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ABSTRACT

This paper presents a new methodological framework to assess the conformity of multivariate high-resolution SAR data

in terms of asymptotic statistics. Three important statistical properties are studied by applying statistical hypotheses testing,

successively: circularity, sphericity and spherical symmetry. Starting from the classical tests designed for the multivariate

Gaussian case, these tests are extended to the Spherically Invariant Random Vector (SIRV) stochastic model. A zero-mean

test is proposed for both Gaussian and SIRV stochastic processes. The link between the spherical symmetry property and the

conformity to the SIRV model is established asymptotically by the specific structure of the quadricovariance matrix. Two high

and very high resolution datasets are used to illustrate departures from the standard model assumptions: TerraSAR-X multi-

pass InSAR and ONERA RAMSES POLSAR images. As well, the derived tests are applied on the appropriate synthetic dataset.

The detection results are qualitatively and quantitatively analysed and some important inferences are drawn regarding these

two datasets.

I. INTRODUCTION

Multidimensional Synthetic Aperture Radar (SAR) data, like POLSAR and multi-pass InSAR images, describe the interac-

tion between the electromagnetic waves and the scatterers inside each resolution cell. Multivariate SAR images, acquired by

either spaceborne or airborne sensors, are currently analyzed to extract useful information concerning the physical properties

of the illuminated target. For distributed targets, this analysis relies on the stochastic properties of the SAR data. In general,

multivariate SAR data can be locally modelled by a multivariate zero-mean circular Gaussian stochastic process, which is

completely determined by its covariance matrix.

With the improved resolution of modern SAR platforms, the number of scatterers inside each resolution cell decreases

considerably. The higher scene heterogeneity may eventually lead to non-Gaussian clutter modelling. More complex stochastic

models, such as the SIRP (Spherically Invariant Random Process), are then required. Several special cases of univariate

stochastic processes (K-compound, Weibull, etc.) have been extensively studied over the years (for example in coastal radar

applications) before being reunited under the common umbrella of SIRP [1].

Polarimetry and multi-pass interferometry extend the dimensionality of the remotely sensed SAR data. Multivariate versions

of SIRP distributions, namely SIRV (Spherically Invariant Random Vectors) [2], are employed for modelling high-resolution
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POLSAR [3–8] and InSAR [9–13] data. This multiplicative model is expressed as a product between the square root of a scalar

positive quantity (texture) and the description of an equivalent homogeneous surface (speckle) [14]. For an m-dimensional

SAR system, the single channel model [15] has been extended as follows: in each azimuth / range location, k is the m × 1

complex target vector corresponding to the same area on the ground.

For distributed targets, the corresponding k vector is considered non-deterministic and may be written, under the SIRV

assumption as k =
√
τ · z, where τ is a positive random variable (texture) while z is a complex-valued, centred and Gaussian

distributed, random vector with covariance matrix [M ] = E{zzH}. The two random variables are statistically independent.

Characterizing k reduces to the writing of the probability distribution pτ (τ) of τ and the normalized covariance matrix [M ] of

z, with trace{[M ]} = m. It is important to notice that in the SIRV definition, the texture probability density function is not

explicitly specified. As a consequence, SIRVs describe a whole class of stochastic processes [16]. If pτ (τ) is a Dirac pulse,

then the Gaussian (multivariate) model is retrieved for k. In many field applications, pτ (τ) is assumed to have a predefined

analytical form. In this case, a specific SIRV is employed such as the multivariate K distribution (Gamma texture) [17], the G0

distribution (inverse Gamma texture) [18] or the KummerU distribution (Fisher texture) [4]. Nevertheless, at fixed number of

samples, as the number of parameters increases, the variance of their estimates will increase.

The four components of the POLSAR k target vector (in lexicographic order) describing the polarimetric characteristics of a

given resolution cell are the elements of the Sinclair matrix: Shh, Shv , Svh and Svv. For mono-static configurations, where the

reciprocity theorem applies, Shv = Svh, only three components remain: Shh, Shv and Svv . In this case, the dimension of the

target vector k becomes m = 3.

In the case of conventional two-pass InSAR system [19], only two channels are involved and m = 2. By denoting with c =

ρ exp(jφ) the complex correlation coefficient, the target relative displacement d12 between the two acquisitions can be retrieved

from the exact knowledge of SAR antenna phase center positions, terrain height, acquisition geometry, and an estimate of the

differential interferometric phase φ12. ρ12 is called interferometric coherence and it describes both the local phase stability

and the amplitude decorrelation of the InSAR pair. The phase information φ12 allows phase differences (interferograms)

to be computed in order to measure topography or target displacements between repeated pass acquisitions. In the general

case, the m-dimensional interferometric target vector k will contain information about the relative displacements between

each combination of 2 passes. The main parameter to be estimated is the speckle covariance matrix, from which normalized

correlation coefficients can be easily derived.

