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Abstract 

Teaching Computer Systems Architecture at Supélec involves both lectures and projects. 
We have defined and implemented a pedagogical simulator intented to teach different 
synchronization problems. Its main aim is to help students better understand the 
problems involved in variable sharing between two processes, and allow them to solve 
the problems, using semaphores. The simulator offers an instruction library based on a 
pedagogical processor used in the Computer Systems Architecture course. Students will 
drag-and-drop the instructions into the two instruction lists used for the processes. The 
overall program should fulfil the global requirements, and produce the right value for the 
shared variable, regardless of the execution order of the instructions. Students use our 
code analysis software to check the correctness of their design. If the algorithm detects a 
failure in the shared variable use, it builds an execution flow that exemplifies the failure. 
The students can follow the flow, step-by-step, by browsing through a series of on-the-fly 
computed panels, each one displaying the critical values of the processor registers as 
well as process description record fields and the current instruction field or a shared 
variable. The explanation panel includes arrows that point to every information transfer 
and a short text that describes the current overall status. The analysis and explanation 
builder software has been designed according to a very simple instruction set of our 
pedagogical computer. Its principal feature is to reduce the complexity of the student 
code diagnosis algorithm. The simulator is currently accessible online to our 400 students 
who have given us a very positive feedback on it. We have now been asked to extend its 
application to other problems. The possibility of such an extension has been included in 
the simulator pre-requirements, first by offering an open instruction library, second by 
designing an analysis tool able to work either with various sets of instruction sequences, 
or with more than two processes, multiple semaphores and/or shared variables. The most 
innovative aspect of our pedagogical experience is the ability to explain very precisely the 
faulty behavior of the code to our students while allowing them to build any sequence of 
instructions without the burden of conforming to a strict programming language syntax. 
This allows them to focus on the problem they have to solve, and probably explains why 
they like it so much. Furthermore, our simulator is expandable to other typical 
synchronization problems or, potentially, to other instruction sets. 

Keywords -  Pedagogical simulator, computer science, process synchronization.  

1 INTRODUCTION 

Concurrent programming is difficult both to teach and to learn. Even in simple cases, it involves 
understanding many concepts, such as the semantics of a processor instruction, the various states of 
a process, the way in which an operating system describes a process, etc. Moreover, practical 
experimentation is difficult, due to the non determinism induced by the scheduler. 

We will start by describing how Computer Science is taught at Supélec, then we will define the 
pedagogical aims of our project.  This will later on allow us to describe the models and concepts 
involved. The next paragraph deals with the simulator design, and the last one with related work. We 
will end with the future developments.  

2 PEDAGOGICAL CONTEXT 

"Computer Science" is a two-year compulsory course for all students at Supélec, and includes both 
lectures and practical sessions. The first year courses teach the basic concepts of software 



engineering and the programming models. Students become familiar with the usual topics of software 
development and learn Java as a high level programming language. 

One of the two second year courses enables students to master both the fundamental blocks of 
hardware computer architecture, namely busses, memory chips and modules, interruptions as well as 
the operating system concepts, such as a process, a thread, a scheduler, memory and input/output 
management. All students finishing their second year at Supélec have to pass an exhaustive 
examination in the hardware and operating system domains, during two lab sessions. During the first 
session they are asked to build a simple computer using a pedagogical hardware simulator we have 
designed[1]. In the second one they have to design a multi-threaded simulation in Java in which they 
have to carefully synchronize the threads in order to correctly manage the shared global variables. 

The concepts involved in this latter session are multiple, complex, and completely new to our students. 
Moreover, the global behavior of a set of threads is obviously non-deterministic, since it depends on 
their scheduling which can change from one execution to another. 

The debugging of a set of concurrent threads is considered as a tricky task, since inserting textual 
outputs (the means often used by students to pinpoint the successive values of a variable) leads to 
unreliable results in a multi-thread context. Moreover, using breakpoints included in the current IDE 
(Integrated Development Environment) debugging tools can change the faulty behavior or completely 
remove errors.  

