by the meta—theory developed by Cherednik [18], which
includes as limit cases spherical Fourier analysis on T, and on H", as well as on R" or
on S™.

The material in Subsection 2.4 generalizes to the class of Riemannian symmetric spaces
of noncompact type and of rank 1, which consist of all hyperbolic spaces

H"=H"(R), H*(C), H"(H), H*(0),

and further to the class of Damek—Ricci spaces. One obtains this way a group theoret-
ical interpretation of Jacobi functions cpi’ﬁ for infinitely many discrete parameters

mi+mo—1 _ mo—1
e, f=

Our main references are [31], [51], [11], [75] and [12].

Our main references for Subsection 2.5 are [32], [20], and [12]. Evolution equations
(heat, Schrodinger, wave) with continuous time were also considered on homogeneous
trees (see [82], [57], [21] and [47]).

Spherical Fourier analysis generalizes to higher rank (see [45], [39] for Riemannian
symmetric spaces and [53], [65], [55] for affine buildings).

o =

Classification :
type constant curvature rank 1 general case
Euclidean R™ pxK/K
compact S™= S(R™*1) S(F™) U/K
non compact H" = H"(R) H"(F) G/K
p—adic homogeneous trees | affine buildings
Notation :
o gc is a complex semisimple Lie algebra,
o g is a noncompact real form of gc and g =¢@ p a Cartan decomposition of g,
o u=Et@ip is the compact dual form of g,
o a is a Cartan subspace of p,
cg=a®m® (@aeR ga) is the root space decomposition of (g,a),
o R is a positive root subsystem and at the corresponding positive Weyl chamber

in a,
N =@,cr+ 8o is the corresponding nilpotent Lie subalgebra,
o0 mg=dim g, is the multiplicity of the root a,

1
(@) = =
p 2 Zae’}?jfma’

@)
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o Gg is a complex Lie group with finite center and Lie algebra gc,
o G, U, K and N are the Lie subgroups of G¢ corresponding to the Lie subalgebras
g, u, £ and n.

Special functions :

o Bessel functions on p:

¥(x) = f dk " MAARZ oy Nepe, YV zepe. (18)
K
o Spherical functions on G/K:
oS (z) = f dk eCPrrealkz)) vy Neaqq, Ve, (19)
K

where a(y) denotes the a—component of y€ G in the Iwasawa decomposition G =
N(expa)K.

o Spherical functions on affine buildings are classical Macdonald polynomials (i.e.
Hall-Littlewood polynomials for the type A).

e The global heat kernel estimate (13) generalizes as follows to G/K :

hew) = 1T (U+Cosa®) (1 4 Caat)) 5

+2
x e~ loPt= oty

(20)

where R is the set of positive indivisible roots in R and 2" denotes the a’— component
of € G in the Cartan decomposition G = K(expat)K (see [13] and the references
therein).

e Random walks are harder to analyze on affine buildings. A global estimate similar to
(17) and (20) was established in [14] for the simple random walk on affine buildings of
type Ay. In general, the main asymptotics of random walks were obtained in [88].

2.7. Epilogue. This section outlines spherical Fourier analysis around 1980 (except for
the later applications to evolution equations). In the 1980s, Heckman and Opdam ad-
dressed the following problem (which goes back to Koornwinder for the root system
BC,): for any root system R, construct a continuous family of special functions on a
generalizing spherical functions on the corresponding symmetric spaces G/K, as Ja-
cobi functions (or equivalently the Gauss hypergeometric function) generalize spherical
functions on hyperbolic spaces. This problem was solved during the 1990s, mainly by
Cherednik, Dunkl, Heckman, Macdonald, and Opdam, and has actually given rise to
a large theory of special functions associated to root system, which is nowadays often
referred to as Dunkl theory.

Remark 2.12. A different generalization of hypergeometric functions to Grassmannians
was developed by Aomoto and Gelfand at the end of the 20th century.

3. RATIONAL DUNKL THEORY

Rational Dunkl theory originates from the seminal paper [24]. This theory of special
functions in several variables encompasses

e Euclidean Fourier analysis (which corresponds to the multiplicity k& =0),

e classical Bessel functions in dimension 1,

e generalized Bessel functions associated with Riemannian symmetric spaces of Eu-
clidean type (which correspond to a discrete set of multiplicities k).
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In this subsection, we use [67] (or alternately [40], pp. 1-69) as our primary reference and
quote only later works. Our notation goes as follows (see the appendix for more details) :

e a is a Euclidean vector space of dimension n, which we identify with its dual space,

R is a root system, which is reduced but not necessarily crystallographic,

W is the associated reflection group,

a* is a positive Weyl chamber in a, a™ its closure, R* the corresponding positive root

subsystem, and S the subset of simple roots,

e a, denotes the closed cone generated by R*, which is the dual cone of a¥,

e for every xea, x* denotes the element of the orbit Wz which lies in a™,

e wq denotes the longest element in W, which interchanges a™ and —a™, respectively
R and R~=—-R",

e k is a multiplicity, which will remain implicit in most formulae and which will be
assumed to be nonnegative after a while,

*T= ZQER"'ka’

o O(x)= H . |{ar, x)|** is the reference density in the case k > 0.

3.1. Dunkl operators.

Definition 3.1. The rational Dunkl operators, which are often simply called Dunkl op-
erators, are the differential-difference operators defined by

Def() = 0cf(2) + Y. koS8 (1(2) ~ f(raa)} (21)

for every £€a.

Remark 3.2.

e Notice that Dunkl operators Dg¢ reduce to partial derivatives ¢ when k= 0.
e The choice of R™ plays no role in Definition 3.1, as

3 ke O @) - flram)} = Y ke O f(a) — f(ram)}

e Dividing by {«,z) produces no actual singularity in (21), a

flo=ten) _ $>Jdt Lfr—tla,z)a) = Jdt& flx—tla’z)a).