The question if the SIRV models, despite their flexibility, are appropriate for describing any multidimensional SAR dataset,

still remains. More exactly, ”what is to be gained, and through which strategies, in pursuit of higher-order statistics, and non-

Gaussian models”1? One recommendation has been released by the POLinSAR scientific community, namely to ”Increase

reliance on quantitative objective norms for comparing the performance of alternative analysis”2. This fact motivated us to

propose a general framework which allows quantitative evaluation of fitting SIRV stochastic models with respect to a given

multidimensional SAR dataset. Moreover, the illustrated multivariate high-resolution SAR datasets show that in this case, it

can be worth challenging two specific and very important stochastic properties: the circularity and the sphericity.

1POLinSAR 2013 Workshop, ESA ESRIN, Frascati, Italy: seed question no. 3 for the ”Methods & Theoretical Modelling” session.
2POLinSAR 2013 Workshop, ESA ESRIN, Frascati, Italy: see ”Methods & Theoretical Modelling” session summary at

(https : //earth.esa.int/web/guest/polinsar-2013).
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This paper is organized as follows. In Section II we introduce classical circularity and sphericity tests along with their

extensions to the SIRV stochastic model. Section III contains in detail elaborated method of quantitative assessment of the

SIRV conformity, relying on testing spherical symmetry. In Section IV, the results obtained using the proposed robust tests

are presented and analyzed with synthetic, multi-pass InSAR and POLSAR datasets. Section V presents some general remarks

regarding the proposed methodological framework. In Section VI, some conclusions and perspectives are presented. Eventually,

Appendix I introduces a zero-mean test, which is proposed for both Gaussian and SIRV stochastic processes.

In this paper, we assume that the covariance matrix [M ] is of full rank m. In the specific case of a non-invertible matrix, the

same considerations can be applied using only the non-zero signal subspace.

II. CIRCULARITY AND SPHERICITY

In the context of multivariate SAR data, we introduce two stochastic properties, often assumed in case of a Gaussian model:

circularity and sphericity. After adequately defining the properties, we present the classical tests (Gaussian model) and propose

the ones extended to the SIRV stochastic model.

A. Circularity

A complex-valued random variable (r0 = x0 + iy0) is circular [20] if its distribution remains invariant to multiplication with

complex numbers on the unity circle i.e. if the real random vector r0 = (x0, y0)T is spherically symmetric with respect to the

origin. When dealing with the circularity of complex random vectors, we ought to rely on the second order properties [21] by

introducing the complex extended target vector ג = [kT ,kH ]T . Starting from ,ג the second-order statistical properties of the

complex target vector k can be analysed using the extended covariance matrix :

[R] = E{גגH} =

[
[C] [P ]
[P ]
∗

[C]∗

]
∈ C2m, (1)

where [C] = E{kkH} is the complex positive semi-definite Hermitian symmetric covariance matrix and [P ] = E{kkT } is the

complex symmetric pseudo-covariance matrix3 of the target vector k [22].

Schreier et al. proposed the circularity Generalized Likelihood Ratio Test (GLRT) by employing the previously defined

extended covariance matrix [23]. The considered hypotheses are:{
H0 : [P ] = 0, k is circular,
H1 : [P ] 6= 0, k is not circular . (2)

This circularity test is checking for the block-diagonality of the extended covariance matrix with respect to the covariance and

pseudo-covariance matrix.

1) Gaussian random processes: The probability density function (PDF) of a zero-mean complex circular Gaussian target

vector k can be generalized with respect to its associated extended target vector ג as [21, 24]:

pG(k) = π−m(det[R])−
1
2 e−

Hג [R]−1ג
2 . (3)

3Also known as ”relation matrix” or ”complementary covariance matrix”.
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The maximum-likelihood (ML) estimator of the extended covariance matrix is the Sample Extended Covariance Matrix

(SECM) obtained by replacing the statistical mean from Eq. 1 with the spatial average:

[̂R]SECM =
1

N

N∑
i=1

Hiגiג =

[
[̂C]SCM [̂P ]SPM
[̂P ]
∗
SPM [̂C]

∗
SCM

]
, (4)

where N is the number of samples, [̂C]SCM and [̂P ]SPM are the Sample Covariance Matrix (SCM) and the Sample Pseudo-

covariance Matrix (SPM) estimators, respectively. Under the constraint [P ] = [0]m imposed by H0, the ML estimator is

[23]:

[̂R]SECM0
=

[
[̂C]SCM [0]m

[0]
∗
m [̂C]

∗
SCM

]
. (5)

By introducing Eqs. 4 and 5 to the Likelihood Ratio Test (LRT) associated to Eq. 2, Schreier et al. derived in [23] the

Generalized Likelihood Ratio Test (GLRT) for N i.i.d. observed samples:

Λ(k1, ...kN ) =
det[̂R]SECM

(det[̂C]SCM )2

H0

≷
H1

λ. (6)

The asymptotic distribution of the decision statistic under the null hypothesis isH0 : −N ln Λ→ χ2
m(m+1) (Theorem 2 in [25]).

