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Abstract

The use of independent spanning trees (ISTs) has scientific applications in fault-
tolerant requirement in network protocols and secure message distributions. Most of the
designs of ISTs are for those interconnection networks with vertex symmetric property,
implying that one can find ISTs rooted on a designated vertex, and, by the vertex
symmetry property of the given network, hence have solved the ISTs problem on any
arbitrary vertex. The existence of asymmetry makes the ISTs problem even harder than
its symmetric counterpart. In this paper, we propose linear time algorithms that solved

3-ISTs rooted at an arbitrary vertex of pyramid networks.
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1 Introduction

The vertex set and the edge set of a graph G are denoted by V(G) and E(G), respectively. Let
P = (v1,v9,...,v5) be a path from vy to v; in G. We use I(P) to denote the set V(P) \ {v1,v;}.
Two paths P and @ are called disjoint, denoted by P||Q, if V(P)NV(Q) = 0. We say that P and
Q are internally disjoint if I(P)NI(Q) = 0. A spanning tree of a graph G is a tree T' such that
V(T) = V(G). Given a designated vertex r € V as a root vertex and a natural number k, spanning
trees T1, Ty, ..., T} of G are called k-independent spanning trees of G rooted at r (refered as k-ISTs
for short) if the k£ paths connecting r and v, for any vertex v, in T, T, ..., T} are pairwise internally
disjoint in G.

The use of independent spanning trees has scientific applications in fault-tolerant requirement
in network protocols and secure message distributions [1]. For example, an efficient and reliable
broadcasting can be achieved by sending k copies of the message rooted at the source vertex along
k-ISTs such that the message can be broadcasted to all the other vertices in a network with at most
k—1 faulty vertices. Although the ISTs problem is hard for general graphs, several results are known
for some special classes of graphs, especially on interconnection networks, such as odd graphs [5],
n-dimensional torus [9], product graphs [6], chordal rings [4], recursive circulant graphs [11], parity
cubes [10], and hypercubes [8]. Most of the above results are for symmetric graphs implying that
one can find ISTs rooted on a designated vertex, and, by the vertex symmetry property of the given
graph, hence have solved the ISTs problem on any arbitrary vertex. However, the investigation into
the ISTs problem on interconnection networks with no vertex symmetric property, to the best of

our knowledge, are poor.

We focus attention on the construction of ISTs of a given pyramid network. Pyramid networks
have potentially powerful architecture for many applications such as image processing, visualization,
and data mining [3]. The major advantage of pyramids which is important for image processing
systems is hierarchical abstracting and transferring the data from different directions and forward
them toward the apex of a pyramid [7]. A pyramid network is a 3-connected graph. In [2], Cheriyan
and Maheshwari showed that, for any 3-connected graph, 3-IST's rooted at any vertex can be found
in O(|V||E|) time. In this paper, we propose linear time algorithms for finding 3-ISTs of a pyramid

network rooted at an arbitrary vertex.



2 Preliminaries

All graphs considered here are finite, undirected, without loops and multiple edges. A path in
a graph G is a single vertex or a sequence of distinct vertices (v1,vs,...,v,) such that (v, ve),
(v2,v3), ..., (Vn—1,v,) are edges of G and the v; are distinct. A vertex of degree 0 is considered as

an isolated vertex.

A 2F x 2F square mesh, denoted by M, has the vertex set V/(My) = {(z,y)|0 < z,y < 2F -1}
where any two vertices (z1,y1) and (x2,y2) are connected by an edge iff |x1 — xa| + |y1 — y2| = 1.
Each My, k > 2, can be partitioned into 28=2 x 28=2 square submeshes Ms and each M, is called
a cluster. Every cluster can be further decomposed into 2 x 2 M; and each M; is said to be a
block. Let v,v™,v*T v~ denote the four vertices of a block in a clockwise order starting from v, and

B, BT, BT, B~ denote the four blocks of a cluster in a clockwise order starting from B.

Let P,, be an n-dimensional pyramid with the vertex set CJ Vi, where Vi, = {(k;z,y) |0 < z,y <
28 — 1}. Vertex (0;0,0) is the apex of P,, and also denotedk:s) A. The subgraph induced by Vj is
connected as an My, and called layer k of P,,. Let Sy and S; denote the layers 0 and 1 of PP, with
the vertex set (0;0,0) and {(1;z,vy)|0 < x,y < 3}, respectively. Let S(k;a,b) denote the cluster
on layer k with the vertex set {(k;x,y)|4a < x < 4a+ 3 and 4b <y < 4b+ 3}, where 2 < k < n
and 0 < a,b < 2F72 — 1. Notice that layer k has 282 clusters. Vertex (k;z,y) has exactly four
children (k + 1;2z,2y), (k + 1;22,2y + 1), (k + 1,22 + 1,2y), (k + 1,22 + 1,2y + 1) in V41 and a
parent vertex (k — 15 5], [4]) in Vi—1. For simplicity, we shall use the abbreviated notation Sy, for
S(k;a,b), whenever no confusion can arise. Let p(v) denote the parent vertex of v and I(v) the layer
number of v. The block containing the four children of v, denoted Cg(v), is called the child block
of v. In an Sy, the block with the vertex set {p(v)|v € V(Sk41)} is called the parent block of Sky1
and denoted by Pg(Sk+1). An edge between v and p(v) is called a layer edge, while every edge of a
cluster is called a cluster edge. Every vertex on the shortest path from v to A is called an ancestor

of v.

In a cluster S, every vertex of degree 4 is called an inner vertex, while the remaining vertices of S
are said to be outer vertices. An outer vertex of degree 2 is also called a corner vertex. The subgraph
induced by all inner vertices of .S is an i-cycle, while the cycle induced by all of the outer vertices is

an o-cycle. For any two vertices u and v in an o-cycle (respectively, i-cycle) O, each path from u to



v is called an o—path (respectively, i—path). Vertex v is also labeled as u*? (respectively, u=%) if v
can be visited from u via d edges of O in a clockwise order (respectively, a counterclockwise order).
In paricular, ©w = v if d = 0. Figure 1 depicts an example of a 2-layered pyramid Ps. The dash lines
indicate layer edges, while the solid lines are cluster edges. Each bold 4-cycle is a block. The top-right
block of S(2;0,0) has a corner vertex (2;0,3), an inner vertex (2;1,2) and outer vertices (2;0,3),
(2;1,3) and (2;0,2). The subgraph induced by the set X = {(2;1,1),(2;1,2),(2;2,2),(2;2,1)} is

the i-cycle of S(2;0,0), and the o-cycle of S(2;0,0) is induced by V(5(2;0,0)) \ V(X).

3 Constructions of 3-ISTs Rooted at Different Layers

For a given root vertex r, we shall construct 3-ISTs of P, rooted at r by considering the position of

r to fulfill the vertex asymmetry of P,.

