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A New Low Complexity DOA Estimation Algorithm
for Massive MIMO Systems

Xiao YANG

College of Information Engineering
Guangdong University of Technology
Guangzhou, China

Abstract—Massive MIMO systems have attracted lots of
attention, and its performance is closely related to the estimation
of direction of arrivals (DOA) of incoming sources. The
conventional DOA estimation algorithms like MUSIC and
ESPRIT are not suitable for massive MIMO systems, due to the
complexity brought by the large number of antennas. The DOA
estimation algorithm named Propagator Method (PM) has been
proved efficient in terms of computational complexity, because it
does not require the eigenvalue decomposition (EVD) of the
covariance matrix of the received signals. In this paper, a new
version of PM is proposed. By partitioning the covariance matrix
of the received signals, the data contaminated by the main
contribution of noise can be avoided, and the reconstruction of
the system model in not needed, so the computational complexity
can be decreased significantly. Some numerical simulations are
given to prove its efficiency.
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I.  INTRODUCTION

In the last years, significant attention has been attracted by
massive multiple-input multiple-output (MIMO) systems.
Compared with traditional MIMO systems, massive MIMO
systems, equipping cellular base stations (BS) with a very
large number of antennas, has a lot of advantages, such as the
throughput, efficiency and reliability, and it has been
considered as a promising key technology for the next
generation mobile communication system. The performance
of massive MIMO systems highly relies on the estimation of
DOA of incoming signals, and DOA estimation is a crucial
research domain of array signal processing. Conventional
algorithms for DOA estimation like MUSIC [1] and ESPRIT
[2] are not suitable for massive MIMO systems because they
both need EVD of the covariance matrix of the received
signals and/or (two-dimensional) 2-D peak searching, which
have high computational complexity. The method for DOA
finding named Propagator Method (PM) is proposed by
Macros [3], [4], in which no EVD of the covariance matrix of
the received signals is needed. Li extended PM into 2-D DOA
estimation using a rectangular planar array [5], but the step of
2-D peak searching is still necessary. Wu proposed a new
variant of PM for 2-D problem by using two parallel uniform
linear arrays [6]. In this method, a set of linear operation is
employed instead of the step of 2-D peak searching, so the
computational complexity is greatly reduced. However, since
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only the data from several rows of the propagator is used, the
accuracy is influenced by the aperture loss. Li extended PM
without peak searching into massive MIMO systems [7], in
which all of the data from the propagator is employed and the
aperture loss is avoided. In this paper, using the system model
introduced in [7], a new version of PM for massive MIMO
systems based on the partition of the covariance matrix of the
received signals is proposed, aiming to further reduce the
computational complexity. The main differences between the
method in [7] and the proposed method are as follows: (1) by
partitioning the covariance matrix of the received signals, the
data contaminated by the main contribution of noise can be
avoided; (2) the reconstruction of the system model is not
needed. So the proposed method can reach a very low
computational complexity and high responding speed, which
are highly demanded in massive MIMO systems, with the
least performance decrease.

The paper is organized as follows. The system model is
introduced in Section 2. The proposed algorithm is presented
in Section 3. In Section 4, some simulation results are shown
and the conclusion is drawn in Section 5.

II. SYSTEM MODEL

Consider a massive MIMO system with a rectangular
planar array placed in X-Z plane. There are N antenna
elements in X-axis and M antenna elements in Z-axis, with
interelement spacing d and d=A/2 (1 is the wavelength).
The element located at the origin of the coordinate system, is
referred to as the reference point, as shown in Fig.1. Suppose
that there are K (K«KM, K&KN) uncorrelated, far-field and
narrowband source signals, s;(7), 1<i<K, impinging on the
array. The direction of arrival of the /" signal is (0, ¢,), which
stands for the elevation angle and azimuth angle respectively.

The observed signals at the antenna array can be written as
X=AS+N (1)

where S denotes the transmitted signal matrix with dimension
of KxL, L is the number of snapshots and N is the Gaussian
white noise matrix with dimension of MNXL.