Schreier et al. showed that the GLRT from Eq. 6 is invariant with respect to invertible linear transforms.

2) Spherically Invariant Random Vectors: The GLRT makes use of the Gaussian assumption when inserting [̂C]SCM and

[̂P ]SPM estimators in the LRT. Therefore, it ought to be modified before being applied on SIRV data.

By directly applying Tyler’s Corollary 1 from [26], Ollila and Koivunen [25] showed that the GLRT ([̂C]ML, [̂P ]ML) for

SIRV can be derived by dividing the logarithm of the GLRT statistics from Eq. 6 (ln Λ) by the correction factor γ̂, estimated as:

γ̂ =

m∑
i=1

E{|ki|4}
E{|ki|2}2

ri(ki)2 + 2
. (7)

with respect to the circularity coefficients, representing the ”amount of circularity”:

ri(ki) =
|E{k2

i }|
E{|ki|2}

(8)

Following the same procedure as Ollila and Koivunen, N is replaced by (N −m) from the Box approximation of the GLRT

[27]. Finally, according to Tyler’s Corollary 1, the decision statistic under the null hypothesis is H0 : −(N − m) ln Λ
γ̂ →

χ2
m(m+1).

B. Sphericity

The sphericity of a m-dimensional complex circular random vector z0 is defined with respect to the augmented real random

vector. Let ζ0 = [x0
T ,y0

T ]T be the augmented 2m× 1 real random vector, where x0 and y0 are its real and imaginary parts,

respectively. The augmented real target vector can be obtained from the complex extended random vector using the following

transform [21, 24]:

ζ =
1

2

[
[I]m [I]m
−j[I]m j[I]m

]
.ג (9)
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The sphericity GLRT was introduced by Mauchly for real-valued m-dimensional Gaussian random processes [28]. If the

random process is circular, it can be directly extended to complex-valued random processes also. The hypotheses are:{
H0 : [C] = ς[I]m, k is spherical,
H1 : [C] 6= ς[I]m, k is not spherical , (10)

where ς ∈ R is unknown.

For the sake of simplicity and without loss of generality, the test is build such that [M ] = [I]m. As a consequence, the

derived sphericity test must present invariance to linear transforms, also.

Given a set of N i.i.d. observed samples, the Mauchly’s sphericity LRT is:

Λs(k1, ...kN ) = m
(det[M ])

1
m

tr[M ]

H1

≷
H0

λs. (11)

In [29], Λs is reported to be invariant with respect to scale and invertible linear transforms (see Chapter 10.7 on page 431):

Λs(k1, ...kN ) = Λs([V ]k1, ...[V ]kN ), (12)

with [V ][M ][V ]H = [I]m. One can observe that this linear transform is not the same as the whitening transform changing the

SIRV covariance matrix to [I]m. Consequently, a SIRV exhibiting sphericity is a particular case of a SIRV with equal variances

of the differences between all combinations of target vector components.

In particular, the sphericity property needs to hold when processing conventional multi-pass interferometric SAR data by

interferometric pair. If the sphericity is not respected, fully multivariate processing should be applied (for example when jointly

using the InSAR coherence and phase for 3D phase unwrapping [30] or relevant scatterer detection [31]): the InSAR channels

are not independent with equal variance (homoscedastic).

1) Gaussian random processes: When replacing the covariance matrix by the SCM (ML estimate under Gaussian assump-

tion), the GLRT is obtained as:

Λs(k1, ...kN ) = m
(det[̂M ]SCM )

1
m

tr[̂M ]SCM

H1

≷
H0

λs. (13)

Asymptotically, H0 : −N ln Λs→ χ2
(m+2)(m−1) [28, 32].

2) Spherically Invariant Random Vectors: Following Muirhead and Waternaux original studies on the robustness of the

GLRT from Eq. 11 when sampling from a SIRV [32], Tyler proposed two different robust approximated GLRTs for sphericity

[26, 33].

The first method (Corollary 1 from [26]) is derived using the same reasoning as in the case of circularity. The derived

approximated GLRT is reported to be inefficient for moderate departures from Gaussianity.

In this paper, we adopt the second method for constructing the approximated GLRT for sphericity (Corollary 4 from [26]):

aΛs(k1, ...kN ) = (det[̂M ]FP )
1
m <
H0

λs, (14)

where [̂M ]FP is the iterative Fixed-Point covariance matrix estimator (already employed with multivariate SAR data [3]):

[M̂ ]FP =
m

N

N∑
i=1

kik
H
i

kHi [M̂ ]−1
FPki

. (15)
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When originally introducing this estimator, Tyler showed in [34] that [̂M ]FP is an affine-invariant covariance matrix M-

estimator [35]. It has been demonstrated by Tyler that the Fixed-Point estimator is an AML estimator for SIRVs [36]. Hence, all

conditions required to apply Corollary 4 from [26] are now fulfilled and H0 : −N m
m+1 ln aΛs → χ2

(m+2)(m−1) in distribution.