Commutativity is a remarkable property of Dunkl operators.

Theorem 3.3. Fix a multiplicity k. Then
D¢o D, = Dyo Dg V& nea.

This result leads to the notion of Dunkl operators D, for every polynomial p € P(a),
and of their symmetric part D, on symmetric (i.e. W-invariant) functions.

Example 3.4.
o The Dunkl Laplacian is given by
differential part A f(x)

-

Af(x) =Y Dif() =37 a2 f)+ ), . A duf(o )
" D ez (I = S},

difference part
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where D;, respectively 0; denote the Dunkl operators, respectively the partial deriva-
tives with respect to an orthonormal basis of a.
e In dimension 1, the Dunkl operator is given by

Df(z) = () f(@) + 5 {f(x)=f(-2)}
and the Dunkl Laplacian by

Lf(@) = (£)f (@) + 2 (£) (@) = 5 { @)~ f(-2)}.
Here are some other properties of Dunkl operators.

Proposition 3.5.
e The Dunkl operators map the following function spaces into themselves :

P(a), C*(a), CF(a), S(a), ...

More precisely, the Dunkl operators D¢, with £ € a, are homogeneous operators of
degree —1 on polynomials.
e W—equivariance: For every weW and peP(a), we have

_1_
woDpow " = Dy,

Hence qu = Ep e bq, for all symmetric (i.e. W—invariant) polynomials p,qeP(a)V.
e Skew-adjointness: Assume that k> 0. Then, for every £€a,

| o 0w) Deta) g(w) = — [ do 82 2) Deglo).

3.2. Dunkl kernel.

Theorem 3.6. For generic multiplicities k and for every Aeac, the system

DgE)\=<)\,£>E)\ era,
E\(0)=1,

has a unique smooth solution on a, which is called the Dunkl kernel.

Remark 3.7. In this statement, generic means that k belongs to a dense open subset
K, of K, whose complement is a countable union of algebraic sets. The set Kieg 15
known explicitly and it contains in particular {keK | Rek>0}.

Definition 3.8. The generalized Bessel function is the average

1 1
INE) = 7 2y EAWT) = 57 2y Bun (@) (22)
Remark 3.9.

e Mind the possible formal confusion between (22) and the classical Bessel function of
the first kind J,.

e Conversely, the Dunkl kernel E\(x) can be recovered by applying to the generalized
Bessel function Jy(x) a linear differential operator in x whose coefficients are rational
functions of X (see [62, proposition 6.8.(4)]).

e In dimension 1, K, is the complement of —N — % in C. The generalized Bessel
function (22) reduces to the modified Bessel function encountered in Subsection 2.2:

() = jos(ha).
The Dunkl kernel is a combination of two such functions:
(@) = i s(\0) + 221 G101 (M)
—_—

even odd
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It can be also expressed in terms of the confluent hypergeometric function:

+1
T'(k+3) - zu
E\(z) = 7T J_1 du (1—u)" " (1+u)ke?

T(k) T(k+1

" J

1
_ 6)\1 I'(2k+1) ; J dvkal(l_,l])k 672)\:1:1) )
0

1F1(k:;2k11;—2)\x)

e When k=0, the Dunkl kernel Ex(x) reduces to the exponential e‘** and the gener-
alized Bessel function Jy(z) to

Coshy(y) = ﬁ ZweW eCwA ) (23)

o As far as we know, the non—symmetric Dunkl kernel had not occurred previously in
special functions, group theory or geometric analysis.

e Bessel functions (18) on Riemannian symmetric spaces of Fuclidean type px K/K
are special cases of (22), corresponding to crystallographic root systems and to certain
discrete sets of mutiplicities. More precisely, if
o g=p@DEt is the associated semisimple Lie algebra,

o a s a Cartan subspace of p,
o R is the root system of (g,a),
0 My 1S the multiplicity of aeR,
and
o R is the subsystem of indivisible roots in R,
o ko= Tl YoeR,
then
oh(z) = Jin(2) V Aeac, Vzea.

In next proposition, we collect some properties of the Dunkl kernel.

Proposition 3.10.

e Regularity: E)(x) extends to a holomorphic function in Aeac, xeac and keK,ey.
e Symmetries:

Ex(z) = Ex(X),
Epx(wz) = Ex(x) YVweW,
E\(tx) = En(z)  YteC,

E\(z) = Ex(T) when k> 0.
e Positivity: Assume that k> 0. Then,
0 < Ey(z) < eNhe™ V Aea, Vzea.
e Global estimate: Assume that k> 0. Then, for every &,...,{n€aq,
|0, .. Fex Ea(2)| < |&1] .. [En| AN e (BN ®en)™)y Neae, ¥ zeac.
3.3. Dunkl transform. From now on, we assume that k& > 0.

Definition 3.11. The Dunkl transform is defined by

HI) = | de 6(2) f(o) Eon(a). (24)

a

In next theorem, we collect the main properties of the Dunkl transform.
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Theorem 3.12.

e The Dunkl transform is an automorphism of the Schwartz space S(a).

e We have
H(Def)(A) = i{& A HF(A) Vea,
H({E, ) f)=1DcHSf Véea,
H(wf)(A) = Hf(wA) YV weW,
HfE)]N) = [t "2 (Hf)(EIN) Y teR*
e Inversion formula:
@) = 2 [ dXBOVHI) Bao), (25)
where : )
Crat = J dx §(z) e (26)

15 the so—called Mehta—Macdonald integral.
e Plancherel identity: The Dunkl transform extends to an isometric automorphism of
L?(a,6(x)dz), up to a positive constant. Specifically,

f I (N [HOV)? = 2, f dx §() | £(2)]7.

e Riemann-Lebesgue Lemma: The Dunkl transform maps L'(a,d(z)dx) into Co(a).

e Paley—Wiener Theorem: The Dunkl transform is an isomorphism between CF(a) and
the Paley—Wiener space PW!(ac), which consists of all holomorphic functions
h:ac —> C such that

JR>0, VNeN, sup, o (1+[A)Ve M| A(N)| < +o0. (27)

More precisely, the support of feCF(a) is contained in the closed ball B(0,R) if and
only if h="Hf satisfies (27).