For all these reasons, we have decided to help our students in two ways. First, a specific tutorial 
proposes a design of a consumer-producer pair of processes, with requirements of an increasing 
difficulty. Next, we have designed an interactive pedagogical simulator that allows them to solve a 
rather trivial problem of sharing a variable between two processes, one raises the initial variable value 
by a constant, while the other, concurrently, decreases the same variable from which is subtracted 
another constant This article will describe the simulator, both from the pedagogical, ergonomic and 
technical point of view. 

During their third and last year, all students have to specialize in one of fourteen majors, each in a 
particular field (e. g. communications systems, power electronics, or computer science). Students who 
choose to major in computer science will have to master the main fields of modern computer systems, 
attending further theoretical lectures and doing lab work. 

3 PEDAGOGICAL AIMS 

We have designed the pedagogical material for the Computer Science courses with the five following 
pedagogical goals in mind. The first three of them represent general pedagogical principles in our 
school of engineering, while the last two are specific to the Computer Architecture domain. 

3.1 Students should focus on the concepts  

One of the main purposes of the simulator is to make students able to design and rectify the 
instruction sequences of the two processes by themselves, since they have to use it outside the 
mandatory sessions. The Human-Machine interface should be intuitive, and the simulator has to give 
visual feedback of the students actions, while allowing them to focus on the concepts they should 
learn. This option obliges the designers to avoid tools that ask students to give instructions textually, 
as the editing task requires too much time and effort if the students follow strictly a programming 
language syntax. 

3.2 We have to keep students in a stable pedagogical background 

To help students in their design, we have chosen to keep for the simulator the same instruction set 
computer they have seen in the computer architecture lectures that start the Computer System 
Architecture course. Obviously, we have added WAIT and SIGNAL, i.e. the instructions required for 
manipulating semaphores. The synchronization tool which executes such instructions has been 
described by DJIKSTRA[2]. 

The semaphore is the main synchronization mechanism described in lectures, practically used during 
a tutorial devoted to process synchronization problems as well as during the hands-on session 
described in paragraph two and detailed later. The lecturer presents other techniques, but focuses on 
semaphores in order to shorten the time spent on this subject. 



3.3 The simulator should be accessible online 

Since specifying and developing such a simulator following the pedagogical and technical 
requirements described here is time-consuming, we have decided to use it for all second-year 
students, regardless of the campus they belong to (Gif-sur-Yvette, near Paris, Rennes in Brittany, or 
Metz in the east of France). This option has obliged the designers to define an online tool hosted by 
“Moodle”, the pedagogical platform chosen by the school. To implement the tool, the development 
team has chosen Java, since it is the language widely mastered in the school. The simulator is an 
applet, as this option requires only a lightweight client and allows trivial updates. The disadvantage of 
using a Java applet, in terms of security constraints and limited processing resources are of less 
weight in our case since the simulator neither needs to access to the computer's client resources, nor 
implies heavy computing. 

3.4 The simulator should be able to manage a large panel of problems 

To achieve the same aim of economy, we specify a very open and expandable simulator. Instead of 
limiting its diagnosis capabilities to the initial exercise, for which crude methods are sufficient, we have 
chosen to design an analysis algorithm, reusable for forthcoming complex problems. Conversely, after 
studying many open source tools that can help us in diagnosing the student proposal, we have chosen 
to design a custom analysis tool. We justify this option by analyzing the available tools. 

First, three kinds of tools exist: the static ones that work before (and without) code execution ([3], [9]), 
tools that detect the race conditions during execution ([5],[6]), and the post-mortem ones that analyze 
the log trace of execution to diagnose problems ([7], [8]). The last two techniques must either 
exhaustively investigate all the execution paths, or accept that some errors remain undetected. The 
first option will lead to heavy computing, even in the case of simple programs (two 10 lines long 
programs may generate about 1 million different execution paths). It is irrelevant if the process codes 
contain infinite loops, a very common case in synchronization problems. The second option is 
forbidden in a pedagogical context, where students need a perfect diagnosis of their solutions. 