Due to the Theorem V.4 in [37], N is replaced by N m
m+1 .

Finally, the formerly introduced circularity test complements the sphericity test presented here: the test for circularity checks

that there is no correlation between the real and the imaginary part of the complex random vector, while the sphericity test

checks for equal independence between the target vector components (independence and homoscedasticity). Hence, circularity

is a requirement before testing for sphericity, as k and k∗ cannot be independent.

III. SPHERICAL SYMMETRY

According to Vershik’s definition [38], z0 is spherically invariant if and only if the characteristic function of the augmented

random vector ζ0 can be written as:

Φζ0(ζ0) = φ

(
ζ0
T [C]ζ0

2

)
, φ(v) =

∫ ∞
0

e−τvpτ (τ)dτ, (16)

where [C] is a positive definite characteristic matrix and pτ (τ) is a probability measure on [0,∞). More intuitively, by applying

ζ0
′ = [C]−1/2ζ0 linear transform on the augmented random vector, the density generator function φ(v) in Eq. 16 takes the

form:

φ(ζ0
′T ζ0

′/2) = f(||ζ0′||2), (17)

where ||.|| is the Euclidian norm. This implies that the SIRV ζ0 is reduced to a new SIRV ζ0
′ with its new covariance matrix

equal to [I]m (identity matrix of order m). ζ0′ clearly exhibits spherical invariance.

Let now φ be defined in Eq. 16 so that the matrix [C] is the speckle normalized covariance matrix [6] and the conditions from

the Yao’s representation theorem are respected [2]. In consequence, for a given texture pdf pτ (τ), the SIRV process describing

the complex target vector k can be defined as :

pk(k) =
1

πmdet[M ]
hm
(
k†[M ]−1k

)
, (18)

with hm(q) =
∫∞

0
τ−m exp

(
− q
τ

)
pτ (τ)dτ . det[M ] denotes the determinant of the matrix [M ]. Yao (Lemma 4.1 in [2]) also

demonstrated SIRV closure under invertible linear transform (e.g. as suggested for Eq. 17). All target vectors k satisfying these

conditions accept a product model stochastic representation [39].

Note also that a random target vector kE has an elliptically symmetric distribution [40] if it is affinely equivalent in distribu-

tion to a spherically symmetric target vector kS :

kE = [A]kS + b. (19)

Therefore, spherical symmetry represents a particular case of elliptical symmetry when [A] = [I]m,b = [0]m×1. In our case,

by identifying in the SIRV whitening transform from Eq. 17, it yields [A] = [C]−1/2 and b = [0]m×1 (due to the zero mean).

Hence, on one side, a spherically symmetric white SIRV vector, being characterized with unity covariance matrix, is necessarily

spherical. On the other side, the previously introduced sphericity test is no longer valid in the absence of the elliptical symmetry,

making the last property a mandatory constraint in testing the sphericity.
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The spherical symmetry property in multivariate statistics is defined with respect to a SIRV with covariance matrix [I]m

(white SIRV). The general SIRV case, with unknown covariance matrix, was studied under the ”elliptical symmetry” property.

Since the family of spherical symmetric distributions - SSD can be considered as the standardized form of the family of ellip-

tically contoured distributions - ECD (by employing the whitening transform from Eq. 17), we adopt in this paper the original

Yao’s notation by considering zero mean elliptically contoured distributions as SIRVs. Hence, we use the term ”spherical

symmetry” for both SSD and ECD goodness-of-fit testing. See [41] for an exhaustive presentation on SSD and ECD.

Spherical symmetry testing was firstly introduced by Kariya and Eaton [42], using an alternative form of the Lehmann and

Stein lemma [43] with known covariance matrix. In the common situation where the covariance matrix is estimated from data,

several strategies for robust spherical symmetry testing have been proposed by Beran [44], King [45], Baringhaus [46], Fang

et al. [47], Manzotti et al. [48] and Huffer et al. [49] among the most recent publications. Li et al. proposed in [50] a graphical

method for spherical symmetry testing: the Q-Q probability plots. This method has been applied in [51] to hyperspectral image

analysis.

According to [49], one of the most powerful spherical symmetry tests was proposed in [52] for real random vectors. In this

section, we have adapted the Schott test for multidimensional complex SAR data analysis.

A. The Schott test for circular complex random vectors

Assuming the existence of the forth order moment (or quadricovariance) matrix:

[M ]4 = kik
H
i ⊗ kik

H
i , (20)

Schott proposed the Wald test [53] for verifying that the structure of [M ]4 corresponds to a SIRV (as originally given by Tyler

in [26]). This structure holds for circular complex random vectors, also [40].