Remark 3.13.

e Notice that (24) and (25) are symmetric, as the Euclidean Fourier transform (1) and
its inverse (2), or the Hankel transform (3) and its inverse (4).

e In the W—invariant case, Ey;\(x) is replaced by Ji;\(z) in (24) and (25).

e The Dunkl transform of a radial function is again a radial function.

e The following sharper version of the Paley—Wiener Theorem was proved in [4], as a
consequence of the corresponding result in the trigonometric setting (see Theorem 4.10)
and thus under the assumption that R is crystallographic. Given a W—invariant convex
compact neighborhood C' of the origin in a, consider the gauge x(\) = max,cc (A, x).
Then the support of fe CF(a) is contained in C if and only if its Dunkl transform
h ="Hf satisfies the condition

¥ NeN, supyeq, (1H[A)Ye XV [N | < +o0. (28)
Problem 3.14. Extend the latter result to the non—crystallographic case.
3.4. Heat kernel. The heat equation
Ovu(z,t) = Agu(z,t)
{u(x, 0) = f(x)

can be solved via the Dunkl transform (under suitable assumptions). This way, one
obtains

u(x, 1) = f dy 5(y) F(y) he(z,y) .
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where the heat kernel is given by

rat

he(z,y) = c;2 f A\ 6(N) e W B (2) E_ix(y) Vt>0,Vz,yea.
a

In next proposition, we collect some properties of the heat kernel established by Rosler.

Proposition 3.15.

e hy(xz,y) is an smooth symmetric probability density. More precisely,
o hy(z,y) is an analytic function in (t,z,y)e(0,+0)xaxa,
© ht(x7 y) = h't <y7 .T}),
o hy(z,y)>0 and §_dyd(y) he(z,y) = 1.

e Semigroup property :

hsit(x,y) = J dz 0(2) hs(z,2) hi(z,y) .

a

e Expression by means of the Dunkl kernel :

_le? Jwi?

he(z,y) = ¢k (2t)"2 Ve TELQ(%) Vt>0,Vz,yea. (29)

9

e Upper estimate:

_lwz—y|?

he(z,y) < ¢k (26)7277 maxyew e~ 7

Remark 3.16.

e In [10], the following sharp heat kernel estimates were obtained in dimension 1 (and
also in the product case) :

2 2
tho3 e if |eyl<t,
(e—y)?

hi(r,y) = { 3 (ay)Fe T if ay>t, (30)

g1 _arw)?

t2 (—ay) e o qf —xy>t.

Notice the lack of Gaussian behavior when — xy > t, in particular when y = —x tends
to infinity faster then /t.

o The Dunkl Laplacian is the infinitesimal generator of a Feller—Markov process on a,
which has remarkable features (Brownian motion with jumps) and which has drawn a
lot of attention in the 2000s. We refer to [40] and 23| for probabilistic aspects of Dunkl
theory.

Problem 3.17. Prove in general heat kernel estimates similar to (30).

3.5. Intertwining operator and (dual) Abel transform. Consider the Abel trans-
form

A=F1loH,

which is obtained by composing the Dunkl transform H with the inverse Euclidean
Fourier transform F~!on a, and the dual Abel transform A*, which satisfies

f dz §(x) f(z) A*g(x) = f dy Af(y) g(y) .

Theorem 3.18.

e The dual Abel transform A* coincides with the intertwining operator V defined on
polynomials by Dunkl and extended to smooth functions by Trimeche.
e Intertwining property : for every £ € a,

AOD§=5§OA and VO@§=D§OV. (31)
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e Symmetries:
A(wf) = w(Af) and V(wg) =w(Vyg) VweW,
A[f(E)] () = [t (Af)(ty) and V([g(t.)](z) = (Vg)(tz) V¥teR*.

o For every x € a, there is a unique Borel probability measure p, on a such that

V() = f dyia(y) 9(y) (32)

The support of s is contained in the convex hull of Wx. Moreover, if k>0, the
support of ., is W—invariant and contains Wx.
o A is an automorphism of the spaces CF(a) and S(a), while V is an automorphism of

C*®(a), with
|Vg(l')| < maXyeco(We) |g(y)| Y zea.

The following integral representations, which follow from (22), (31) and (32), generalize
(6) and (18) in the present setting.

Corollary 3.19. For every A€ ac, we have

E(z) = f dpia(y) eV
a
and

Iy(z) = f d1(y) Coshi(y)

where Coshy, is defined in (23) and

w_ 1
Ha = |W\Zwew Hwe -
Remark 3.20.

o The first three items in Theorem 3.18 hold for all multiplicities k€ K,eg.
e The following symmetries hold :

dpwz(wy) = dus(y) VweW,
dps(ty) = dpg(y)  VieR™

e In [49], it is conjectured that the measure i, is absolutely continuous with respect to
the Lebesgue measure under the following two assumptions:
o x is regular (which means that {o,x) # 0, for every aeR),
o a is spanned by the roots o with multiplicity k,>0.

e These conjectures hold in dimension 1 (hence in the product case), where

r'(k+1) . _
dpa(y) = =, ol +sign(@) y) (2 =y*) " Wy, 1) (v) dy

if ©#0, while o is the Dirac measure at the origin.
3.6. Generalized translations, convolution and product formula.

