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Analytical calculation of the solid angle subtended

by an arbitrarily positioned ellipsoid

Eric Heitz

Unity Technologies

Abstract

We present a geometric method for computing an ellipse that subtends the same solid-angle domain
as an arbitrarily positioned ellipsoid. With this method we can extend existing analytical solid-angle
calculations of ellipses to ellipsoids. Our idea consists of applying a linear transformation on the ellipsoid
such that it is transformed into a sphere from which a disk that covers the same solid-angle domain
can be computed. We demonstrate that by applying the inverse linear transformation on this disk we
obtain an ellipse that subtends the same solid-angle domain as the ellipsoid. We provide a MATLAB
implementation of our algorithm and we validate it numerically.

M−1→ → M→

ellipsoid sphere disk ellipse

Figure 1: Illustration of our method.

1 Introduction

While analytic calculations of the solid angle subtended by ellipses exist [Con10], we are not aware of solutions
for the solid angle subtended by ellipsoids in the general case where they can be arbitrarily positioned
and/or oriented. In this paper, we present a simple geometric invariance property (Section 2) that allows for
extracting an ellipse that subtends the same solid-angle domain as an ellipsoid in the general case (Section 3)
and we obtain the solid angle of the ellipsoid by computing the solid angle of the ellipse with an analytical
method. We validate our method against numerical solid angle computations (Section 4).
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2 Linear invariance of solid-angle domains

In this section, we demonstrate the property our method is built on.

Property The property is illustrated in Figure 2. Let A and B be two objects that subtend the same
solid-angle domain ΩA = ΩB with respect to the origin O = (0, 0, 0) and M a 3 × 3 invertible matrix.
Then MA and MB, the objects obtained by applying the linear transformation M on respectively A and
B, subtend the same solid-angle domain ΩMA = ΩMB with respect to the origin O.

O

A

B

ΩA = ΩB

O

MA

MB

ΩMA = ΩMB

Figure 2: Property: if two objects A and B subtend the same solid-angle domain, this equality holds after
applying a linear transformation M to them.

Proof The proof is illustrated in Figure 3. The solid-angle domain ΩA subtended by an object A with
respect to the origin is given by the set of half lines that start from the origin and intersect object A. Since a
linear transformation applied on both a line and an object does not change their intersections, the set of lines
intersecting MA is the set of lines intersecting A multiplied by matrix M , and the set of lines intersecting
MB is the set of lines intersecting B multiplied by matrix M . Since A and B subtend the same solid-angle
domain, i.e. ΩA = ΩB , the set of half lines intersecting A is the same as the set of half lines intersecting B,
which means that the set of half lines intersecting MA is the same as the set of half lines intersecting MB,
i.e. ΩMA = ΩMB .

O

L1
L2

O

ML1

ML2

Figure 3: Proof: if two objects intersect the same half lines, then they intersect the same half lines after a
linear transformation. Hence, if if two objects subtend the same solid-angle domain, they subtend the same
solid-angle domain after a linear transformation.
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3 An ellipse that subtends the same solid angle as an ellipsoid

In this section, we explain our algorithm for computing an ellipse that subtends the same solid angle as an
ellipsoid.

3.1 Linearly transforming the ellipsoid into a sphere

We consider an ellipsoid of center Pa and of principal axes given by an orthonormal basis (A1, A2, A3) and
lengths a1, a2, and a3. Let M be the matrix

M = (A1 A2 A3)

a1 0 0
0 a2 0
0 0 a3

 (A1 A2 A3)
T
, (1)

then by multiplying the ellipsoid by the inverse matrix M−1 we obtain a sphere of radius 1 and of center

Pb = M−1 Pa. (2)

Pa

a1A1

a2A2

a3A3

M−1−→

Pb

A1

A2

A3

Figure 4: Linearly transforming the ellipsoid into a sphere of radius 1.
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3.2 Extracting a disk that subtends the same solid-angle domain as the sphere

We extract a disk that subtends the same solid-angle domain as the sphere. Since the scale of this disk
can be arbitrarily chosen, we choose the disk that lies on the surface of the sphere. The sphere subtends a
spherical cap of angle

θ = asin

(
1

‖Pb‖

)
. (3)

The center of the disk is

Pc = cos (θ)
2
Pb (4)

and its radius

c1 = c2 = tan (θ) ‖Pc‖ (5)

The normal of the disk is Pc

‖Pc‖ and we use it to compute two tangent directions C1 and C2, for instance with

Frisvad’s method [Fri12], such that
(

Pc

‖Pc‖ , C1, C2

)
is an orthonormal basis.

Pb

spherical cap−→

Pc

c1 C1

c2 C2

Figure 5: Extracting a disk that subtends the same solid-angle domain as the sphere.
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3.3 Computing the ellipse obtained by applying the inverse linear transforma-
tion on the disk

Thanks to the property provided in Section 2, we know that since the disk and the sphere subtend the same
solid-angle domain, any linear transform of them subtends the same solid-angle domain. If we multiply the
sphere by matrix M we obtain the ellipsoid. Hence, the disk multiplied by matrix M is an ellipse that
subtends the same solid angle as the ellipsoid. This ellipse is defined by its center

Pd = M Pc (6)

and the linearly-transformed tangent vectors of the disk scaled by its radius

D′1 = M c1 C1 (7)

D′2 = M c2 C2 (8)