With complex random vectors, the first modification is the sample quadricovariance estimator. According to [54], the sample

complex quadricovariance estimator can be expressed in terms of the Kronecker product ⊗ as:

[̂M ]4 =
1

N

N∑
i=1

kik
H
i ⊗ kik

H
i , (21)

where the transposed operator T is replaced by the conjugate and transpose operator H . Its corresponding standardized form is:

[̂M ]4∗ =

(
[̂M ]

− 1
2
H

⊗ [̂M ]
− 1

2
H)

[̂M ]4

(
[̂M ]

− 1
2 ⊗ [̂M ]

− 1
2

)
. (22)

According to the Schott’s theorem, the Wald test statistic for spherical symmetry can be expressed as:

TSchott = 2N

{
β1tr

(
[̂M ]

2

4∗

)
+ β2vec

(
[̂I]m

)H
[̂M ]

2

4∗vec
(

[̂I]m

)
− [3β1 + (m+ 2)β2]m(m+ 2)(1 + κ̂)2

}
, (23)

where

β1 = (1 + θ̂)−1/24, (24)

β2 = −3a[24(1 + θ̂)2 + 12(m+ 4)a(1 + θ̂)]−1, (25)
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a = (1 + θ̂) + (1 + κ̂)3 − 2(1 + κ̂)(1 + η̂), (26)

with the Mardia’s kurtosis κ̂ and the generalized higher order scalar moments θ̂, η̂ given by:

(1 + κ̂) =
1

m(m+ 2)N

N∑
i=1

[
kHi [̂M ]

−1
ki

]2

, (27)

(1 + θ̂) =
1

m(m+ 2)(m+ 4)N

N∑
i=1

[
kHi [̂M ]

−1
ki

]3

, (28)

(1 + η̂) =
1

m(m+ 2)(m+ 4)(m+ 6)N

N∑
i=1

[
kHi [̂M ]

−1
ki

]4

. (29)

Asymptotically, TSchott → χ2
vmcomplex

with vmcomplex
= m2(m+1)(m+5)

12 − 1. This represents the second modification with

respect to the Wald test from [52]. According to Schott, the degrees of freedom is set according to the number of unknowns of

the quadricovariance matrix:

vmcomplex
= 2(vmreal

+ 1)−
[
m(m− 1)

2
+m

]
− 1, (30)

where vmreal
= m2 + m(m−1)(m2+7m−6)

24 − 1 as in [52]. The second term in Eq. 30 comes from the number of real elements

of [̂M ]4: m(m−1)
2 elements of the form x2

ix
2
j and m elements of the form x4

i . It has been proven in [55] that the Wald test and

the LRT are asymptotically equivalent.

IV. RESULTS AND DISCUSSIONS

To illustrate the proposed tests, results obtained with the synthetic POLSAR dataset, high-resolution TerraSAR-X multi-pass

InSAR and very high-resolution ONERA RAMSES [56] POLSAR data are reported. These data sets are shown in Fig. 1.

[Figure 1 about here.]

This section is dedicated to the analysis of the three data sets in terms of circularity, sphericity and spherical symmetry. Since

the mean equal to zero is a requirement for all the derived tests, we equally show results obtained by applying the zero-mean

test, introduced in Appendix I, on the augmented real random vector ζ0. This test is valid for both Gaussian and SIRV stochastic

models.

Finally, the discussions associated to the presented results concern these high-resolution multivariate SAR data sets, only.

The estimation neighbourhood is the 13× 13 boxcar and the false alarm probability threshold is pfa = 0.01.

A. Synthetic data

The synthetic dataset is composed out of nine different regions (Fig. 2a). Six of them are characterized with the SIRV

PolSAR clutter, while for the remaining three the clutter is Gaussian. In four regions the additive thermal noise (circular or

non-circular) is present. As well, we introduce a coherent scattering through the simulated elementary reflectors (two trihedrals,

dihedral and dipole). In the derivation we relied on the ML deterministic texture estimator:

τ̂FP =
kH [M̂ ]−1

FPk

m
. (31)
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[Figure 2 about here.]

Aside from the assumed detection of the coherent scattering sub-regions (elementary reflectors), circularity test rejects suc-

cessfully the regions corrupted with additive non-circular thermal noise. The heterogeneity (borders between different regions)

does not appear to influence this test significantly.

Sphericity test detects properly the Gaussian clutter with additive circular thermal noise as well as the Gaussian clutter

without noise. As it is the case with the circularity test, the influence of non-stationarity is negligible.

However, the spherical symmetry test does not seem to be immune to the heterogeneity, but still quite successfully rejects

the coherent scattering (deterministic target).

B. High-resolution multi-pass InSAR data

The 3-pass interferometric stripmap HH images were acquired in 2009, at 11-day interval, over the Argentire village, France

with a mean incidence angle of 50, an azimuth-resolution of 3.3 m and a slant-range resolution of 1.8 m. This data set has been

used for SAR tomography over this area as it exhibits a high coherence level over the main buildings from Fig. 1-(a) [57] . The

background image from Fig. 3-(a), (b), (c), (d) is the fixed point Interferometric Whitening Filter (IWF) span (Eq. 31).

[Figure 3 about here.]

[Table 1 about here.]