Definition 3.21.

e The generalized convolution corresponds, via the Dunkl transform, to pointwise multi-
plication :

(Fr9)(x) = 2 f IX 5(3) HF(N) Hg(N) Eonlx). (33)

e The generalized translations are defined by

(7 f) (@) = Crat f dA S(N) Hf(N) Ein(x) Eix(y) = (72.f) (y) - (34)
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The key objects here are the tempered distributions

[ {vay, f), (35)
which are defined by (34) and which enter the product formula
Ex(@) Ex(y) = (Vay, Ex) . (36)

Remark 3.22.

o When k=0, (33) reduces to the usual convolution on a, (34) to (7,f)(x) = f(x+y),
and Vg y = 0giy.
e In the W—invariant case, (33) becomes

(F+9)(@) = e | ISV HFOVHION) ()
and (36) ’
(@) In(y) = vy Ia) (37)

where
=
V‘T7y - ‘WI ’LUEW I/wwva :

Lemma 3.23. The distributions (35) are compactly supported.
e Specifically, v, , is supported in the spherical shell

{zeal|lal=lyl| < |zl <]zl +yl }.
o Assume that W is crystallographic. Then v, , is actually supported in
{zea|z<at+y®, 2" =y T+ wor® and T+ wey" }, (38)

where < denotes the partial order on a associated with the cone a, .

Example 3.24. In dimension 1, v, , is a bounded signed measure. Specifically,

v(z,y,2) [2|**dz if 2,y eR¥,
dvgz 4 (2) = { ddy(z) if ©=0,
do.(2) if y=0,

1
1
1
/I
™~
1
1
1
1
|
|
1
|
1
1

r+y

FIGURE 8. Picture of the set (38) for the root system Bs
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where

_ D(k+3) raty)(re—y) (z—z+y) {[z2=(el=ly)?}* " {(Je|+]y)> |22}
VALK 2y {2lally]=]} 2+

if ,y,2€R* satisfy the triangular inequality ||z|—|y|| <|z| <|z|+|y| and v(z,y,z) =0
otherwise. Moreover, let

re+H]?
M = Supx,yERJ d|’/$7y|(z) = ﬁ@
R

D(k+3)Dk+32) "

v(z,y, z)

Then M>1 and M /2 as k /+o.

In general there is a lack information about (35) and the following facts are conjectured

[68].

Problem 3.25.
(a) The distributions v, , are bounded signed Borel measures.
(b) They are uniformly bounded in x and y.

(¢) The measures v,", are positive.

If v0") is a measure, notice that it is normalized by

x?y
f dl/gf;)(z) =1.
a

Problem 3.25 and especially item (b) is important for harmonic analysis. It implies indeed
the following facts, for the reference measure é(x)dx on a.

Problem 3.26.

(d) The generalized translations (34) are uniformly bounded on L' and hence on LP, for
every 1< p<oo.

(e) Young’s inequality: For all 1 < p,q,r < o0 satisfying
constant C'>0 such that

1 1 1
+ r

i = 1, there exists a

[ fgler <CIfleeg]La- (39)

Beside the trivial L? setting and the one-dimensional case (hence the product case), here
are two more situations where Problems 3.25 and 3.26 have been solved.

e Radial case [68|. Translations of radial functions are positive. Specifically, for radial
functions f(z)='f(]z|) and nonzero ye€a, we have

(7y.f)(x) = f dp(2) 'f (V2P + Ty +24z, 2) [y]) - (40)
Hence (39) holds if f or g is radial.

e Symmetric space case. Assume that the multiplicity k& corresponds to a Riemannian
symmetric space of Euclidean type. Then I/r’/y is a positive measure and (39) holds for
W-—invariant functions.

3.7. Comments, references and further results.

e The computation of the integral (26) has a long history. A closed form was conjectured
by Mehta for the root systems of type A and by Macdonald for general root systems.
For the four infinite families of classical root systems, it can be actually deduced from
an earlier integral formula of Selberg. In general, the Mehta—Macdonald formula was
proved by Opdam, first for crystallographic root systems [61] and next for all root
systems [62]. His proof was simplified by Etingof [30], who removed in particular the
computer—assisted calculations used in the last cases.
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We have not discussed the shift operators, which move the multiplicity k& by integers
and which have proven useful in the W—invariant setting (see [62]).

The following asymptotics hold for the Dunkl kernel, under the assumption that £ >0
(see [49]) : there exists v:W — C such that, for every weW and for every \,zea®,

im0 (i) e B (wa) = v(w) §(N) 72 8(z) 77 . (41)

If w=1, we have v(I) = (2r)"% ¢, where ¢ is defined by (26), and (41) holds more
generally when ¢ = it tends to infinity in the half complex space {tNE C| Ret > 0}.
If w # I, the Dunkl kernel is expected to have a different asymptotic behavior, when
Ret becomes positive. In dimension 1, we have indeed, for any 0<e<7F,

N T+l —TAz _ 2P VR T(k4g) k-1, —k—1
lim;,  t"" e Ey(—z) = —s A T .

largt|<T—¢
This discrepancy plays an important role in [10].

In the fourth item of Theorem 3.18, the sharper results about the support of u, when
k>0 were obtained in [36].

Specific information is available in the W—invariant setting for the root systems A,,.
In this case, an integral recurrence formula over n was obtained in [2] and [77] for
Jy, by taking rational limits of corresponding formulae in the trigonometric case (see
the tenth item in Subsection 4.7). Moreover, an explicit expression of p! is deduced
in [77]. As a consequence, the support of i, is shown to be equal to the convex hull
of Wz, when k>0.

The asymmetric setting is harder. Beyond the one—dimensional case (and the product
case), explicit expressions of the measure pu, are presently available in some two—
dimensional cases. For the root system As, two closely related expressions were ob-
tained, first in [25] and recently in [3]. For the root system Bs, a complicated formula
was obtained in [26] and a simpler one recently in [5]. The case of dihedral root systems
[o(m) is currently investigated (see [22], [19] and the references therein).