3.1 Rooted at the Apex

Before the construction of 3-ISTs of P, rooted at an arbitrary vertex, we first define a vertex
coloring on every vertex of P, for selecting edges to be tree edges of a spanning tree. Let mg :
V — {0,1,2,3} be a coloring on P,, where for each vertex v € V(P, — r), mo(v) € {0,1,2,3},
and the four vertices of each block are assigned distinct colors. For convenience, let py, p2 and
p3 be three distinct color numbers in {1,2,3} in the remaining text. In Sj, we arbitrarily select
a vertex v as the corner vertex and then assign colors 0, p1,p2 and p3 to vertices v,v™, v~ and
vt respectively. Let Hj,, be the subgraph with the vertex set V(S1) U {r}, where 1 < i < 3.
And let E(H, ,,) = E((vtt, vt v,07)) U{(r,0")}, E(Hy,,) = E((vtt, v v,0T)) U {(r,v)} and
E(H, ) = E((vt, vt 07)) U {(r,v), (r,v7)}. The 7o coloring of a cluster is determined by the
coloring of its parent block. For a cluster Sy, k > 2, let z, 2", 2~ and 27 be the four parent vertices
of Sk such that mo(z) =0, mo(z) = p1, mo(x ™) = p2 and we(z 1) = p3. We assign color my(z™) to
the corner vertex of Cg(z™), to the two outer vertices incident to Cg(x™), and to the outer vertex
incident to Cp(x) in Cp(x™) (see Statement 2 of HFinding Algorithm). Statement 3 assigns color
mo(2 ™) to the corner vertex of C(z ™), to the two outer vertices incident to Cz(z ™), and to the outer
vertex incident to Cg(z1) in Cg(z™). In Statement 4, we assign color mo(x+T) to each inner vertex

of Si. The remaining uncolored vertices of Sj are assigned color 0 in Statement 5.

We now define three graphs for any cluster, and then each subgraph will be selected to be



Input: Given a coloring on the vertices x, z T, 27,2t of P(S) as: mo(z) =0, mo(z™) = p1,
mo(27) = p2, mo(zT) = ps.
Output: The colorings of blocks Cp(x),Cs(z"),C(z~) and Cg(z™T) in Sk.
begin
Let the inner vertex of Cp(z7F) be hy p, and the corner vertices of Cs(z+) and Cs(z~) be
hi.p, and hy, ,,, respectively;

. P +2 j-2
Assign color p; to every vertex of {hk’pl,h,C ol o pl},

. P +2 -2
Assign color py to every vertex of {hy p,, hk oo P s I pz},
Assign color p3 to every inner vertex of Si;
Assign color 0 to every uncolored outer vertex of Si;

E(Hpy) = E(Prpy) U {(iepns 15, (i i, )5 (35 i, Ty )s (s pUi ) };

E(gkm'z) = E(Phﬂ'z) U {(ﬁk,p:w hl;pz) (hlzp?, hl;pz) (hZ—Qp:,, hﬁ;z) (h;l_lpg h/:pz) (}Alk»l)mp(ﬁk’ym))};

E(Hipy) = B(Pegy) U{(w,0) € B(SOlmo(w) = pamo(w) £
Pt U { (e i ). (B ). (e (5 )), i, p(ic ). (el )

). (i,

end
HFinding Algorithm

a subgraph of one of the 3-ISTs of P,,. Let lﬁIi(k:;a, b) denote the subgraph with the vertex set
V(S(k;a,b)) + V(Ps(S(k;a,b))), where 1 <i <3,2<k<mnand0<ab<2"2 1. A vertex
v € V(H;(k;a,b)), denoted h;(k; a, b), is called a junction vertex of Hy(k; a,b) if mo(v) = mo(p(v)) = i.
The vertex of color p; in Sy is denoted by }A‘Ll,pi for each 7 and the vertex of color 0 in S is }Azlyo.
For simplicity, we shall also use the abbreviated notation ﬁkl and H ki for ﬁz(k‘, a,b) and Hz(k:7 a,b),

respectively, and let hy = {ikal, iLk’Q, ilkg}

By the first statement of HFinding Algorithm, there are exactly two junction vertices on the
o-cycle of S}, while one junction vertex belongs to the i-cycle of Si. In Statements 6-8, we define

three subgraphs ﬁk,pl, ﬁkw and f[k,pS on Sy. ﬁkm has the outer path

_ 7 1 +1 742 745 .
Pyp = (hk,pQ, hk’p1 hk o1 hkm,hk o) hk o ’hk,m)’ and every inner vertex of S; has exactly

one edge incident to Py, in Hy,, (See Statement 6). Hy ,, contains the outer path Py ,, =

7 5 1 +1 +2 7+5 : S
<hk7p1,h hk pQ,hk,pQ,hk p2,hk PR .,hk7p2>, and every inner vertex has an edge incident to

Epa’

Py o (See Statement 7). I—AI;W3 has the inner path P ,, = <hlzj’)3,hlzi3 h; ! o7 hk7p3> and every outer
vertex v € V(S;) has an edge incident to Py ,, if v is not a corner vertex. Among the four corner
vertices of Sy, iL]wn and iLk”oQ are adjacent to ﬁl;}n and iL;’})Q, respectively, in ﬁkm. And the

two corner vertices of color 0 have layer edges (ﬁ;il,p(ﬁzil)) and (ﬁ,;il,p(fz,;il)) in A, ks (See

Statement 8). For the connectivity of layers, the edge (ilk,ppp(ilk,pi)) is used to connect IA{k,pi and



ﬁk_l’pi, where 1 <4 < 3 (See Statements 6-8). It can be seen that Py, , Pk p, and Py ,, are pairwise
disjoint. Figure 2 illustrates subgraphs H ko1 H k,po and H k,p3 Of a cluster Sy on the condition that
the parent vertex of the top-left block of Sy, is of color 0. The bold edges are edges of subgraphs and
the grey vertices represent junction vertices. The formal definitions of H, k10 H k,p, and H k,ps Tefer

to HFinding Algorithm.

The following observation gives some properties of ilk,pl and ﬁkm:

Observation 3.1. Let l}km and ilk’m be on the o-cycle of Sk, where 2 < k < n.

24+d 3 —(6—4d) 24+d _ 7—(6=4d)
(1) h;m - hk,pz and h:,pz - hk,m ’

prd f(d=1)

7+d
(2) va = h’+ k,p1’ ""k,p1

k,p1’ Y hk,p1> and

then v is an end-vertex of {

<il—(6—d) j,~(6=d=1)

ke o M voooshipy) in Hy , and Hy, ,,, respectively.

(8) If v = ill;iﬂ then v is an end-vertex of <hl;(,i1’ l},;(p(ffl), ey izk7p1) and

<il+(6—d) 5 4+(6—d—1)

P soroshipo) i Hy o and Hy, ,,, respectively.

Proof. Let B; and Bs be the block containing ﬂk,pl and ﬂk,m, respectively. According to the
first statement of HFinding Algorithm, both fzk,pl and liLk;,p2 are corner vertices and B; is in fact
By . Thus, izkm = Bz% and ﬁk,pz = B;:,(;;l' Besides, both (2) and (3) immediately follow (1).