The pixels illustrated in magenta on Fig. 3-(a) indicate where the zero-mean test from Appendix I is rejected. It can be

observed from Table I that this dataset is zero-mean: the percentage of rejected pixels is much less than the significance level a

priori set (1% in all cases).

Fig. 3-(b) shows in red the pixels where the adjusted circularity test is rejected. These pixels should be processed as 2m real

random vectors. The percentage of rejected non circular pixels (cf. Table I) is, although larger than the significance level, still

small enough (3.14%) for us to conclude that this dataset is circular.

Fig. 3-(c) and Fig. 3-(d) illustrate in blue the pixels where the sphericity test from Eq. 14 is accepted, and in green the pixels

where the spherical symmetry test from Eq. 23 is rejected. The quantitative results summed up in Table I indicate that both

sphericity and spherical symmetry properties are significant for this dataset. Qualitatively, it can be observed that:

• localized mainly in regions with high density of strong scatterers, the nonspherical pixels should be treated as a fully

multivariate process inside the local neighborhood when estimating the InSAR coherence and phase parameters;

• mostly located in the same areas of the image, the nonspherically symmetric pixels indicate where the SIRV (and conse-

quently the compound Gaussian) model fails to properly describe the multivariate clutter.

This specific behavior may be linked with the presence of strong deterministic scattering in urban areas: the analyzed target is

not distributed but deterministic. Nevertheless, the proposed tests build a methodological framework to study this effect with

respect to the SIRV model.
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Spherical symmetry is a prerequisite for sphericity. For quantitatively validating the obtained results, the percentage pixels

detected as spherical and rejected for spherical symmetry was computed in Table I: the value is quite small considering the

significance level. This condition is met for non circular and non-zero mean pixels, also.

Additionally, about 18% of non circular pixels are rejected by the Schott test for spherical symmetric circular complex

random vectors. This illustrates that circularity should be tested before testing for spherical symmetry.

C. Very high resolution POLSAR data

Illustrated in Fig. 1-(b), this data set was acquired over Toulouse, France with a mean incidence angle of 500. It represents a

fully polarimetric (monostatic mode) X-band acquisition with a spatial resolution of approximately 0.5 m in range and azimuth.

[Figure 4 about here.]

[Table 2 about here.]

The background image from Fig. 4-(a), (b), (c), (d) is the fixed point Polarimetric Whitening Filter (PWF) span obtained by

applying Eq. 31 with polarimetric target vectors. We have used here the same representation and the same color coding as in the

previous section, while Table II sums up the POLSAR results. It can be observed that this dataset is globally zero-mean and not

spherical: the corresponding percentages are less than the imposed significance level. The SIRV model (spherical symmetry)

holds in about three quarters of all realizations, while the non sphericity confirms that multivariate statistical modeling is

correctly employed since the clutter is not spherical.

In other words, Fig. 4-(d) underlines the same phenomena as in Fig. 3-(d): the spherical symmetry is rejected over the urban

areas exhibiting strong deterministic scattering. Quantitatively, one can notice in Table II that the Schott test for spherical

symmetric circular complex random vectors is rejecting non circular pixels in about 31% of all cases, only. Hence circularity

testing is mandatory prior to testing the SIRV model conformity.

Finally, both Fig. 4-(c) and Table II indicate a relatively high percentage of noncircular pixels in this POLSAR dataset. These

pixels are mainly located in the weak backscattering image areas (shadowing). Since the data are zero-mean, this effect is not

induced by any non-centered thermal noise additive component. However, it may be introduced by the specific calibration of

this airborne very high resolution POLSAR data: the motion compensation module tracks and rectifies the signature of specific

calibrated point targets on the ground.

V. GENERAL REMARKS

When dealing with multivariate high-resolution SAR data, it is crucial to decide if a specific stochastic model is properly

fitting the experimental dataset inside the estimation neighborhood. The accepted stochastic process with the smallest number

of parameters should be selected. In other words, if both the SIRV model and the Gaussian model are fitting the data, the latter

will have better estimation performances with a finite number of samples. Based on the results presented in this paper, we

provide the methodological framework to asses multivariate SAR data conformity:
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1) Zero-mean test from Appendix I. STOP if the test is rejected: the mean parameter should be included in the SIRV

stochastic model.

2) Circularity test: STOP if the test is rejected: the augmented (or extended) random vectors should be used instead of the

complex target vectors.

3) Sphericity test: STOP if the test is accepted: it is better to use one complex circular random variable for each channel,

separately.

4) Spherical symmetry test: STOP if the test is rejected: SIRVs are not stationary inside the neighborhood and improved

statistical (or simply deterministic) modeling should be addressed.

5) Testing for non-Gaussianity (for example the one proposed in [6]). STOP if the test is rejected: the dataset is more likely

to be locally Gaussian and multivariate zero-mean complex circular Gaussian statistics should be employed.

By successively performing the proposed tests for a specific multivariate SAR dataset, it is possible to asymptotically evaluate

the pertinence of various model-based statistical processing schemes (filtering, segmentation or detection).