In Lemma 3.23, the sharper result in the crystallographic case was obtained in [4].

An explicit product formula was obtained in [69] for generalized Bessel functions as-
sociated with root systems of type B and for three one-dimensional families of multi-
plicities (which are two—dimensional in this case). The method consists in computing
a product formula in the symmetric space case, which corresponds to a discrete set
of multiplicities k£, and in extending it holomorphically in k. The resulting measure
lives in a matrix cone, which projects continuously onto a*, and its image |W/| l/gf’Vy is
a probability measure if k> 0.

Potential theory in the rational Dunkl setting has been studied in [58], [33], [56], [34],
[35], [36], [37], [41] (see also [66] and the references therein).

Many current works deal with generalizations of results in Euclidean harmonic analysis
to the rational Dunkl setting. Among others, let us mention

o [84] about the Hardy—Littlewood and the Poisson maximal functions,

o [6] and [7] about singular integrals and Calderon—Zygmund theory,

o [10] and [28] about the Hardy space H'.

A further interesting deformation of Euclidean Fourier analysis, encompassing rational
Dunkl theory and the Laguerre semigroup, was introduced and studied in [17].
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4. TRIGONOMETRIC DUNKL THEORY

Trigonometric Dunkl theory was developed in the symmetric case by Heckman and Op-
dam in the 1980s, and in the non—symmetric case by Opdam and Cherednik in the 1990s.
This theory of special functions in several variables encompasses

e Fuclidean Fourier analysis (which corresponds to the multiplicity k£ =0),

e Jacobi functions in dimension 1,

e spherical functions associated with Riemannian symmetric spaces of noncompact type
(which correspond to a discrete set of multiplicities k).

In this subsection, we use [64] as our primary reference and quote only later works. We
resume the notation of Section 3, with some modifications:

e the root system R is now assumed to be crystallographic but not necessarily reduced,
e R denotes the subsystem of non—multipliable roots,
e the reference density in the case k> 0 is now d0(x) = 1_[ . | 2 sinh <012_I> }Qka ’

ae

and some addenda:

e () denotes the root lattice, Q¥ the coroot lattice and P the weight lattice,

* P 2&6R+ 2

4.1. Cherednik operators.

Definition 4.1. The trigonometric Dunkl operators, which are often called Cherednik
operators, are the differential—difference operators defined by

Def(w) = 0cf(x) + ), o ko =ctim { (@) = f(raw)} = (p,&) f(z)  (42)
for every £ea.

Notice that the counterpart of Remark 3.2 holds in the present setting. In next theorem,
we collect properties of Cherednik operators. The main one is again commutativity, which
leads to Cherednik operators D,,, for every polynomial peP(a), and to their symmetric
parts D, on W-invariant functions.

Theorem 4.2.

e For any fized multiplicity k, the Cherednik operators (42) commute pairwise.
e The Cherednik operators map the following function spaces into themselves:

Cle”], P(a), C*(a), CX(a), S8*(a) = (Cosh,)  S(a), ...

1

where C[ep] denotes the algebra of polynomials in e* (A€ P) and Cosh, is defined
n (23).

e W—equivariance: For every weW and £€a, we have

(woDeow™) f(z) = Dyef(a +ZaeR+m R_k: la,wE) f(raz) .

Hence l~)pq = l~)p o lNDq for all symmetric polynomials p,qe P(a)V
e Adjointness: Assume that k> 0. Then, for every £€a,

fw&maﬂmaﬂw=fwﬂmﬂw&aﬂ»
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Example 4.3.
e The Heckman—Opdam Laplacian is given by
differential part Af(z)

Af(x) =317 Dif(e) =207 07f (@) + 3] . ke coth %52 0af () + |pf(x)
- 2a€R+ @ 451n‘ha2|ja z {f l’)} )

difference part

where D;, respectively 0; denote the Cherednik operators, respectively the partial de-
rivatives with respect to an orthonormal basis of a.
o In dimension 1, the Cherednik operator is given by

Df(x) = (£)f(2) + {i== + ==} { f(@) = f(=2) } = p f(2)

= (£)f(z) + {& coth £ + ky coth z } {f )= f(-z)} —pf(-x
and the Heckman—Opdam Laplacian by

Af(z) = (%)Zf (z) + {k1 coth £ + 2k, coth:c} (2)f(z)+ p°f(x)

_{4512129” smh? }{f )}7

where p = %—l— ko .

4.2. Hypergeometric functions.

Theorem 4.4. Assume that k> 0. Then, for every A€ac, the system

DgG)\ = <)\,€>G)\ era,
GA(0) =

has a unique smooth solution on a, which is called the Opdam hypergeometric function.

Definition 4.5. The HeckmanfOpdam hypergeometric function 15 the average

Remark 4.6.

o Conversely, G(x) can be recovered by applying to F\(x) a linear differential operator
in x whose coefficients are rational functions of X.

e The expression Gyx(x) extends to a holomorphic function of X\ € ac, v € a+1iU and
k eV, where U is a W—invariant open neighborhood of 0 in a and V is a W—invariant
open neighborhood of {keK |k>0}.

e The Heckman—Opdam hypergeometric function (43) is characterized by the system

D, Frx=p\)F\ ¥peP(a)V
F\(0)=1.
o In dimension 1, the Heckman-Opdam hypergeometric function reduces to the Gauss

hypergeometric function 5Fy or, equivalently, to the Jacobi functions gpf\y’ﬁ
. kitke—2,ko—1
Fx(@) = oFi(p+ A, p—Aski+ ka+3; —sinh®£) = TSR 2y,
and the Opdam hypergeometric function to a combination of two such functions:

kitka—z,k A kitko+d, kot 3
Ga(x) = 09y 7k 2( )+ st (sinha) ooy 2 ().
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o When k=0, Gx(v) reduces to the exponential e** and Fy(x) to Coshy(z).

e The functions G_, and F_, are equal to 1.

e Spherical functions o on Riemannian symmetric space G/K of noncompact type are
Heckman—Opdam hypergeometric functions. Specifically, if

R is the root system of (g,a),
Mo = dim g,,

R=2R,
k’ga: %ma.

oS (exp) = Fp(2a).

set

Then

We collect in the next two propositions asymptotics and estimates of the hypergeometric
functions.