What remains is the static analysis option. One kind of static diagnosis tool uses high level languages, 
such as C or Java, extending their type system ([9], [10], to prevent data races. They are of less 
interest in our case, since the very simple programming model our students use in Computer Systems 
Architecture, based on processor instructions, differs considerably from the semantics of these 
languages, and does not allow for a typing system. Moreover, these tools try to prevent problems by 
adding locks. The objective is for the simulator to detect rather than remove errors contained in the 
students’s work. Other kinds of tools performing effective detection ([12], [13]) cannot be used for our 
simulator, since they only supply a diagnosis, but do not give a typical sequence of an instruction 
execution that leads to the failure. Moreover some of them tend to report "false warnings", probably 
due to the fact that they tend to analyze high-level languages which manipulate pointers. Manageable 
in the industrial systems domain where engineers can deal with it, a wrong detection is not acceptable 
in a pedagogical context. 

3.5 The simulator has to explain pedagogically the faulty behavior of the code 

As mentioned before, the most crucial goal of our simulator is to carefully explain to our students the 
mistakes they have made, especially since they work alone. The simulator builds this explanation 
using the terms and concepts used during lectures and tutorials, and displays all the information 
required for understanding the faulty behavior of the code.  

Moreover, the students are able to browse through the sequence of slides displaying the following 
states of the system while the processor executes their specific code, either forward or backward, at 
their own rate. Each slide shows the processor register values (its state), the processor state stored by 
blocked or waiting processes, the value of any shared variable and the state of each process. A 
process can be “running” (if the processor is executing its code), “waiting” (it is waiting to run), 
“blocked” (if it waits is waiting for a SIGNAL to be executed by another process) or “terminated”, as 
shown in Fig. 1. 



 

Figure 1. A step of the execution 

 

4 THE CONCEPTS AND MODELS INVOLVED 

The Computer System Architecture course takes only twelve lectures, four tutorials of 1.5 hour each, 
and two 8-hour practical sessions to teach all the building blocks of a modern computer system. It 
uses a custom pedagogical processor, built step-by-step in the lectures devoted to computer 
architecture. More than 20 years ago, Supélec professor decided to define their custom processor 
rather than to use the well-known Tanenbaum architecture [14] since the Supélec processor allows 
the lecturer to reduce the time spent on explaining both the external and internal processor 
architectures. 

Another advantage of this simple processor is that our students can design, built and test it in the first 
practical session mentioned earlier. In line with the pedagogical principles explained above, we use 
the same processor for all the tutorials, the lectures devoted to the acceleration mechanisms (cache 
memory and pipeline) and the presentation of the process synchronization fundamentals. 

These fundamentals start from the very simple case of a variable shared between two processes, and 
describes how the lack of synchronization can lead to a data race giving a wrong final value of the 
shared variable. The lecturer then presents classic patterns, such as rendezvous, both incomplete or 
complete, between processes. Finally the lecturer describes the problems that occur when 
synchronization tools are misused, and the techniques and principles that allow students to avoid 
committing errors. 

4.1 The processor  

Our processor is equipped with an accumulator, eight instructions (LDA for loading the accumulator, 
STA for storing it into a variable, ADD and SUB for adding a value to it, or subtracting a value from it, 
and branching instructions, that allow the processor to jump to another part of the code). It defines 
only two addressing modes (direct for variables and immediate for constants). It is built using very 
simple building blocks, presented in the Logic System lectures, such as 16 bits wide registers, a 
simple arithmetic and logic unit and a 64K 16 bits wide memory, connected together using tri-state 
buses. A 3 hour lecture starts by describing these blocks and specifying the processor requirements. 
The lecturer then builds step-by-step the internal data path, and ends by defining the sequencer 
operations flowchart. An additional tutorial asks students to apply this theoretical knowledge while 
building another kind of processor, to allow them to separate the general concepts found in any 
processor from the specific characteristics of a particular one.  



4.2 DJIKSTRA’s Semaphores 

The semaphore is the main locking mechanism described in lectures, used intensively during the 
tutorial devoted to synchronization problems, and the practical 8-hour session that asks student to 
design, build and test a barbershop simulation in Java. 