In terms of theoretical performance analysis, the adjusted generalized LRT is asymptotically uniformly most powerful ac-

cording to the Neyman-Pearson lemma. This ”optimality” holds provided the estimators plugged into the LRT (or the Wald

test) are consistent and unbiased, which is the case for our study.

Special care must be taken when applying the tests with multivariate SAR data. In theory, the proposed conformity testing

holds as long as the observed number of samples (estimation neighborhood) is large enough with respect to the dimension of

the target vector, especially for the spherical symmetry test (based on the specific structure of the quadricovariance).

Finally, it is important to stress that no predefined analytical form was imposed on the texture probability function when

establishing the conformity tests. Therefore, they can be directly applied for a wide class of stochastic processes currently used

for describing multivariate high-resolution SAR data.

VI. CONCLUSIONS

This paper has presented a new methodological framework to asymptotically asses the conformity of multivariate high-

resolution SAR data. The proposed approach consist of applying successively three statistical hypotheses tests for verifying

three important statistical properties: circularity, non sphericity and spherical symmetry. The latter is asymptotically equivalent,

under certain hypotheses, to the conformity of the experimental data with respect to the SIRV product model. In addition,

the zero-mean (from Appendix I) and the non-Gausiannity [6] tests can be used to decide which model is better suited to

asymptotically fit the experimental data.

The proposed framework, aside from the fact that it is gathering the most notable advances in the field of signal processing,

is introducing the extension of both the sphericity and the spherical symmetry tests with zero-mean complex circular SIRV

assumption.

The effectiveness of the proposed detection schemes was illustrated by high-resolution TerraSAR-X multi-pass InSAR and

very high resolution ONERA RAMSES POLSAR data. The conclusions driven from the analysis of the obtained results are

important with respect to the two tested datasets: non-sphericity can be an important issue for spaceborne multi-pass InSAR,
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while circularity is important for airborne POLSAR data.

It has been illustrated that in strong heterogeneous clutter, such as the urban environment, the SIRV model can fail. The

bottom line is that characterization of urban regions is much more complex (and difficult) - since a more complex model, with

more parameters, may be required. In the light of the results shown in this paper, SIRV models may be less appropriate for urban

areas characterization. However, alternative explanations are possible. As an example, the root of this inappropriateness might

as well be the assumed ergodicity / stationarity (in spatial sense) for the backscattered signal and, also, even in the hypothesis

of randomness: targets exhibit a deterministic behavior.

First, the very use of a sliding analysis window for estimating the stochastic parameters of the scattered signal may be

questioned, as it implicitly assume that the considered signal is ergodic / stationary. While this hypothesis holds for distributed

and uniform targets, where the physical parameters (and, thus, the electromagnetic scattering behavior) differs very little from

one resolution cell to another, in urban areas the physical structure (and, as such, its electromagnetic behavior) may change

considerably from one resolution cell to the next. This makes the hypothesis of ergodicity / stationarity less applicable.

Second, one should note that even the randomness of the radar echo is not given, but assumed. This is mainly a way to deal

with the inherent complexity of the signal. Anyway, for identical measuring conditions, the recorded radar data is perfectly

identical. Even if small differences in measuring conditions lead to strong discrepancies in the recorded data, this is not an

evidence for randomness, as such behavior can be fully explain under a deterministic paradigm - the chaotic models. Various

parameters, such as meteorological conditions and, even more important, the changes that the target suffers in time (between

two succeeding acquisitions, for example), account for the observed randomness of the recorded data. However, these changes

of the target are more significant for green targets (such as forests and agricultural fields), where humidity and wind modify

both their physical structure and their electromagnetic behavior. On the other hand, those changes are less significant for urban

targets and, as such, randomness is less likely for the latter.

In perspective, applying chaotic (or pseudo-chaotic) [58–60] models to POLSAR / InSAR data from urban areas can be

a possible solution. These models should be able to take into account the deterministic features of those areas (presence of

dihedral angles, straight edges, cavities, etc.), while still leaving room for some unpredictability (orientation of those elements).

Using chaotic models in POLSAR and multi-pass InSAR data will make the object of our future work.

APPENDIX I: ZERO-MEAN TEST FOR BOTH GAUSSIAN AND SIRV STOCHASTIC MODELS

Under circularity, the zero-mean testing can be performed by using the T 2-statistic. When testing the hypothesis H0 that a

mean vector k̄ is equal to zero, the generalized likelihood ratio criterion for the circular multivariate Gaussian model is:

T 2 = N k̄H [M̂ ]−1
SCM k̄, (32)

with T 2 → χ2
m under H0 (see Theorem 5.2.3 from [29]). In case circularity is not assumed, this test can be directly applied on

the augmented real random vector ζ0. This results holds asymptotically for the SIRV models according to Theorem 5.7.1 from

[29]. More details can be found in [61–63].

The GLRT from Eq. 32 is not scale invariant like the ones from Sections II-A.2 and II-B.2. Thus, Tyler’s Corollaries 1 and

4 from [26] cannot be applied directly.