Q. E. D.

Since the my coloring of a cluster can be decided by its parent block, the coloring of So is
determined by the coloring of S7. After that, the coloring and subgraphs of every cluster in P,
can then be established. We now continue with the derivation of building spanning subgraphs
T[?i,i = 1,2,3, on P,. Each Tgi is regarded as an n-layered graph. Let V(Tg) = V(P,) and

n 2k=2_1

E(TY) = E(Erl,pi)kg2 go E(H,,(k;a,b)) for i =1,2,3.

To show that there are three pairwise internally disjoint paths from any vertex uj to the apex

r, we first find three pairwise internally disjoint paths from wuy to the block B containing p(uy).

Lemma 3.1. If uy is a vertex of Sg,2 < k < n, and uj,_, is a dummy vertex with dummy edges
incident to every vertex of Pg(Sk), then paths from wy to w)_, in T2, TY and T:? are pairwise

internally disjoint.

Proof. Let hy , and hy ,, be outer vertices and hy ,, be an inner vertex. Since hy ,,, hi, p, and



ﬁk,pg belong to three different blocks, p(ﬁkﬂpl),p(l}hm) and p(izhm) are distinct. Let P,, be the path
from uy, to wj_, in T/E)w where 1 <7 < 3. Each P,, can be regarded as a concatenation of subpaths
(ug)Q,, (ti,w),_,), where t; € V(Pg(Sy)). Let v; be the neighbor of uy in Hy,,, for each i. Note
that v; # vj and t; # t; if i # j. We shall prove Q,,,Q,,,Q,; pairwise disjoint instead of showing

P

P1>P

s Ppy Pairwise internally disjoint.
Case 1. uy is a corner vertex and mp(ug) = 0.

By HFinding Algorithm, uy is either ﬁ;il or ﬁ;il. From the definition of E(Hy, ), (ug, p(ug)) €

E(ﬁkvpg). Then P,, = (ug,p(ug),u),_,) and thus Q,, is empty. So, Q,,||Q, and Q,,||Qp,. If

o . ) c43 42 41 g .
up = hy) . by Observation 3.1 (2), uy is an end-vertex of <hk,p17hk,pl’hk,p17hk’P1> in Hy, and
. -3 7-2 7-1 i I _ 42 47

is also an end-vertex of <hk,p2’hk,p27hk,p27hkvp2> in Hy ,,. It means that Q,, = <hk,p17hk,p1’h’kn‘71>

and Q,, = (h 2 b}

Fpa? k‘p27hk1p2>' For the case u; = h>

kor» Dy Observation 3.1 (3), ug is an end-

-3 1-2 71 ; A 243 142 141 =
vertex of <h’k,p17hk,pl’hk,p17hkvpl> in Hy, and an end-vertex of <hk7p2,hk7p2,hk’p2,hk,p2) in Hyp,.

Then Q,, = <h];i17h];;1;hk:,p1> and Qp, = (htiwhz;,hkm). It concludes that @, [|@,, for cases
up = b2 and wy = hy

Case 2. u = hyp, .

Obviously, Py, = (uk,p(u),uj,_;) and thus Q,, is empty. So, Q,,[|@p, and Q,, ||Qp,. Furthermore,
since iL;w,l and ﬁﬁz are the two end-vertices of the path P ,, and iLkm € V(Ppp,), Qp, is a subpath
of Py ,, and @),, does not contain the vertex lAzk+75p2. From the definition of H, k,p3 Bk,m and Bl;}n are
. 1 . . . . - . 21 .
adjacent and h; - is adjacent to an inner vertex v in E(Hy ). Since v € V(Py py), Qps — hy, 18 a

subpath of Py ,,. That is, Q,, — ﬁzz is a subpath of Py ,, because ﬁ;;l = ﬁ;iZ. Moreover, since
Pps || Prpo and 25 & V(Qpa), Qs | Q-

Case 8. u, = l}km.
The proof is similar to Case I and is left to the reader.

Case 4. uy, is an inner vertex.

Notably, v1 and vy belong to the same block. If u; = l}km, then @, is empty. By the definitions

}Al+2 jl-i-l

k,p1? kvpl’hk’pl> and

of fAIk’pl and I:Ik,pQ, v1 and vy are B;il and iz,;fm, respectively. Then Q,, =
Q,, = hi2 ,ﬁ_l ,iLk . So, Q,,,Q,, and Q,, are pairwise disjoint. Similarly, we get pairwise
P2 k,po? "Vk,pao TPk, p2 p1s < p2 p3 ) Y. g

disjoint paths @, ,Q,, and @, for cases u, = ﬁ;ig, where 7 = 1,2, 3.



Case 5. uy, is adjacent to a corner vertex.

Clearly, v; € V(Py,p,) for each i. That is, @, is an i-path, while both @Q,, and @,, are o-paths. So,
Qps||Qp, and Qp,[|Qp,. Vertex uy, is either h+d1 or hk ‘;2, where 1 < dy,ds < 5 and dy,dz # 3. For the
. d 2 d 7
former case, by Observation 3.1 (1), Q,, = <h+7£)11 1), hip ) and Qp, = (h kg; 1= RN (TN
Thus, @, ||Qp,. For the latter case, by Observation 3.1 (2), Q,, = (h kgfz 1), .. .,ﬁk,p1> and Q,, =

o .
<h;§; 2D hpy). Therefore, Qp, [|@p,-

Q. E. D.

We further present three pairwise internally disjoint paths from a block B on a cluster S to

Pr(Sk).

Lemma 3.2. Let B be a block of Sk, 2 < k < n. If uj, and uj,_, are dummy vertices with dummy
edges incident to every vertex of B and Pg(Sy), respectively, then the paths from uj, to uj,_, in Tio,

fori=1,2,3, are pairwise internally disjoint.

Proof.  Let V(B) = {v0,vp;,Vp,,Vps} and V(Pg(Sk)) = {to,tpstps,tps}, Where mo(vg) =
mo(to) = 0 and mo(v,,) = mo(ty,) = pi for each i. Let P, denote the path from wj to uj_, in T,
and @),; be the subpath of F,, on Sy for each i. Let Bk,m and }AL]C’m be outer vertices and iAL;C’p?) be
an inner vertex. By the definition of E(H k.p;)» Pp; must visit v, and t,,, where j = 1,2. We shall
prove @, Qp,, @y, pairwise disjoint instead of showing P,,, P,,, P,, pairwise internally disjoint.
j-2

+2 —2 —5
hkﬂl’hkm’hkm

+2 - —
) (hk 1’ h ,p2) (hk 017k, p2

According to the HFinding Algorithm, v, € {ilk,plv }and v,, € {izkm, hi?

h+2)(h 5

Actually, the ordered pair (v,,,vp,) € {(ilk,pp h;® kopn?

k2 hkm)}. Since

p(hy. p;) is tp, for each j, we get the ordered pair (Q,,,@,,) as follows:

(<il/€ > < k p2 ;L];pz : hk p2>) (UPI ) U,O2) (hk,ma iL];E;;Q)v
2 1 A A R
(Qp Qp ) — (<}}Z_917h:p1,hk,p1> <hk 52’hkl i)27hk,p2>) (Up17v,02) (}}2:517 {lk7§2)7
19 %P2 - -
(<hk p1 k Zl ) hk,p1> <h2_p2 h;g‘rpZ hk,p2>) (Upl ) vpz) ({L’i’glj {L;pz)a
(< k p1 hk N hk,P1> <hk,p2>) lf (Upl ’ Up2) (hk NOR hk,pg)'

It is clear that Q,,[|Q,, for each case. Consider P,,. By the definition of E(H, k.ps)s Doy Visits either

to or tp3.
Case 1. P,, visits t.