The tutorial focuses on the analysis and design of two processes, one producing messages it puts into 
a mailing box, while the second extracts and processes them. The first process should block itself as 
soon as the mailbox is full, while the other is not allowed to extract a message from an empty box. 
These requirements describe a classic case of process cooperation, called the producer-consumer 
problem. We then enlarge the initial specification first by allowing multiple producers and consumers, 
then by asking an idle consumer process to process an alternative task instead of leaving the process 
blocked. 

5 THE SIMULATOR DESIGN 

To fulfil the requirements described in the paragraph 2, we have specified the simulator in terms of 
three dimensions: the pedagogical, the ergonomic, and the technical one. 

5.1 Pedagogical aspects 

During the Computer Systems Architecture our students have to assimilate a lot of new concepts in a 
rather short time. We present these concepts by increasing complexity, the understanding of the last 
one implying that the earlier ones have been well assimilated. Students who use the simulator work on 
a voluntary basis without coaching. The simulator should help them as much as possible, either during 
the process code building, or the diagnosis explanation. 

5.1.1 Contextual and immediate help 

The simulator offers ready-to-use instructions, stored in an easy to browse panel, instead of asking the 
student to enter them manually, as shown in Fig. 2. 

 

 

Figure 2. The processes code input panel 

 

The panel guides students in their design, even if they do not remember the computer instruction set. 
Practically, the simulator displays the semantics of any instruction, if the student leaves the mouse 



motionless on a library instruction. During the explanation phase, the simulator exemplifies the impact 
of an instruction execution by displaying the instruction just executed and the values it has modified in 
red, and by drawing arrows from the origin of the value to the object that received it, as shown in Fig. 
3. 

 

 

Figure 3. Clear explanation of an instruction execution 

The students do not have the burden of looking for the semantics of an instruction, and can focus on 
the task they should perform: correctly synchronizing the two processes, by understanding where and 
why their proposal has failed. 

5.1.2 Explanation of the scheduling consequences 

We also need to prove to our students why a specific arbitrary process scheduling can lead to a faulty 
behavior by giving a global state description, as shown in Fig. 4. 

 

 

Figure 4. Impact of a process state change 

This description clearly explains the cause of any process state change. For example, the simulator 
tells the students if the process is “blocked” by performing a wait on a semaphore having a counter 
valued less or equal to zero, if it “terminates”, or if it turns “waiting” due to the scheduling policy. 

In the Fig. 4 example, the explanation panel both mentions an arbitrary suspension (decided by the 
diagnosis algorithm to show a faulty code behavior) and stresses the transfer of values this process 
state change implies. Displaying this information is a crucial point for the good understanding of the 
race condition. More precisely, the faulty behavior of the code is due to the fact that two different 
accumulator values exist: on the one hand the real one and on the other the value stored in the 
context record, restored into the accumulator as soon as the process resumes. This is the reason why 
the explanation computing phase should carefully chose which process should start first and when to 
suspend it. We found here a clear justification for avoiding tools that give only a global diagnosis, 
without an execution path leading to the race condition 



. 

5.2 Ergonomic aspects 

Since our students may have to change the code they proposed after having understood their mistake, 
and in order to offer the quickest way to build the first version, we have decided to allow them to drag-
and-drop the instruction from the library into one of three instruction lists. The first one (in the right 
bottom corner of Fig. 2) contains the initialization code of the root process. The other two receive the 
instructions that have to add $200 to (and withdraw $100 from) the shared variable that implements 
the bank account. For the same reason, students can move an instruction in any instruction lists, 
either by drag-and-dropping it, or by combining keyboard keys. They can also remove an instruction 
by selecting it and pressing the delete key. 

The applet avoids modal dialogs that tend to keep the user captive, and allows students to navigate 
freely between the input and explanation panels. This gives them the ability to look at information not 
displayed on the explanation panel (such as the root process code, or instructions they have not yet 
used), while keeping the computed explanation slides sequence available for further study. To avoid 
mistakes, a short user's manual fills in the explanation panel as soon as the students change anything 
in their  code. 