Pc

c1 C1

c2 C2

M−→

Pd = M Pc

M c1 C1

M c2 C2

Figure 6: Computing the ellipse obtained by applying the inverse linear transformation on the disk.
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3.4 Computing the principal axes of the ellipse

We obtain the principal axes of the ellipse by computing the 2D eigenvectors (p1, p2) and (q1, q2) and
respective eigenvalues vp and vq of the dot-product matrix

Q =

[
D′1 ·D′1 D′1 ·D′2
D′1 ·D′2 D′2 ·D′2

]
=

[
p1 q1
p2 q2

] [
vp 0
0 vq

] [
p1 q1
p2 q2

]T
. (9)

The directions of the principal axes are the eigenvectors

D1 =
p1 T1 + p2 T2
‖p1 T1 + p2 T2‖

, (10)

D2 =
q1 T1 + q2 T2
‖q1 T1 + q2 T2‖

, (11)

and the lengths of the principal axes are the square roots of the eigenvalues

d1 =
√
vp (12)

d2 =
√
vq. (13)

Pd = M Pc

M c1 C1

M c2 C2

eigenvectors−→

Pdd1D1

d2D2

Figure 7: Computing the principal axes of the ellipse.
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4 Results

Figure 8 shows results computed with our method. We computed the solid angles Ω of the ellipsoid with a
Monte Carlo method and of the ellipse with Conway’s analytical method [Con10]. We obtained the ellipse
from the input ellipsoids with the MATLAB implementation of our method provided in Listing 1.

Pa

a1A1

a2A2

a3A3

Pdd1D1

d2D2

Pa = (+1.0200,−0.8600,+1.800)
A1 = (+0.5503,−0.3294,−0.7672), a1 = +0.6999
A2 = (−0.7489,−0.6008,−0.2797), a2 = +1.4200
A3 = (+0.3689,−0.7283,+0.5774), a3 = +0.7099
Ω = 0.5776 (numerical)

Pd = (+0.9083,−0.7658,+1.6030)
D1 = (+0.7267,+0.6534,+0.2117), d1 = 1.3246
D2 = (+0.6281,−0.5074,−0.5898), d2 = 0.6612

Ω = 0.5776 (analytical [Con10])

Pa

a1A1

a2A2a3A3

Pd

d1D1

d2D2

Pa = (+0.4400,−1.5100,+1.800)
A1 = (+0.0327,−0.5631,−0.8257), a1 = 0.5000
A2 = (+0.2131,−0.8032,+0.5562), a2 = 0.4000
A3 = (−0.9764,−0.1942,+0.0937), a3 = 1.1000
Ω = 0.2809 (numerical)

Pd = (+0.4273,−1.4666,+1.7483)
D1 = (+0.0687,−0.6913,−0.7192), d1 = 0.4887
D2 = (+0.9768,−0.1931,+0.0922), d2 = 1.0839

Ω = 0.2809 (analytical [Con10])

Figure 8: Result computed with our method.
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5 MATLAB Implementation

� �
% This function computes the ellipse that subtends the same solid angle
% as the input ellipsoid with respect to the origin 0 = [0 0 0]
% INPUT
% Pa: center of the ellipsoid
% A1, A2, A3: normalized directions of the principal axes of the ellipsoid
% a1, a2, a3: lengths of the principal axes of the ellipsoid
% OUTPUT
% Pd: center of the ellipse
% D1, D2: normalized directions of the principal axes of the ellipsoid
% d1, d2: lengths of the principal axes of the ellipsoid
function [Pd, D1, D2, d1, d2] = ellipsoid2ellipse(Pa, A1, A2, A3, a1, a2, a3)

% 3.1 ellipsoid to sphere
M = [A1’ ; A2’ ; A3’]’ * [a1 0 0 ; 0 a2 0 ; 0 0 a3] * [A1’ ; A2’ ; A3’];
Minv = inv(M);
Pb = Minv * Pa;

% 3.2 sphere to disk
theta = asin(1/norm(Pb));
Pc = cos(theta)^2 * Pb;
radius = tan(theta) * norm(Pc);
[C1, C2] = buildOrthonormalBasis(Pc/norm(Pc));

% 3.3 disk to ellipse
Pd = M * Pc;
D1_ = M * radius * C1;
D2_ = M * radius * C2;

% 3.4 ellipse principal axes
Q = [dot(D1_, D1_) dot(D1_, D2_) ; dot(D1_, D2_) dot(D2_, D2_)];
[eigenvectors, eigenvalues] = eig(Q);
D1 = eigenvectors(1,1)*D1_ + eigenvectors(2,1)*D2_;
D1 /= norm(D1);
D2 = eigenvectors(1,2)*D1_ + eigenvectors(2,2)*D2_;
D2 /= norm(D2);
d1 = sqrt(eigenvalues(1,1));
d2 = sqrt(eigenvalues(2,2));

endfunction

%% code from [Frisvad2012]
function [X, Y] = buildOrthonormalBasis(Z)

if Z(3) < -0.999999
X = [0 -1 0]’;
Y = [-1 0 0]’;
return;

endif

a = 1 / (1 + Z(3));
b = -Z(1)*Z(2)*a;
X = [1 - Z(1)*Z(1)*a, b, -Z(1)]’;
Y = [b, 1 - Z(2)*Z(2)*a, -Z(2)]’;

endfunction� �
Listing 1: MATLAB implementation of our method.
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