By the definition of E(Hy,,,), Ppy = (u,v0,t0,u),_;) and thus Q,, = (vg). Clearly, Q,,]|Q,, and

Qps]|Qp, for every ordered pair (v,,,vp,).

k,p2’ kp2’



Case 2. P,, visits both v,, and ¢,,.

Since every vertex of color p3 is an inner vertex, (), is a subpath of P} ,, and is in fact an i-path.

However, both @), and @, are o-paths. So, Q,,||Q,, and Q,,||Qp,-
Case 3. P,, visits both vy and ©,,.

If vg is a corner vertex, then vy must be Bﬁn and t,, = p(vp). Since, by the definition of E(ﬁk7p3),

(71??;171)(’32,?;1)) = E(ﬁk,ps)v Py = (U, 00, tpys tj_y). That is, Qpy = (vo). So, Qs [|Qp, and Qs [|Qp,

for every ordered pair (v, ,v,,). Otherwise, vg is not a corner vertex and so vy is adjacent to an inner

vertex, say v. Since v € V(P p,), Qp; —vo is a subpath of Py, ,,. According to HFinding Algorithm,

Vo € {il_l il_l

koprs Pk p2}. Since both @,, and @,, are o-paths and neither @, nor @,, contains vy for

every ordered pair (vp,,Vp,), @ps[|Qp, and Qp,||Qp, -

Q. E. D.

Theorem 3.1. Graphs T, TS and T:? are 3-1STs of P, rooted at apex.

Proof. Let p1,po and p3 be color numbers of the vertices v,v", v~ and v™" in S;. Since
E(Hyp,) = E((ut vt v, 07 ))U{(r,v")}, E(Hyp,) = E((0tt, 07, 0,07))U{(r,v7)} and E(H ) =
E((vT vt o )U{(r,v), (r,vt 1)}, every fflvpi,z' =1,2,3,isatree. According to HFinding Algorithm,
every I:I;m- is acyclic, where 2 < k < n. For connectivity, each iL;H has a layer edge (ii,/”, p(iu“)) €

E (ﬁ;“) for connecting subgraphs f[k, and H, k—1,4- 1t follows that T? is a tree. Actually, TP is a

spanning tree of P, due to V(T?) = V(P,,).

For any vertex ux = (k;xz,y) € V(P,), we now want to find three pairwise internally disjoint
paths from uy to the apex r. The case uxy = (0;0,0) is trivial. Consider k = 1. If uy = iLL(),
we get three pairwise internally disjoint paths (u, b1, 7), (Uk, iy, ) and (ug,r) from uy to r
in T;?p T 32 and T 23, respectively. Similarly, we get three pairwise internally disjoint paths (ug,r),

<uk,le70,ﬁ1,p2,r) and (uk,ﬁ1,p3,r> for the case u, = iLl’pl; paths <uk,ﬁ1,p0,le7p1,r>, (ug,r) and

(g, Py py, ) for ug = hypy; and paths (up, by, 7), (Uk, R py, ) and (ug, ) for ug = hy .

For k > 2, let u; be the dummy vertex with dummy edges incident to every vertex of Pg(Sj+1),
where 1 < j < k — 1. From Lemma 3.1, we get pairwise internally disjoint paths X ,, from wuy to
uw_, in T 191_ for each ¢ = 1,2,3. By applying Lemma 3.2, we get pairwise internally disjoint paths

Xjp; from vy to u}_; in T, for each i, where 2 < j < k — 1. Moreover, since (ﬁl,pi,r) € E(Hy,,),



we get three pairwise internally disjoint paths from uy to r.

Q. E. D.

Theorem 3.2. The construction of 3-ISTs of P, rooted at the apex can be solved in O(|V]) time,

where |V| is the number of vertices of Py,.

Proof. At first, we assign color numbers to the four vertices of S7 and build three subgraphs
PAIL,-, i = 1,2,3, on S in constant time. By using HFinding Algorithm, the coloring of every
cluster is determined by the coloring of its parent block and costs constant time. So, the coloring
of P,, costs O(|V]) time. According to my coloring, Bk,l, ilk’g and ﬁk’g, k=2,3,...,n, of S can be
decided in constant time and then every I:I;“ is established in constant time. Since each edge set
E(T?),i = 1,2,3, has |[V| — 1 edges and each edge of E(T?) can be checked in constant time, the
finding of E(T}) costs O(]V]) time. Therefore, the construction of 3-ISTs of P, rooted at the apex
is solved in O(|V]) time.

Q. E. D.

3.2 Rooted at a Vertex on Layer 1

In Sq, we let 7 as the corner vertex and assign colors 0, p1, p2 and p3 to vertices r,7",r~ and r*+,
respectively. Due to 7 € V(S1), r*,r~ and T+ are actually fLLpl,ﬁLpQ and lAzl,pS, respectively. To
color V(IP,,), we also apply HFinding Algorithm iteratively on every block of IP,,. Since the coloring
of a cluster can be decided by its parent block, the mg coloring of Sy is determined by the coloring

of S1. In this way, the coloring and subgraphs of every cluster of P,, can be established.

Let H! have the vertex set V S1) U{A}. Let E HE
17/)7, 17p1

) = E((r= ") U{(rt, A),
E(H},,) = E((rT T rmr) U{(r, A)} and E(H],,) = {{(v,A)lv € V(S1)}. Notations S,
ﬁkﬂ- and fIkﬁi, where 2 < k < nand 1 < i < 3, refer to Section 3.1. Let V(Til) = V(P,) and
E(T}) = E(ﬁlll) kCJQ 2k_§J_01E(ﬁi(k; a,b)) for each i.

Theorem 3.3. Graphs T}, Ty and Ty are 3-1STs of P, rooted at a vertex of Sj.

Proof. Let 0,p1,p2 and p3 be color numbers of the vertices r,7*,r~ and r** in S;. Since

E(H],)=E((r= vt r)u{(rt,A)}, E(H] ) = E((rT 0t 0= r))U{(r~, A)} and E(HT )

{{(v,A)|v € V(S1)}, every ﬁlll,z =1,2,3, is a tree. According to HFinding Algorithm, every Hj;



is acyclic, where 2 < k < n. For connectivity, each iLk, has a layer edge (ﬁkz,p(izkz)) IS E(flkz)
for connecting subgraphs ﬁk,i and ﬁk,lyi, where 3 < k£ < n. In addition, each iLgﬂ' has a layer
edge (ilzyi,p(ilgﬂ')) € E(ﬁg,i) for connecting subgraphs ﬁg’i and ﬁll’l It follows that TZ-1 is a tree.

Actually, T is a spanning tree of P,, due to V(T}}) = V(B,,).