Proposition 4.7. The following Harish—Chandra type expansions hold:

Fy(w) =), c(w) Pua(@),

1

GA(:C):H ey R)Zwewc(wk)\llw,A(x).
aeRT @7 2) — 5 Faj2 ™ Ra

Here
INCOWADEE YN

c(A) = ¢ Haem DN+ 3 kajptka)’

where cq s a positive constant such that c(p) =1, and
Oa(w) =D, TeN) e P00 Wy (@) = 3 Te(w, A)etrrmbo
are converging series, for generic A€ac and for every reat.

Proposition 4.8. Assume that k> 0.

o All functions G with Aea are strictly positive.
o The ground function Gy has the following behavior:

Go(z) = {Haeé+(1+<a,x>)} e P V zea.
{a,z)>=0

In particular,
o) = { T,y (14 )} 0
if xeat, while
Gol(x) = e+
if re—at.
o For every Aeac, pea and rea, we have

|Gau(@)| < e (RN Gu() .
In particular, the following estimates hold, for every Aeac and xea,

|GA(2)| < Grea(r) < Go(z) e BN
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4.3. Cherednik transform. From now on, we assume that k > 0.

Definition 4.9. The Cherednik transform is defined by

HF(O) = f 0 6(z) f(x) Gir(—2) (44)

a

In next theorem, we collect the main properties of the Cherednik transform.

Theorem 4.10.
e The Cherednik transform is an isomorphism between the L* Schwartz space
S2(a) = (Cosh,) ™" S(a)
and the Euclidean Schwartz space S(a).

e Paley—Wiener Theorem: The Cherednik transform is an isomorphism between CF(a)
and the Paley—Wiener space PW(ac). More precisely, let C' be a W—invariant convex
compact neighborhood of the origin in a and let x(\) = max,cc (A, x) be the associated
gauge. Then the support of fe CFr(a) is contained in C if and only if h ="Hf satisfies
(28).

e Inversion formula:

o) = il [ AT HFO) G o), (45)
a
where , nas s Ltk
g)\ _ cg . — iAo )+ 5 ko2t ka
() lc(iN)]2 HaeR+ —i{Aav) (46)
1—[ D(i{\,a" ) +2 kajatka) T(—id\,a" )+ 1 kajpt+katl)
- aeRt  T(i{ha¥)+3kas) L(—i{x e )+ S kajo+1)
and cyig 1S a positive constant.
Remark 4.11.
e [n the W—invariant case, the Cherednik transform (44) reduces to
HI) = | de 6(a) F(a) Fol-a) (47)
a

and its inverse (45) to
02
@) = e [ 3 HI ) Fao). (18)
a

It is an isomorphism between S?(a)VV = (Coshp)_lS(a)W and S(a)V, which extends
to an isometric isomorphism, up to a positive constant, between L*(a,d(x)dz)" and
L*(a,|c(iN)|2d\)"W.

e Formulae (47) and (48) are not symmetric, as the spherical Fourier transform (11)
and its inverse (12) on hyperbolic spaces H", or their counterparts (15) and (16) on
homogeneous trees T,. The asymmetry is even greater between (44) and (45), where
the density (46) is complez—valued.

e There is no straightforward Plancherel identity for the full Cherednik transform (44).
Opdam has defined in 63| a vector—valued transform leading to a Plancherel identity
in the non—W—invariant case.

4.4. Rational limit. Rational Dunk theory (in the crystallographic case) is a suitable
limit of trigonometric Dunk theory, as Hankel analysis on R" is a limit of spherical Fourier

analysis on H". More precisely, assume that the root system R is both crystallographic
and reduced. Then,

e the Dunkl kernel is the following limit of Opdam hypergeometric functions:
Ex(z) = lim. ¢ G-1)(c2),
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e the Dunkl transform H,,; is a limit case of the Cherednik transform H g :

(Hyat f/)(A) = lim. 0 6" {Heig [ f(7")]}ETN),

e likewise for the inversion formulae (25) and (45):
(Hratf)(2) = const. lim. g e" ™7 {H [f(e.)]} (e) .

4.5. Intertwining operator and (dual) Abel transform. In the trigonometric set-
ting, consider again the Abel transform

A=F'oH,

which is obtained by composing the Cherednik transform H with the inverse Euclidean
Fourier transform F~!on a, and the dual Abel transform A*, which satisfies

J dz §(x) f(z) A*g(x) = f dy Af(y) g(y) .

Remark 4.12. In [85], A*=V is called the trigonometric Dunkl intertwining operator
and A =YV* the dual operator.

Proposition 4.13.

o For every {€a,
AoDe=0c0A and ~ Vode=DeoV.
e For every x € a, there is a unique tempered distribution p, on a such that

Vg(x) = (perg)-

Moreover, the support of . is contained in the convex hull of Wz.
Corollary 4.14. For every A€ ac, we have
Gr(z) = (g, ey and Fy(x) = {u?, Coshy ), (49)
. . w__ 1
where Coshy, is defined in (23) and p. = szew Pz -
Remark 4.15.

o The distribution p, 1s most likely a probability measure, as in the rational setting.
o This is true in dimension 1 (hence in the product case), where

dii(y) — dé.(y) if ©=0 orif ki=ky=0.
Hald pu(x,y)dy  otherwise.