13

ACKNOWLEDGMENT

The authors would also like to thank Dr. C. Tison (CNES, France) for providing the high-resolution POLSAR images over

Toulouse and the German Aerospace Center (DLR) for providing the TerraSAR-X stripmap SAR images through the MTH0232

and the MTH0828 projects.

REFERENCES

[1] B. Picinbono, “Spherically invariant and compound Gaussian stochastic processes,” IEEE Transactions on Information Theory, vol. 16, no. 1, pp. 77–79,
1970.

[2] K. Yao, “A representation theorem and its applications to spherically-invariant random processes,” IEEE Transactions on Information Theory, vol. 19,
no. 5, pp. 600–608, 1973.

[3] G. Vasile, J.-P. Ovarlez, F. Pascal, and C. Tison, “Coherency matrix estimation of heterogeneous clutter in high resolution polarimetric SAR images,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 4, pp. 1809–1826, 2010.

[4] L. Bombrun, G. Vasile, M. Gay, and F. Totir, “Hierarchical segmentation of polarimetric SAR images using heterogeneous clutter models,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 49, no. 2, pp. 726–737, 2011.

[5] P. Formont, F. Pascal, G. Vasile, J.-P. Ovarlez, and L. Ferro-Famil, “Statistical classification for heterogeneous polarimetric SAR images,” IEEE Journal
of Selected Topics in Signal Processing, vol. 5, no. 3, pp. 398–407, 2011.

[6] G. Vasile, F. Pascal, J. P. Ovarlez, P. Formont, and M. Gay, “Optimal parameter estimation in heterogeneous clutter for high resolution polarimetric SAR
data,” IEEE Geoscience and Remote Sensing Letters, vol. 8, no. 6, pp. 1046–1050, 2011.

[7] N. Besic, G. Vasile, J. P. Dedieu, J. Chanussot, and S. Stankovic, “Stochastic approach in wet snow detection using multitemporal SAR data,” IEEE
Geoscience and Remote Sensing Letters, vol. 12, no. 2, pp. 244–248, 2015.

[8] A. Anghel, G. Vasile, C. Cacoveanu, C. Ioana, and S. Ciochina, “Short-range wideband FMCW radar for millimetric displacement measurements,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 52, no. 9, pp. 5633–5642, 2014.
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TABLE I: Argèntiere, TerraSAR-X 3-pass InSAR data, X-band: detection results (percentage computed with respect to the
total number of pixels).

table

Non-zero-mean Non-circularity Sphericity Non-spherical-symmetric
(3751 pixels) (32882 pixels) (424856 pixels) (328125 pixels)

Non-zero-mean 0.36 % 0.01% 0.02% 0.18%
Non-circularity 0.01% 3.14% 1.27% 0.55%

Sphericity 0.02% 1.23% 40.52 % 3.14%
Non-spherical-symmetric 0.18% 0.6% 3.14% 31.3%
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TABLE II: Toulouse, RAMSES POLSAR data, X-band: detection results (percentage computed with respect to the total
number of pixels).

table

Non-zero-mean Non-circularity Sphericity Non-spherical-symmetric
(45249 pixels) (230104 pixels) (1283 pixels) (373983 pixels)

Non-zero-mean 4.52% 0.91% 0% 2.3%
Non-circularity 0.91% 23.01% 0.02% 7.2%

Sphericity 0% 0.02% 0.13% 0%
Non-spherical-symmetric 2.3% 7.18% 0% 37.4%
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(a) (b) (c)

Fig. 1: Data sets: (a) Synthetic POLSAR data, intensity color composition of the target vector elements k1-k3-k2 in Pauli
basis, (b) TerraSAR-X 3-pass InSAR data, amplitude color composition of the complex random vector elements k1-k2-k3, (c)

Toulouse, RAMSES POLSAR data, intensity color composition of the target vector elements k1-k3-k2 in Pauli basis.
figure
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(a) (b)

(c) (d)

Fig. 2: Synthetic data set, 200x200 pixels: (a) description of the regions, (b) circularity rejection map superposed on the span,
(c) sphericity map superposed on the span, (d) spherical symmetry rejection map superposed on the span.

figure
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(a) (b)

(c) (d)

Fig. 3: Argèntiere, TerraSAR-X 3-pass InSAR data, X-band, 1024× 1024 pixels: (a) zero-mean rejection map superposed on
the IWF span in Db, (b) circularity rejection map superposed on the IWF span in Db, (c) sphericity map superposed on the

IWF span in Db, (d) spherical symmetry rejection map superposed on the IWF-FP span in Db.
figure
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(a) (b)

(c) (d)

Fig. 4: Toulouse, RAMSES POLSAR data, X-band, 1000× 1000 pixels: (a) zero-mean rejection map superposed on the PWF
span in Db, (b) circularity rejection map superposed on the PWF span in Db, (c) sphericity map superposed on the PWF span

in Db, (d) spherical symmetry rejection map superposed on the PWF span in Db.
figure