A is the steering matrix of the antenna array, which can be
defined as



Fig.1. System Model

A= [a(el’(Pl) a(02’¢2) a(aK’¢K)] (2)

where a(6;,¢,) denotes the steering vector of the "

i=1,2,...K

Suppose that the system model is constructed following
the X-axis. a(6;p,) can be defined as

signal,

a(ai’¢i):

[1 ami . ejn(N—l)v,- i

ejnui+j7rv,- ejﬂu,--%—jn(N—l)v,- ein(M—l)ui
ej(M—l)nu,-+j7rv,-’ ...,eJ(M—l)nui-*—j(N—l)nv,-]T (3)

with the following notations
u=cost; 4
v=sint;cosp, (5)

III. PROPOSED METHOD

With limited samples and noise, the covariance matrix of
the received signals can be estimated by

R=-xx" (6)
Introduce a partition of the covariance matrix R like

ﬁ_ Rll RIZ] (7)

- R21 RZZ

The dimensions of the four matrices Ry;, Ry;, Ry and
R, are (NxN) , (NX(M-1)N) , ((M-1)NxN) and
((M-1)Nx(M-1)N) respectively. It is obvious that matrix Ry,
avoids the diagonal elements of the covariance matrix, which
contains the main contribution of noise that cannot be filtered
by increasing the number of samples. So we focus on R,; in
the following.

Matrix R,; can be written as
1
Ry =7 (ApS)(BpS)"! ®)

where Ap and Bp denotes the last (M-1)xN rows and the

first N rows of the steering matrix A.

The new steering matrix Ap can be divided into two
sub-matrices Ap; and Ap, with dimension KXK and

[(M-1)N-K]xK respectively:

— API]
Ar= [y 9)

All the transmitted signals are supposed to be uncorrelated,
so the rank of Ap is K and full, and the first K rows of Ap

are linearly independent. Therefore there is a linear
transformation from Ap; to Ap, like

Ap, :PEI Ap; (10)

Divide Bp in the same way

— BPI]
By | (11)

with the dimensions of Bp; and Bp, are KxK and
(N-K)xK respectively.

Similar, the relationship between them is
By, =Pp; By, (12)

where Pp; and Pp, are two propagator operators.

Divide R,; in two ways

Ry =[Ra1a  Rypp] (13)
and
o) 9
where
Ry, € CHDNK R, & CFDNAN-K)
and

Ryj € CKV, Ryyq € CLHFDNKIN

Then the two propagators Pp; and Pp, can be obtained
by

H
Pp=(Ry14R31.) (15)
PPZZRzlaRZIh (16)

where (+)" denotes the pseudoinverse, and then

H
-1
Pp;=(Ry1a((RY1Ry1e) R3j0)) (17)

-1
PPZZ(R;IlaRZIa) RgllaRZIb (18)



Based on the two propagators, define two new matrices
Py and P, with dimensions (M-l)NXK and NxXK
respectively, like

I
Peci= | oit (19)
PPl
Ix
Prcx= ph | (20)
It is obvious that
IxAp; A
Ppci1Ap= PII;IIAPI] = [Ag] =Ap (21)
IxBp, B
PrcsBr=[pft o |=[prt|<Be (22)

Divide the matrix Pp¢; into two sub-matrices Ppcq; and
Ppciz, composed by the first Nx(M-2) rows and last
Nx(M-2) rows of Ppc; respectively. Similarly, Ap, and
Ap, are used to represent the Nx(M-2) rows and last
Nx(M-2) rows of matrix Ap respectively. By similar method,
we use Ppcy; and Ppe,, to represent the first N-1 rows and
last N-1 rows of Ppcy, and Bp, and Bpy, to represent the

first N-1 rows and last N-1 rows of Bp. It is easy to find
that

PPCII] [APa] [ Ap, ]

A = = 23
Poci2l P [Appl A, @y @)
PPCZI] BPa] [ Bp, ]

24
Ppcoal P [Bpy) B0, @9
where
@,=diag[e™1, &™,. .. &™K] (25)
@,=diag[e™", &™2,...,6™K] (26)

and all the information of the direction of arrivals is contained
in the above two diagonal matrices.

