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Abstract

Many graph problems (Dominating sets, Steiner tree, etc.) are hard to optimize but finding a solution,
regardless of its size, is in general trivial and polynomial. In recent papers, several authors introduced
conflicts, that are pairs of edges or vertices that cannot be both in a solution. These new constraints
drastically improve the hardness: They proved that in most cases, deciding if there exists a solution is
now NP-complete. In this short note we transport this problematic of conflicts in langage theory. Despite
the negative results obtained in the field of discrete optimization, we show that a language LC composed
by the words of any regular language L that do not contain pairs of conflicting symbols is still regular.
However, we show that the DFA accepting LC that we construct has a non polynomial number of states.
Nevertheless, we prove that this drawback cannot be avoided in general, even if a symbol is in conflict
with at most another one, and seems to represent the price to pay for dealing with conflicts in regular
languages.

1 Introduction and notations

We start by reminding some classical concepts in formal languages (see [10] for details and complements).
Σ, a finite set of symbols, is called an alphabet. A word is a finite sequence of symbols. The empty word is
denoted by λ. A language L is a (finite or infinite) set of words. A DFA (Deterministic Finite Automaton)
M is composed of a finite set Q of states including the (unique) initial state. The set of final (or accepting)
states is noted F (F ⊆ Q). The transition function δ is said deterministic because for any p ∈ Q and any
c ∈ Σ there exists a unique state q ∈ Q (p and q can be equal) such that δ(p, c) = q. If w = a1 . . . ak is a
word and p a state, we note δ∗(p, w) the (unique) state in which M is after treating the sequence of symbols
in the order of w, starting from state p. A word w is accepted by M of initial state q0 if δ∗(w, q0) ∈ F . The
set of words accepted by M is called the language accepted by M : τ(M) = {w : δ∗(w, q0) ∈ F}. A classical
result states that there exists a DFA M accepting L if and only if L is regular.

Introducing conflicts. Let M be a DFA, Σ its alphabet and L its accepted regular language. In this
paper we add new contraints, named conflict graph G.

In Section 2, G is a graph on symbols of Σ. A conflict (edge of G) denotes here a forbidden pair of symbols,
that cannot be both present into a same word. A word contains a conflict if it contains two symbols linked
by an edge of G. We show that the language LC composed of words of L with no conflict is regular. To prove
this result we transform M into a new DFAMC accepting LC . However the size ofMC is exponential in the
size of the initial instance (M and G). A natural question is then: Is is possible to construct a polynomial
size DFAMC accepting LC? In Section 3 we prove that it is not the case by analyzing a particular instance,
L and G(Σ), and proving that any DFA accepting LC must contain an exponential number of states.
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A motivation for this work is theoretical. In recent papers, several authors studied classical problems on
graph with the additional contraints given by pairs of vertices or edges simultaneously forbidden in a solution.
For example, in [2, 6, 7, 3, 4, 5, 11], the authors try to find paths between two vertices (or spanning trees),
containing no pairs of conflicting edges. In [8, 9] the existence of hamiltonian paths or cycles containing no
conflicting pairs of edges is questioned. In [1] the authors try to find a connected vertex cover or a Steiner
tree or a dominating set with no pair of conflicting vertices. Despite a few constructions in very particular
cases, most of results are NP-completeness theorems to decide wether there is a solution (a path, a tree, a
connected vertex cover, etc.), regardless the size of this solution. Hence, in graphs many of these problems
with conflicts are very hard. This motivates us to export this notion of conflicts outside the graph theory. In
the field of formal language theory, our results show good news: Even with conflicts on symbols, a regular
language remains regular (Section 2). Moreover our proof is constructive. However, the bad news is that
the DFA we propose does not have a polynomial size. We show in Section 3 that this cannot be avoided in
general. Hence, the exponential increasing of the size of the DFA seems to be the price to pay for introducing
conflicts in regular langages.

Regular langages have received a lot of attention. It is a remarquable family of languages, stable over
operations like: Union, intersection, concatenation, etc. A list of operations that transform a regular language
into another regular language can be found in Chapter 4 (some of them are in exercises) of [10]. The
transformation we propose in this note is original (to our knowledge) since it is conditional : if a symbol is in
a word then an another symbol (in conflict with the first) cannot be in it. Our work can lead to the design of
solutions to solve practical problems like: In a text, how to find words containing no given pairs of symbols?
DFA are good tools for exploring a text. This is also why we concentrate on DFA and its size. Moreover,
the formalism we use (conflict graph) allows to express these constraints in a compact and readable form.