For any vertex ux = (k;x,y) € V(P,), we now want to find three pairwise internally disjoint
paths from wuy to r. If ug is A, by the definition of each ﬁll pi» we have pairwise internally paths
(ug, 7", 7), {ug, =, r) and (ug,r) in Tpll, Tpl2 and Tpl37 respectively, from wug to r. The case up = r
is trivial. Consider the case k = 1 and ug # r. If up = ™+, then paths (ug,r",r), (ug,r~,r) and
(ug, p(r),r) are in T[}I, Tpl2 and Tpl37 respectively, and are pairwise internally disjoint. Similarly we

have three pairwise internally disjoint paths for the case uy, is a neighbor of r and leave the proof to

the reader.

For k > 2, let u; be the dummy vertex with dummy edges incident to every vertex of Pg(S;j41),
where 1 < j < k — 1. From Lemma 3.1, we get pairwise internally disjoint paths Xy ,, from wuy to
u_, in T [}i for each ¢ = 1,2,3. By applying Lemma 3.2, we get pairwise internally disjoint paths
X p; from uf; to w)_y in T, for each i, where 2 < j < k — 1. Let X1 ,, be the path from u} to r
in Tl}i for each 4. For each u}, 1 < j <k — 1, if v is a neighbor of v} and 7o(v) = 0, then, by the
definition of each E(H,,,,), either v or v+ can be on one of the paths in {X; ,,, Xy, Xj s }- Let v;
be the neighbor of v} in X ,, for each i. Since my(r) = 0, by the definition of each E(ﬁgpi), either
ror vt is a vertex in {vy,ve,v3}. If r € {v1,v2,v3}, then we get three pairwise internally disjoint
paths (u},r), (u},r",r) and (u},r,r). Otherwise, we get three pairwise internally disjoint paths
(7T A ), () and (u),r~,r). Therefore, we get three pairwise internally disjoint paths
from wug to r.

Q. E. D.

Theorem 3.4. The construction of 3-1STs of P, rooted at a vertex on layer 1 can be solved in

O(|V]) time, where |V| is the number of vertices of Py,.

Proof. Similar to the proof of Theorem 3.2.
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3.3 Rooted at Vertices on Higher Layers

The construction of 3-ISTs rooted at r, 2 < I(r) < n, has two stages: Backbone Establishment
Stage and Branching Stage. In Backbone Establishment Stage, we shall first define subgraphs on
every cluster S; that contains an ancestor of . Then dedicated layer edges of P, are selected for
connecting subgraphs of Sy and Sy_1, for each k = 1,2,...,1(r), to establish tree backbones. We
further do an expansion on tree backbones to build 3-ISTs of P, rooted at r in Branching Stage.

The detailed description of the two stages are given in the following two subsections.

3.3.1 Backbone Establishment Stage

A block is an a-block if it contains an ancestor of r (including r). Let Ay denote the a-block on
layer k of P,,, where 1 < k < I(r). Let Sy be the cluster containing an a-block on layer k and BB,
be the subgraph induced by the vertex set lﬁ) V(Sk). A block B of BB, is said to be a b-block
k=0

if B is not an a-block. Every vertex of an a-block (respectively, a b-block) is called an a-vertex
(respectively, a b-vertex). The corner vertex and inner vertex of Aj are denoted as ax and a3,
respectively, and aao and ay  are also denoted by aj1 and a2, respectively. Every V(Sk) can be
partitioned into four vertex subsets Uy, o, Uy 1, Ui 2 and Uy 3. Let Uy o = { ag 0, azg, ak 0 ak 0 } U1 =

{azré, ag%, a 0, ak 0 81, Uk = {a;él, ,jéo, azg, ar o 41 and U, 3={ars, a 3, ak 3003 31 . Notice that

every Uy ; contains exactly one vertex of each block of BB,.

Let m : V. — {0,1,2,3} be a coloring on BB,, where for each vertex v € V(BB,), m1(v) €
{0,1,2,3}. For an Sg, 2 < k <I(r)—1, if Ay is the top-left block or top-right block of S, we assign
color 7 to every vertex of Uy ;. Otherwise, we assign colors 0, 2, 1 and 3 to every vertex of Uy, Uy 1,
Uk,2 and Uy 3, respectively. According to the above coloring rules for 71, we get colorings I, IIy,
II, and II3 for a cluster with respect to an Ay locating at the top-left, top-right, bottom-left and
bottom-right block of Si, respectively. Figure 3 depicts the four possible m; colorings Ilg, 1y, Il

and IIs of a cluster Si. The block having grey vertices along with bold edges indicates an a-block.

Let hy;,i = 0,1,2,3, denote the a-vertex of color ¢ in Ay and hy = {hg1,hrz2,hip3}. The
coloring of S7 is the same as the coloring of As. That is, if v is the corner vertex of Ay, then we
assign colors m1(v), m1(v"), T (v™) and 71 (v ") to p(v), p(v)™, p(v)~ and p(v)*T, respectively. The

m coloring of Sy, is treated as a special case of m and determined by the 71 coloring of A;)_; in
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RootColoring Algorithm.

Input: 7 coloring of Aj(y_1.

Output: m; coloring of ().

begin

Assign color 0 to all vertices of Uy, o;

Case m1(p(r)) € {0, 3}.
Assign color 3 to all vertices of Uy, 3;
If w1 (p(r)™) = 1, then assign color 1 to all vertices of Uy, and color 2 to Uy,) o
else assign color 2 to every vertex of Uy(,),1 and color 1 to U,y 2;

Case m1(p(r)) = 1.
Assign color 1 to all vertices of Uj(,) 3;
If 71 (p(r)™) = 0, then assign color 2 to all vertices of Ui(ry,1 and color 3 to Uy 2
else assign color 3 to every vertex of Uy(,),1 and color 2 to U,y 2;

Case m1(p(r)) = 2.
Assign color 2 to all vertices of Uy(, 3;
If w1 (p(r)*) = 0, then assign color 1 to all vertices of Uy, and color 3 to Uy 2
else assign color 3 to every vertex of Uy(,),1 and color 1 to U,y 2;

Adjust the coloring of A;(,:
Assign color m (™) to a0, and then assign color 71 (r) to r*;
Assign color 0 to r;

end
RootColoring Algorithm

We are able to establish three tree backbones T'B,.; on BB, for each i = 1,2,3. Each T'B,; is
regarded as an [(r)-layered graph. For av € V(BB,), let ¢;(v) denote the child of v of color i. Let Hy,;
denote a subgraph of an Sy, where 1 <k <I[(r)and 1 <i < 3. Let V(H1;) = {h1,0,h1,1, 1,2, h13, A}
and E(Hi;) = {(h1:,A)}. We define two o-paths

_ +1 42 +9 _ -1 -2 -9 - _ -1 -2 -3
Py p, = (ak1, Qg1 Qg s ak71>, Py o = (ak2, A or Qg s+ - ak72> and an i-path Py, ,, = (a3, a3 O 35 ak73>

: / / / +1 -1 -1 .
for every Si. For convenience, let a},a; and a3 denote as Wy 10 G r) and Wy 30 respectively, and

2
let p; = mi(a}) for each i. The three subgraphs Hy , , Hy ,, and Hy ,, of S are defined in the

following:

E(Hy,p;) = E(Prp;) U{(u,v) € E(Sp)[u & V(Ar),mi(u) = pgand m(v) = p;} U{(v,p(v))lv &
V(Ayry) and 71 (v) = p;} for j = 1,2, and

E(Hy,p;) = E(Prpy) U{(u,v) € E(Sg)|u & V(Ag), m1(u) = p3 and m(v) = p1 or pa}

U{(v, p(v))v & V(Apy) and mi(v) = pat U{(v,p(v))[v ¢ V(Ax) and m(v) = 0}.