It can be deduced that
PpcuPpciz=Ap: ®1Ai>11 27

-1
Pi;cuPPczz:BPl ?,Bp, (28)

It is obvious that the diagonal elements of @; and @, can
be obtained by performing the eigenvalue decomposition of
the two matrices PJ'IZCUPPCIZ and PpcagPpcay Tespectively,
and then we can obtain

u=arg(@,(i, ) /= (29)

vi=arg(®,(i, ) /x (30)

The two sets of estimated results are obtained from two
independent steps of eigenvalue decomposition, so a step of
pair matching is necessary. Different methods of pair
matching are proposed in [8] and [9]. After that, the DOA can
be estimated by

O=arccos (u;) (31

@ =arccos ( )
1- (u

IV. SIMULATION AND ANALYSIS

The system model introduced in Section II is adopted in
the simulation, with M antenna elements in each column and
N antenna elements in each row of the antenna array. It is
supposed that there are K far-field uncorrelated signals
impinging on the array and the number of snapshots is L. The
major steps and complexity of the proposed method are
shown as follows:

(32)

1) Construct the sub-covariance matrix of the received
SIGNAIS Roq wvvvveeeeieeiiee e, o(L(M-1)N%);
2) Partition the matrix R,; to estimate the first
Propagator Pp; and define the new  matrix
Ppcioeeeeeeeeeeeeeeeeoeeeenrenn (NP 2KN*+KN[(M-1)N-K]);

3) Partition the matrix R,; to estimate the other

Propagator Pp, and define the other new matrix
Ppca. oo, o(K>+2(M-1)NK*+NK(M-1)(N-K));

4) Obtain the two diagonal matrices @; and @, via
27), (28) and get the estimation
TESUIS. v 0(BK*N(M-2)+3K*(N-1)+4K?);

It is can be seen that due to the partition of the covariance
matrix, the reconstruction of the system model is not needed
and the dimensions of the matrices used in computation are
decreased, so the proposed method has a much lower
computational complexity. Fig.2 shows the complexity
comparison of the method in [7] and the proposed method
with K=3.
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Fig.2. Complexity Comparison with Different Number of Antenna Elements
(L=200)



For the performance measure, Root Mean Square Error
(RMSE) is introduced, which is defined as

RMSE=13K, 252 B, -4, (33)

where K is the number of signals and Q is the number of
Monte Carlo trials. K=3 and Q=500 are used in the
simulations with the number of antenna elements M=N=30.

Ekq is the estimation of elevation angle 6, or azimuth angle
¢, of the ¢"™ Monte Carlo trial.

The comparison of performance in different SNRs
between the two algorithms is shown in Fig.3 and Fig.4. It can
be seen that due to the partition of the covariance matrix of
the received signals, some information needed in elevation
angles estimation is lost, but the data contaminated by the
main contribution of noise is avoided simultaneously, so the
proposed method can reach a RMSE which is close to the
other method’s. However, more information needed in
azimuth angles estimation is lost due to the partition of the
covariance matrix, so the performance of the azimuth angles
estimation will decrease.
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Fig.3. Elevation Angles Estimation Performance
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Fig.4. Azimuth Angles Estimation Performance

V. CONCLUSION

In this paper, a new low complexity DOA estimation
method for massive MIMO systems is proposed based on the
Propagator Method. Taking the advantage of the partition of
the covariance matrix of the received signals, the proposed
approach does not require the reconstruction of the system
model, and the data contaminated by the main contribution of
noise is avoided to be used. The simulation results show that
the computational complexity is significantly decreased, and a
good elevation angles estimation can be reached, at the price
of slight degradation in azimuth angles estimation. So this
method can be widely used in the system which demands low
computational complexity and fast responding, or is not
sensitive to the estimation of azimuth angles.
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