5.3 Technical aspects 

The specification and design of either the user interface, or the two algorithms required by the 
simulator took about 4 months of full-time work in order to build a version that meets only partially our 
requirements, but still can be put on-line. 

The user interface specification of the input panel has been the first and easier step, while the 
explanation slides sequence design had to wait until the complete definition of the race-condition 
detection algorithm principles. As mentioned before, we first looked for existent tools and algorithms, 
before deciding to write our own. Once we chose this option, we gained more knowledge about the 
available information necessary to explain the student mistake. Consequently we are now able to 
specify how to compute the explanation slides sequence, and decide what information each slide will 
display. 

The code analysis begins by looking for not initialized variables and semaphores. Any error of this kind 
shortens the diagnosis by explaining the problem. The race condition algorithm starts by detecting any 
code section that begins with a transfer from a variable value into the accumulator, modifies the 
accumulator, and then stores it in the same variable. We call these zones varZones.  The algorithm 
then checks if such sections are included in zones beginning with a WAIT, and ending with a SIGNAL 
working on a same semaphore, we called semZones. The algorithm marks varZones outside any 
semZone as prone to race conditions. During this analysis, the algorithm manages semZones 
included in another semZone by storing them in its list, and by assigning them an incremented level. 

All the zones detected during the first phase are used both to detect race conditions and to produce 
the sequence of explanation slides. The race condition detection algorithm begins by checking 
conflicts between the root semZone of the two processes. It checks the kind of semZone (either one 
starting with a WAIT or a SIGNAL), and also checks whether the first semZone excludes executing the 
other one until its own end or not. In the latter case, it first asks the other semZone to check for 
conflicts with its included semZones (in a recursive way), then with its included varZones. Checking 
varZone conflicts works by comparing the variable affected by both zones. Identical variables lead to 
race condition which inputs for the building phase of the explanation slides 

. 

6 RELATED WORK 

The earlier 3.4 paragraph mentions many tools devoted to the detection and/or correction of race 
conditions in concurrent programs. The aim of the current paragraph is to investigate pedagogical 
tools dedicated to the teaching of concurrent programming. The first one, Visual OS, is an interactive, 
exploratory environment for learning process synchronization. It allows for visualizing classic 
synchronization cases (the critical section problem, a Consumer/Producer pair, a Reader/Writer pair, 
and the well-known dining philosophers problem). Unfortunately, this tool is described very briefly in 
only one article [15], and its development seems to have stopped since then. Moreover, another tool 



with the same name exists, oriented towards a whole operating system graphical simulation, which is 
not usable for our purposes. Another project, Convit [16] is a Java applet like our simulator. It can be 
used to ensure easy maintenance and a lightweight set-up. It allows students to test their solutions to 
various problems. It provides means to debug, simulate and to change the source code, such as the 
global deadlocks detection. However, the teacher should create all examples and interactive 
problems, since this supposes compiling the concurrent program parts code into Java. The Convit 
programming language, even if it is simple, remains a high level language. It is a mix of Pascal and C. 
However, Convit lacks the explanation feature of our simulator, recognized by our students as very 
important in understanding why and where their code has failed. 

 

7 CONCLUSION 

More than 400 of our students have been using our pedagogical simulator for 2 years. They have 
given us a very positive feedback on it. They massively ask for its extension to more complex cases, 
such as consumer-producer pairs, or rendezvous. As mentioned earlier, this capacity is one of its key 
features, since it presents an open instruction library, and uses an analysis and explanation sequence 
building algorithm able to cope with more than one semaphore, or more than two processes. 
Moreover, we intend to upgrade the diagnosis algorithm to detect all cases of starvation (i.e. when all 
or part of a code cannot be executed due to a lack of a SIGNAL), and we intend to include deadlock 
detection. It can be also enhanced to work on higher level languages, as soon as these can be 
compiled into instructions of our pedagogical processor. 
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