Among the four a-vertices of an Ay,2 < k < I(r) — 1, hy,, is adjacent to a b-vertex of Hj ,, and
its parent, while the other three a-vertices are isolated in Hy, ,,. For connectivity, every a-vertex of

Hy, ,, is incident to a child of color p; in Hjyq,,. Figure 4 illustrates subgraphs Hy ,,, Hy ,, and
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Hy, ,, of Si. Bold edges are edges of subgraphs Hy ,,,1 <4 < 3, and grey vertices are a-vertices.

Let & = E((rt,r ™t v r) U{(r—,p(r)}, & = E((r— vt rT r)) U {(r*,p(r))} and & =
{(v,p(r))lv € V(Ay(y)}. For each T'B,;, let R; denote the subgraph with the vertex set V(4;.y) U
{p(r)} and an edge set in {&1, &2, E3}, where @ = 1,2, 3. The formal definition of each T'B,; is in the

following:

Definition 3.1.
(1) E(Rr (v—)) = &1, E(Ry ) = & and E(Ry ++)) = 3.

(2) V(TBr,pi) = V(BBT);

I(r) 2k—2_1
E(TBT,/%') = E(Hlypi) U E(Rpi) U u E(sz‘(k§ a,b)), where p; = 771(@;) andi=1,2,3.
k=2 a,b=0

Lemma 3.3. The graphs TB1,T By and T'Bs are spanning trees of BB, rooted at r.

Proof. Since E(Hi;) = {(h1,,A)},1 <i <3, every Hy; is clearly acyclic. Since each Hj ;,
k=2,3,...,l(r)—1, is constructed as a tree along with three isolated a-vertices on Sy, every Hy; is
acyclic. In the Sj(y, 4 and p(r) form three tree subgraphs Ry, R and R3, and the remaining three
b-blocks form tree subgraphs H;() 1, Hy() 2 and Hyy 3. In addition, Hy(,); and R; share a common
a-vertex u € {ay() 1, 4(r),2, @(r),3}- For connectivity, each vertex v & V/(4;(,) of color i in Hy; has
an edge (v,p(v)) € E(Hy,;) for connecting subgraphs Hy; and Hy_;;, where k = 2,3,...,[(r) and
each p(v) is in fact an a-vertex of Hy_; ;. Thus, T'B,; is a tree. Actually, each T'B,; is a spanning
tree because V(T'B,.;) = V(BB,).

Q. E. D.

For convenience, let u; be the dummy vertex with dummy edges incident to every vertex of h;
for j=1,2,...,1(r) — 1 and “E(r) be the dummy vertex with dummy edges incident to a}, a, and a4

in the remaining text of this section.

Lemma 3.4. The paths from u)_, to uj in each TB,; are pairwise internally disjoint, where 1 <

1<3and2<k<I(r)—1.

Proof. Let azé and a,jél be hy, ,, and hy ,,, respectively. Let P, be the path from c,, (hx—1,p,)
to hy,p, in Hy, ,, for i =1,2,3. Since ¢y, (hk—1,,) € V(Pr,p;), Fp; is a subpath of P ,,. Then P,, | P,,

and P,,||P,, because Py ,,| Pk, and Py ;|| P p,- It remains to prove P, ||P,,.
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We first consider the case when k = 2. By the definition of the m; coloring, the coloring of S;
is the same as the coloring of As. So, a;% = ¢p, (h1,p,) and a;éo = Cp,(h1,p,). Thus, we get disjoint
paths P, = (ai%,aié) and P,, = <aZéO,a;él). For the case 3 < k < I(r) — 1, if ¢y, (hg—1,,) is
an a-vertex, P, = (hy,,). By the definition of Hy p,, hyp, & V(Hk,p,). That is, hy, & V(Pp,).
Thus, P, || P,,. Due to the same reason, P, and P,, are disjoint for the case that c,,(hr—1,,) is an
a-vertex. Consider the case that both ¢, (ht—1,,) and c,, (hx—1,p,) are b-vertices. Since hj_1 ,, and

hi—1,p, are not adjacent, Cg(hg—1,p,) and Cg(hr—1,,) must be two non-adjacent b-blocks of Sj. So,

Ci(hk—1,p,) is either A; or A;.
Case 1. Cg(hg—1,,) = A}, .

We first assume that Ay, is the top-left block of Sy. Then C(hy—1,, ) is the bottom-left block of Sy,
and hence hj_1 ,, is the bottom-left vertex of A;_;. Based on the coloring rules of 71, every vertex of
Uk, is assigned the color number ¢ when Ay, is the top-left block of Si. So, m1(hkp,) = 7T1<a2_’é) = 1.
Then p; =1 and 71 (hg—1,,) = 1. However, every bottom-left vertex of an a-block must be of color
0 (in II), 3 (in II;) or 2 (in Iy and II3) which contradicts the fact that hy_1,, is the bottom-
left vertex of Ap_;. This implies that Ay can not be the top-left block of Si. Due to the same
reason, contradiction occurs on the condition that Ay is the top-right block, bottom-left block or

bottom-right block of Sj.

Case 2. Cg(hi—1,,) = A;r.

Since, by the definition of Uy i, Wl(az(l)) = 71'1((1]—:%), it follows that a;% is the unique vertex of

color p1 in Cg(hy_1,,) and hence c,, (hg_1,,) must be ais. So, P, = (a2 afy). We also get

_ (410 11 +10 +11 .
P, = (a0, a5 ) because both a; 5" and a; " are in Uy 2 and are of the same color. Therefore,
B[ Pps.-

Q. E. D.

For any vertex v of BB,., we want to show the paths from v to r in T'By,T By and T Bg are pairwise
internally disjoint. Each path from v torinaTB,;,1 < ¢ < 3, can be regarded as a concatenation of
three subpaths, including the subpath from v to its nearest a-vertex hy;,l(v) < (k) (see Lemma 3.5),
the subpath from hy; to hy)—1; (see Lemma 3.3), the subpath from hy,y_;; to a vertex a of A,
(see Corollaries 3.1 and 3.2) and the subpath from a to r (see Lemma 3.7). We are ready to give

proofs for the above subpaths.
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Lemma 3.5. If uy, is a b-vertex of Sk, 2 < k < I(r) — 1, then the paths from uy to uj in each

TB,;,i=1,2,3, are pairwise internally disjoint.