2 Construction of exponential size DFA accepting regular lan-
guages with no conflicts between symbols

Let L be any regular language on alphabet Σ. Let M be a DFA accepting L (τ(M) = L). In this Sec-
tion we introduce G(Σ) that we call a conflict graph, a non oriented graph whose vertices are symbols of
Σ. Each edge uv of G(Σ) is called a conflict between symbols u and v of Σ. Given L and G(Σ) we note
LC the language composed of all the words of L that do not contain two symbols that are in conflict in
G(Σ): LC = {w = a1 . . . ak : w ∈ L and aiaj 6∈ G(Σ)(∀i, j)}. A first question here is: Is LC a regular
language? The input of our problem in this Section is a DFA M on an alphabet Σ, accepting a regular
language L, and a conflict graph G(Σ). From this instance, we are going to construct a DFA MC accepting
LC , hence proving that LC is regular. We will then show that its size is exponential compared to the one of M .

Construction of MC. Let ST AB be the family of stables of G(Σ), i.e. sets of symbols with no conflict
between them. Create a new initial state q′0 for MC , that is also final if and only if q0 is final in M . Now,
for each stable S of ST AB, create a copy noted MS of M . Each copy of the initial state q0 in each MS is
now non initial (only q′0 is initial in MC). Each final state of MS remains final in the construction. We also
add a new non final state TRASH. We modify now transitions of theses copies to get δC , the final transition
function of MC . Obviously, for each c ∈ Σ, δC(TRASH, c) = TRASH (i.e. create loops on state TRASH
without possibilities to output). Concerning the new initial state q′0 we have: For each c ∈ Σ, δC(q′0, c) = p
where p is the copy of the state δ(q0, c) in the copy M{c} (set {c} ∈ ST AB is a particular stable with only
one element).

Now, the global and informal idea of the transformation is that the treatment of a word w by MC will
be in a state of MS when the set of symbols already treated on w is S. Thus, copy MS is used as “memory”
of the already treated symbols. This mechanism permits to “output” to state TRASH when a conflicting
symbol is encountered. Otherwise, the treatment of w continues in copies MS ofMC with transitions similar
to the ones of M . Let us give details.
MC “remains” in the copy MS while the current symbol treated is in S: For any c ∈ S and any state p
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of MS , δC(p, c) = q where q is the copy of state δ(p, c) in MS .
If the automaton is in state p and the current read symbol c is in conflict with a symbol of S then the

automaton must go to state TRASH (this represents the detection of a conflict of c with a previously treated
symbol): For all c in conflict with any symbol of S and for any state p of MS , δC(p, c) = TRASH.

Now, the last case to take into account is when the current symbol read c is not in S and is not in conflict
with the elements of S. In this case, S′ = S ∪ {c} is a stable (S′ ∈ ST AB). Hence, for any state p of MS ,
and for any symbol c with S′ = S ∪ {c} ∈ ST AB the transition is δC(p, c) = q where q is the copy of state
δ(p, c) (of M) in MS′ . This ends the construction ofMC that is a DFA (indeed δC(p, c) exists and is unique
for each state of MC and each symbol c ∈ Σ. Moreover, MC has one initial state q′0). We must prove now
that MC accepts LC .

MC accepts LC. If λ ∈ LC , then λ ∈ L (as LC ⊆ L). Thus, λ is accepted by M , i.e. q0 is a final state
of M and by construction q′0 is also final in MC . Hence λ is also accepted by MC .

Let w = a1 . . . ak 6= λ be any word on alphabet Σ and S its set of symbols. We note Ri the set of symbols
of the prefix of length i of w: a1 . . . ai.

If w ∈ LC then, by definition, S is a stable of the conflict graph. Hence, by construction, the treatment of
w by MC ends into a state of the copy MS of MC : Indeed, after the treatment of a1 the current state p1 is
one of MR1 = M{a1}, . . ., after the treatment of ai the current state pi is one of MRi , . . ., after the treatment
of the last symbol ak of w, the current state pk is one of MRk

= MS . As there is no conflicting symbols in
w, the automaton never goes into TRASH state. Now, let us note qi the state of M corresponding to the
state pi in the copy MRi

. If w is treated by M then δ∗(q0, w) ∈ F since w ∈ LC ⊆ L. During this treatment
of w, the sequence of states is q1, . . . , qk, hence qk is final in M and, by construction, its copy pk into MS is
final in MC . Word w is then accepted by MC .

Let us consider now the reverse situation. Suppose that w is accepted by MC . This means that S is a
stable of the conflict graph (otherwise δC

∗
(q′0, w) = TRASH that is non final). Hence, by construction, the

final state δC
∗
(q′0, w) is in MS . Using again the notations of the previous paragraph, and by construction of

MC , if w is treated by M , the sequence of states of the treatment is q1, . . . , qk. As pk = δC
∗
(q′0, w) is final

and is the copy of qk into MS , qk is final into M , thus w is accepted by M and then w ∈ L. Moreover as
there is no conflicting pair of symbols, w ∈ LC .