As far as it is concerned, the density p(x,y) vanishes unless |y| <|z|. In the generic
case, where k1>0 and ko> 0, it is given explicitly by

_ okitke—2 TRitkats) ook —2ks
wlx,y) =2 } T T |sinh 3 | |sinh x|
X J dz (sinh £) (cosh £ — cosh £)" ! (cosh z — cosh z)*> (50)
[l

x (signz) {e? (2cosh &) — e (2 cosh %)} .

In the limit case, where k1=0 and ky>0,
1
p(z,y) = 2~21 % |sinh 2| 72" (cosh 2 — cosh y)*2 7! (sign z) (e” — e 7). (51)

In the other limit case, where ki >0 and ky=0, the density is half of (51), with ks,
x, y replaced respectively by ki, 5, 3.
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4.6. Generalized translations, convolution and product formula.

Definition 4.16.

e The generalized convolution corresponds, via the Cherednik transform, to pointwise
multiplication :

(F+9)(@) = e | DABOVHFOV HIN) Gurto).
e The generalized translations are defined by

(7y.f) (%) = Ctr?gf AN SN HF(N) Ginl) Ginly) - (52)
The key objects are again the tempered distributions

f I <V:v,y s f>
defined by (52) and their averages

A
I/xyy - |W‘ weW wa7wy7

which enter the product formulae

Ga(@) GA(y) = (Va,y, Gr)
and

Fx(z) Fa(y) = (v, F). (53)

Example 4.17. In dimension 1, the distributions v, , are signed measures, which are
uniformly bounded in x and y. Explicitly 9],
v(z,y,z)dz if z,yeR*,
dvy(2) = { doy(z) if x=0,
where the density v(x,y, z) is given by the following formulae, when x,y,z € R* satisfy
the triangular inequality
||z = [yl < lz] <la| + 1y,
and vanishes otherwise.

e Assume that ki1 >0 and ky> 0. Then
. 2k172 F(k1+k2+%)

V7 T(k1) T'(k2)
)2k2—1

2ko

v(z,y,2) sign(zyz) | sinh £ sinh %[~ 72%2 (cosh £)

X J dx (siny
0

1+ cosh z + coshy + cosh z ]klfl

z y z _
X [cosh 5 cosh 2 cosh £ cos x n N

. r+y+z .
x [ sinh === — 2 cosh £ cosh ¥ sinh
2 2 2 2
k1+2ko x Y z : 2
o cosh 3 cosh  cosh 5 (sinx)

sinh z — sinh  — sinh y

5 COSX].
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e Assume that k;=0 and ko> 0. Then

_ 921 T(k2+3)

I/(;L’7 y? Z) ﬁr(kQ) |_2k;2

sign(zyz) |(sinh x) (sinh y)

r+y+z . —xz+y+z . r—y+z . r+y—2z1k
g sinh 2y sinh g sinh g ]2

X [sinh

X [sinh z

— _ rTH+y—z

o In the other limit case, where ki > 0 and ko = 0, the density is again half of the
previous one, with kg, x, y replaced respectively by ki, 5, %.

In higher dimension, we have the trigonometric counterparts of Problems 3.25 & 3.26
but fewer results than in the rational case. In particular, there is no formula like (40)
for radial functions. A new property is the following Kunze-Stein phenomenon, which is
typical of the semisimple setting and which was proved in [9] (see also [15]) and [86].

Proposition 4.18. Let 1< p<2. Then there exists a constant C >0 such that

[ f*gllee < CIfleellgle2,
for every feLP(a,d(x)dz) and ge L?*(a,d(x)dz).

4.7. Comments, references and further results.

e The joint action of the Cherednik operators D,, with peP(a), and of the Weyl group
W may look intricate. It corresponds actually to a faithful representation of a graded
affine Hecke algebra [63].

e Heckman [43] considered initially the following trigonometric version

Def() = ef(x) + Y, . He(a, &) coth 52 { f(z) - f(raw) }

of rational Dunkl operators, which are closely connected to (42):

Def(w) ="Def(x) = Y, B (a.&) flrax).

These operators are W-equivariant :
wo'Deow ™ =Dy,
and skew—invariant :

| o 8@) (Des)(a) gl) = = | do 3(0) 1) (Do) o).
but they don’t gommute: ’

[De/D) fla) =Y Eeba {(a,6)(8,n) (B, (a.n)} flrarsa).

BeRrt 4
e The hypergeometric functions z —— G (z) and z —— F)\(z) extend holomophically to
a tube a+iU in ac. The optimal width for F) was investigated in [52].

e Proposition 4.7 was obtained in [63]. The asymptotic behavior of F\ was fully deter-
mined in [59]. This paper contains in particular a proof of the estimate

Py (z) = { } (A=p,) o
() HQE§+(1+<04,:1:>) e VA zear,
{a,\)#0
which was stated in [80] (see also [78]), and the following generalization of a celebrated
result of Helgason & Johnson in the symmetric space case:

F)\ is bounded if and only if A belongs to the convex hull of Wp.
e The sharp estimates in Proposition 4.8 were obtained in [80] (see also [78]) and [71].
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e As in the rational case, we have not discussed the shift operators, which move the
multiplicity & by integers and which have proven useful in the W-invariant setting

(see [44, Part I, Ch. 3|, [64, Section 5]).

Rational limits in Subsection 4.4 have a long prehistory. In the Dunkl setting, they
have been used for instance in [72], [16], [48], [4], [2], [77], ... (seemingly first and
independently in preprint versions of [16] and [48]).

There are other interesting limits between special functions occurring in Dunkl theory.
For instance, in |71] and [74|, Heckman—-Opdam hypergeometric functions associated
with the root system A, _; are obtained as limits of Heckman—Opdam hypergeomet-
ric functions associated with the root system BC,,, when some multiplicities tend to
infinity. See [73| for a similar result about generalized Bessel functions.