Proof. Let ag[l) and a,jél be hy , and hy ,,, respectively. Since each T'B, ,,,i = 1,2,3, by

Lemma 3.3, is a spanning tree of BB,., we have the path P, from wuy to hy,, in T'B, ,, for each i.
We first prove V(P,;) NV (P,;) = {ux}, where j = 1,2. If uy, is a corner vertex, then 7 (uz) = 0 and
u; " is an inner vertex of color ps. By the definition of Hy, ,,, (uk, p(uk)), (u) 7, p(w,)) € E(Hy,py)-
Thus, (uk,p(uk),uljﬂ is a subpath of P,,. Since uz+ € V(Pyp,), Ppy — u, — p(uyg) is a subpath of
Py, ps- In contrast, P, is a subpath of P ,. because uy € V/(Py,;). Moreover, since p(ux) € V(Pgp;)
and Py, || Pr,p; > V(Ppg) NV (P,;) = {ug}. Otherwise, uy, is either an inner vertex or adjacent to an

inner vertex. Then P, — uy and P, — uy are subpaths of Py, and Py ,,, respectively. Therefore,

V(Pp3) NV (P,;) = {ug}. It remains to prove V(F,,) N V(P,,) = {u}.
Case 1. uy is an outer vertex.

. d—1
Let ug = a;g, where 2 < d < 10. Since hy ), = a,:é and hy ,, = aZél, P, = <a;,00l’ az(o ), e ,aéé)

and P,, = (azg, a;gdﬂ), e ,a:’%f). Clearly, V(P,,) NV (P,,) = {ux}.

Case 2. uy, is an inner vertex.

Every inner vertex is of color ps and has neighbors azg (€ Ug,) and azgdﬁ) (€ Ugp) of colors

p1 and py, respectively, where d € {2,5,8}. By the definitions of Hj , and Hj p,, (uk,a;‘g) €

+(d+2 d +(d-1 1
E(H},,) and (uk,aké )) € E(Hy,p,). Then paths P, = <uk,azo,ak,(0 )7... vak+,0> and P,, =
(ug, a;éd+2)7 azngr?’), e ,a,":%)1> share the common vertex uy.

Q. E. D.
The next result follows immediately.
Corollary 3.1. If ;) is a b-vertex of Sy, then the paths from u, to u;(r) in eachTB,;,1=1,2,3,
are pairwise internally disjoint.

Lemma 3.6. If uy is an a-vertex of S, 1 < k < I(r) — 2, then the paths from uy to u;<;+1 in each

TB,;,1=1,2,3, are pairwise internally disjoint.

Proof. Let aﬁ_l o and a;_ﬁ o be hry1p, and hyyq p,, respectively. Let B be the block containing
¢p; (ug) for i = 1,2,3. By the definition of E(Hyy1,,,), the edge (ug, ¢y, (ur)) € E(Hyt1,p,) for each i.

If B is an a-block, paths (uy, c,, (ur), uj, ) in TB;,,, for i = 1,2,3, are pairwise internally disjoint.
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For the case B is a b-block, let P,, be the path from ¢, (ux) to hpy1,p, in Hiq1,p,. Since ¢y, (ug) €
V(Pit1,p;)s Pp; is a subpath of Py ,,. Recall that P11, is an i—path, whereas both P ,, and

Pyt1,p, are o—paths. Thus, P,,||P, and P,||P,,. It remains to prove P, ||P,,. Since c,, (u;) €

Uk+1,1 and cp, (ur) € Upy1,2, we let aZ_f_lLO and azﬁ?) be ¢, (ux) and c,, (ug), respectively, where
— (g +(d-1) +1 — (g Td+2) 4 (d+3) +11
d € {2,5,8}. Then paths P, = (akJrLo, Apy1o > ,ak+170> and P, = <ak+1,0 OSSR ,ak+170>

are disjoint.

Q. E. D.

Corollary 3.2. If w1 is an a-vertexr of Sy,y_1, then the paths from wy,y_ to u;(r) in each

TB;,i=1,2,3, are pairwise internally disjoint.

Lemma 3.7. The paths from ug(r) tor in each T'B,;, fori=1,2,3, are pairwise internally disjoint.

Proof. Let m(a;) = p; for i = 1,2,3. Recall that (a;,,,a;) € E(Hyy),,). Let Py, € Ry, be

2

the path from () ; to r in T'B, ,, for each i.
Case 1. 7 is aj() 1-

Intuitively, P, = (r). Vertices r*, r~ and r** are ay;)3, a0 and ()2, respectively. Since
mi(r") = ps and E(Ry (v+)) = &2, E(Rp;) = &. Then P,; = (r*,r) reveals the fact that P, C
R,;. Recall that we assign color mi(r**) to a0 in RootColoring Algorithm. So m(r~) = po.
Furthermore, since E(Ry, (-)) = &1, it follows that E(R,,) = £1. Then, P,, = (r**,r=,r) due to

pP,, € R,,. Clearly, P, , P,, and P,, are pairwise internally disjoint.

Case 2. r € {al(r),o,al(r),Q,al(r),:’,}'

Similar to the proof of Case 1.

Q. E. D.

Lemma 3.8. The paths from uj, to r in each TB,; are pairwise internally disjoint, where 1 < k <

l(r)y—1and 1 <i<3.

Proof. Let p; = mi(a}) for i = 1,2,3. By Lemma 3.4, we have pairwise internally disjoint paths

X1, from u;;l to u;-, where 1 <i <3, k+1<j<I(r)—1and hj_1,,,hj, € V(Xj-1,,). For

each 4, let Xj)_1 ,, be the path from uE(T)_l to u;(r) and let X, ,, be the path from u;(r) to r in

TBy.p,. Let Yj(;)_1,, be the subpath of Xj from hy(py_1 p, to aj in T'B, ,, for each i. Notably,

7")_17/%‘
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Py 1,1, > a;, & V(Xl(r)q,%) if i1 # io. We shall list pairwise internally disjoint paths from u;(r)_l

to r in each T'B, ,, to complete the proof.
Case 1. m(p(r)) = 0.

From RootColoring Algorithm, every vertex of U1, U2 and Uy, 3 is assigned the color
m1(p(r) "), m(p(r)”) and m1(p(r)™"), respectively. So, mi(af) = mi(p(r)™), mi(ay) = m(p(r)”) and
mi(ag) = m(p(r)™*), implying p(r)*, p(r)~ and p(r) ™" are hy)_1 pylu)—1,p, a0d hyy_1 py, Tespec-
tively. Since ¢, (hy(ry—1,p,) = @) and ¢y, (hy)—1,p,) = a5, it follows that Yio)_1 0 = (hi)—1,,5 @)
and Y10, = (Mi(r)—1,p5> @5)- SInCe hyy 1,515 Pugry—1,p05 @1, a5 & V(Yir)=1,p5)5 Yier)—1,015 Yi(r)—1,p9

and Yy are pairwise disjoint. Moreover, by Lemma 3.7, we have pairwise internally disjoint

*1703

paths X

r),pe frOM u;(r) to 7, where 1 <4 < 3 and a; € V(Xj),,)-

Case 2. m(p(r)) = 1.