MC has an exponential size. Let us compare the size ofMC to the size of the instance (M and G(Σ)).
MC is composed of two new states q′0, TRASH and |ST AB| copies of M , where some of the transitions are
redirected between copies. The size is then O(|ST AB|.|M |). But as each element of ST AB is a subset of
Σ, |ST AB| ≤ 2|Σ|. The size of MC is then O(|M |.2|Σ|). This generic construction leads to an exponential
size automaton.

This construction can be refined and can lead to a smaller (but still non polynomial in general) size
automaton in certain situations. For that, just take into account the stables on the set of symbols of Σ that
are in at least a conflict (the others are ”compatible” with any symbol of Σ) to make the copies of M (just
care about the symbols that can lead to a conflict; The others are neutral).

3 Exponential size DFA cannot be avoided

In Section 2 we proved that LC is regular by constructing a DFA accepting it. But this automaton has
an exponential size in general. In this Section we prove that this drawback cannot be avoided: For some
instances, i.e. L and G(Σ), the smaller DFA MC for LC necessarily has an exponential size, even if each
symbol is in a conflict with at most another one.

Let Σk be an alphabet on 2k symbols noted as integers to simplify: Σk = {1, 2, . . . , 2k}. The special
conflict graph G(Σk) that we consider here has Σk as set of vertices and edges (i.e. conflicts) constitute a
perfect matching : An edge between symbol 2i − 1 and 2i for all i = 1, . . . , k, i.e. a conflict between 1 and
2, a conflict between 3 and 4, etc. a conflict between 2k − 1 and 2k. The particular language Lk considered
here is the set of all possible words on alphabet Σk. Lk is regular since it is accepted by a simple DFA Mk

3



composed of a unique state q0 (initial and final) with: δ(q0, c) = q0 for all c ∈ Σk. We note LC the resulting
language from Lk and G(Σk).

We describe a DFA MC for LC whose transition function is δC . Create a state qS for each stable
S ∈ ST AB; This state qS is final. Create an initial state q0 that is also final (since λ ∈ Lk). This means
that all the states ofMC are final, except a new one TRASH with: δC(TRASH, c) = TRASH for all c ∈ Σk.

The transitions follow the idea of the generic construction of Section 2. Let qS be any state.

• For any c ∈ S, δC(qS , c) = qS .

• For any c 6∈ S and c in conflict with a symbol of S, δC(qS , c) = TRASH.

• For any c 6∈ S and c in conflict with no symbol of S, δC(qS , c) = qS∪{c} (S ∪ {c} is a stable).

It is not difficult to see that MC is a DFA accepting LC . Indeed if a word w is in LC then it contains no
conflicting pairs of symbols and its treatment by MC will not end in TRASH, hence w is accepted. Now,
conversely, if w is accepted by MC , this means that its treatment ends in any state, except TRASH, hence,
does not contain any conflicting pairs of symbols, i.e. is in LC . Moreover MC contains more that |ST AB|
states. But |ST AB| contains at least the 2k sets, namely the ones that consist in selecting one extremity of
each of the k edges of G(Σk). Hence, the size of MC is not polynomial. However, one could argue that a
smaller (and potentially polynomial) size automaton accepting LC could exist. We show now that it cannot
be the case by proving that MC is minimal, i.e. is a minimal size DFA accepting LC .

For that we need to remind a few classical notions. Two states p and q are distinguishable inMC if there
exists a word w on Σk such that δC

∗
(p, w) is final and δC

∗
(q, w) is not final, or vice versa. Following classical

results (see the textbook [10] for example), MC is minimal if each pair of states are distinguishable. In the
following we note F C the set of final states of MC , i.e. all the states except TRASH.

First, TRASH is distinguishable from all the other states that are all final. Indeed δC(q0, 1) = q{1} ∈ F C
and δC(TRASH, 1) = TRASH 6∈ F C . For any other state qS , let c be any symbol in S; We have: δC(qS , c) =
qS ∈ F C and δC(TRASH, c) = TRASH 6∈ F C .

Now, let us consider the particular case of q0. Let qS be any other state. Let c be any symbol in conflict
with a symbol of S. Then δC(q0, c) = q{c} ∈ F C and δC(qS , c) = TRASH 6∈ F C .

Let qS be any state (different of q0 and TRASH). Previous results shown that qS is distinguishable of q0

and TRASH. Let qR be any other state. First case: If S contains a symbol c and R contains a symbol in
conflict with c then δC(qS , c) = qS ∈ F C and δC(qR, c) = TRASH 6∈ F C . Second case: Symbols of S are not
in conflict with the ones of R. As S 6= R, suppose that |R| < |S| (the proof for the case |S| < |R| is similar)
and let c be any symbol of S not in R. Let d be the (unique) symbol in conflict with c. This means that
d 6∈ R, hence R ∪ {d} is a stable and δC(qR, d) = qR∪{d} ∈ F C and δC(qS , d) = TRASH 6∈ F C .

We proved that MC cannot be minimized since each pair of states are distinguishable. Hence, by a
classical result (see [10]), there is no smaller DFA accepting LC .
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