The expressions (49) are substitutes for the integral representations (10) and (19). A
different integral representation of F) is established in [83].

Formula (50) was obtained in [8] and used there to prove the positivity of p, when
ki1>0 and ko>0. A more complicated expression was obtained previously in [38] and
in [15]. It was used in [38] to disprove mistakenly the positivity of u,. Later on, the
positivity of p, in the general case was investigated in [87], using the positivity of the
heat kernel.

It is natural to look for recurrence formulae over n for the five families of classical
crystallographic root systems A,,, B,,, C,, BC,, D,, (see the appendix). In the case of
A,,, an integral recurrence formula for F) (or for Jack polynomials) was discovered in-
dependently by several authors (see for instance [76], [60], [42]). An explicit expression
of u" is deduced in [76] and [77], first for zeat and next for any zeat. In particular,
if k>0, then 1" is a probability measure, whose support is equal to the convex hull of
Wz and which is absolutely continuous with respect to the Lebesgue measure, except
for =0 where p%=4d,.

As in the rational case (see the eighth item in Subsection 3.7), an explicit product
formula was obtained in [70] and [89] for Heckman-Opdam hypergeometric functions
associated with root systems of type BC and for certain continuous families of multi-
plicities.

Probabilistic aspects of trigonometric Dunkl theory were studied in [80] and [79] (see
also [78]). Regarding the heat kernel h;(z,y), the estimate (20) was shown to hold for
h¢(x,0) and some asymptotics were obtained for h(x,y). But there is no trigonometric
counterpart of the expression (29), neither precise information like (30) about the full
behavior of h(z,y).

The bounded harmonic functions for the Heckman-Opdam Laplacian were determined
in [81].

APPENDIX A. ROOT SYSTEMS

In this appendix, we collect some information about root systems and reflection groups.
More details can be found in classical textbooks such as [46] or [50].

Definition A.1. Let a ~R" be a Fuclidean space.

e A (crystallographic) root system in a is a finite set R of nonzero vectors satisfying the

following conditions:
{a, )

|a?

(a) for every ae R, the reflection ro(x) =z — 2 a maps R onto itself,

(b) 25222 ¢ 7 for all o, BER.

|
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o A root system R is reducible if it can be splitted into two orthogonal root systems, and
wrreducible otherwise.

Remark A.2.

e Unless specified, we shall assume that R spans a.
o Y = ﬁ a denotes the coroot corresponding to a root «. If R is a root system, then
RY 1s again a root system.
e Most root systems are reduced, which means that
(c) the roots proportional to any root « are reduced to +«.
Otherwise the only possible alignment of roots is
—2a,—a,+a,+2a.
A root « is called
o undivisible if 5 is not a root,
o non—multipliable if 2a is not a root.
e We shall also consider non—crytallographic reduced root systems R, which satisfy (a)
and (c), but not necessarily (b).

Definition A.3.
e The connected components of
{rea|{a,z)#0 YaeR}
are called Weyl chambers. We choose any of them, which is called positive and denoted
by at. RT denotes the set of roots which are positive on a*.

o The Weyl or Coxeter group W associated with R is the finite subgroup of the orthogonal
group O(a) generated by the root reflections {r,|aeR}.

Remark A.4.

o The group W acts simply transitively on the set of Weyl chambers.
o The longest element wq in W interchanges a* and —a*.
e Every xea belongs to the W-orbit of a single x*tea™.

There are six classical families of irreducible root systems:

e A, (n>1): a={zeR" zo+z14+ ... +2,=0}
R={62—6j|0<l#]<n}
at={zea|lzg>x1>...>2,}

W:Sn+1

e B, (n>2): a=R"
R={+e|l<i<n}u{tete|l<i<j<n}
at={zeR"|z1>...>2,>0}
W={+1}"x8S,

e C, (n>2): a=R"

R={+2¢|1<i<n}u{te te|l<i<j<n}
at={zeR"|z;>...>2,>0}

={£1}"x S,

e BC, (n>1): a=R"

S

R={te,+2¢;|1<i<n}u {fete;|1<i<j<n}
at={zeR"|z1>...>2,>0}
={+1}"x S,
e D, (n>3) a=R"
R={+eiiej|1<i<j<n}
at={zeR"|z1> ... > |z,|}
W={ee{+1}"|e1...e,=1}x8S,
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R={e™n|0<j<2m}
at={zeC*|(i-L)m<argz <%}
W= (Z/mZ)x(Z/2Z) (dihedral group)
The full list of irreducible root systems (crystallographic or reduced) includes in addition
a finite number of exceptional cases:

EGa E77 E87 F47 G27 H37 H4-
Remark A.5. In the list above,
e the non crystallographic root systems are
m =25,
m=T7,

e all root systems are reduced, with the exception of BC,,,
e there are some redundancies in low dimension:

Hs, Hy and I3(m) with {

A1 X A1 5 D2 5 12(2)

Bya~Cyax1y(4) (up to the root length)
AQ S 12(3)

Go~15(6) (up to the root length)

The 2-dimensional root systems (crystallographic or reduced) are depicted in Figure 9.
Definition A.6. A multiplicity is a W—invariant function k: R — C.

Remark A.7.

e In Dunkl theory, one assumes most of the time that k> 0.

o Assume that R is crystallographic and irreducible. Then two roots belong to the same
W—orbit iof and only if they have the same length. Thus k takes at most three values.
In the non crystallographic case, there are one or two W-orbits in R. Specifically, by
resuming the classification of root systems, k takes
o 1 wvalue in the following cases:

An, Dn, Eﬁ, E7, Eg, Hg, H4, Ig(m) with m Odd,
o 2 wvalues in the following cases:
B., Cn, Fy, Go, Io(m) with m even,
o 3 walues in the case of BC,,.
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FIGURE 9. 2-dimensional root systems
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