Vertex p(r) is hyy—1,1- By the definition of Ry, the path from p(r) to r in T'B, 1, denoted Py, is
a subgraph of R;. From RootColoring Algorithm, every vertex of Uy 3 is assigned color 1. If
m1(p(r)T) = 0, every vertex of Uiry,1 and Uy, o is assigned color 2 and 3, respectively. So, p(r)~
and p(r)TT are hiry—1,3 and hy)_1 2, respectively. Then Yy, _13 = (p(r)~, ay). Since p(r)~, a5 &
V(Y =1,03)s Yir)—1,2 and Yy, 3 are disjoint. By Lemma 3.7, we have internally disjoint paths

Xi(r),i, from u;(r) to r, where iz = 2,3 and a;, € V(Xj(),). Notably, each Xj(,);, is a subgraph of

2

R;, and shares a unique common vertex r with P;. For the case m (p(r)*) = 3, due to the same

reason, we get pairwise internally disjoint paths from u;(r)—l to r in each T'B, ;.
Case 3. m1(p(r)) € {2,3}.

Similar to the proof of Case 2.

Theorem 3.5. For a given root vertex r, 2 < I(r) < n, in P,, BB, has 3—ISTs.
Proof. Let p; = m(a;) for i =1,2,3. Let v € V(BB,). By Lemma 3.3, we have paths P,, from
v torin T'B, ,, for each i. We want to show P, , P,, and P,, are pairwise internally disjoint.
Case 1. l(v) = 0.

Vertex v is A and adjacent to every vertex of hi. By Lemma 3.4, we have pairwise internally disjoint

paths X1 ,, from v to uh, where 1 < i < 3and hy p,, hap, € V(X1,,). Furthermore, by Lemma 3.8, we
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have pairwise internally disjoint paths X5 ,, from u5 to r, where 1 <i < 3 and ha,,,a; € V(Xa,,).
Let Y1, = X1, —uby and Ys ,, = Xo ,, — ub for each i. Clearly, paths Y7 ,,Y> ,, from v to r are

pairwise internally disjoint for i = 1, 2, 3.
Case 2. v is an a-vertex and 1 < [(v) <I(r) — 2.

By Lemma 3.6, we have pairwise internally disjoint paths X1 ,, from v to u; ( in each T'B,. ,,, where

v)+1
1 <i < 3and hyyq1,p, € V(X1,,). Furthermore, by Lemma 3.8, we have pairwise internally disjoint
paths X5 ,, from u;(v)ﬂ to r, where 1 <4 < 3 and Iy(y)11,, € V(Xa,,). Let Y1, = X1, — u;(v)ﬂ
and Y3 ,, = X, — ug(v) 4 for each i. Clearly, paths Y; Y3, from v to r are pairwise internally

disjoint for i = 1,2, 3.
Case 3. v is an a-vertex and [(v) = [(r) — 1.

If v = p(r), then, by the definition of each R,,, we have three pairwise internally disjoint paths
(v,77,7), (v,r*t,r) and (v,r). Otherwise, v # p(r). Since ¢,,(v) € V(Pry1,,); Py is a subpath
of Pyy1,p,- So, Py, || Py, and Pp,||P,, because Pyi1 p,||Prit1,p, and Pyii psl|Pret1,p,- Moreover, since

¢y (V) € Ugy1,1 and ¢, (v) € Ug1,2 belong to the same block, it follows that P,, || P,,.
Case 4. v is a b-vertex and 2 < [(v) <I(r) — 1.

By Lemma 3.5, we have pairwise internally disjoint paths X ,, from v to ug(v) in TB, ,,, where

1 <4< 3 and hy € V(X1,,). Furthermore, by Lemma 3.8, we have pairwise internally disjoint

U)7pi

paths X5 ,,, from w, to r, where 1 <i < 3 and hy) p,, a; € V(Xa,p,). Let Y15, = X, — 1,y and

P30 i l(v)
Yo, = Xop, — ug(v) for each i. Clearly, paths Y7 ,, Y3 ,, from v to r are pairwise internally disjoint

fori=1,2,3.
Case 5. v € V(Ap))-

The case v = r is trivial. For cases v € {r*,r~,7t*} we shall list three pairwise internally disjoint
paths for each case, where each path is a subpath of R,,. If v = v, we have paths (r,rtF r= r),
(rt,r)y and (r*,p(rT),r). For the case v = r—, we have (r—,r), (r—,r*T 7% r) and (r=,p(r~),r).

And we have (rt+ r= r) (r*T ¢t r) and (rT p(r™T), r) for the case v = r 7.
Case 6. v € V(Sl(r)) \ V(Al(r))

By Corollary 3.1, we get pairwise internally disjoint paths X; ,, from v to ug(T) in T'B, ,,, where

1 <i < 3andd;, € V(Xy,,). Furthermore, by Lemma 3.7, we have pairwise internally disjoint
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paths X5, from ) to r, where 1 < i < 3 and a5 € V(Xyy,). Let Y1, = Xy, — uj,, and

,
Yo, = Xop — u;(r) for each i. Clearly, paths Y7 ,, Y5 ,, from v to r are pairwise internally disjoint
fori=1,2,3.

Q. E. D.

3.3.2 Branching Stage

A subpyramid Py (u) is a subgraph of P, by letting a vertex u € V(IP,) be the apex of P, (u). A
flat subpyramid P, (u) is a subpyramid without an apex u and a layer 1. Let Vj, denote the set of
b-vertices of BB,. The subgraph P,, — BB, is regarded as an union of flat subpyramids, and every
flat subpyramid is defined as P, (p(v)), where v € V(Ay(;)) UV,. In particular, P, (p(v)) is defined to
be empty if v € Sy,y and [(r) = n. For easily describing notations in P,.(p(v)), we let Sy denote the
cluster on layer k of P, (p(v)), where 2 < k < n —[(v) + 1. That is, S is actually a cluster on layer
I(v)+k—10f P,,. For aP,(p(v)), Ps(Sa2) is either Ay, or a b-block of BB,, and Pp(S2) is also denoted
by Si. Since Sp is in fact a block of BB,, S; has a 7 coloring in Backbone Establishment Stage.
Henceforth, every cluster of P, (p(v)) can have a 7y coloring by applying HFinding Algorithm on its
parent block. Notations lAz;“ and ﬁm, 1 < < 3, refer to Section 3.1. Let T;(v), 1 < i < 3, denote
n—l(v)+1 2k—2_1

the spanning subgraph of P,(p(v)) and have the edge set  |J U E(H;(k;a,b)). Let Tf,i,
k=2 a,b=0

1 <4 < 3, denote the spanning subgraph of P,, with the edge set E(T'B,.;) UveV(Am))UVb E(T;(v)).

Lemma 3.9. Let v € V(Aj)) UVy. If uy is a vertex of Sy in Pp(p(v)), 2 <k <n—1(v)+1, then

the paths from uy to r in each Tzi, fori=1,2,3, are pairwise internally disjoint.

Proof. S is either Aj(ry or a b-block of BB,. If S, = Aj(ry, then, by Theorem 3.3, we have

pairwise internally disjoint paths from uy to r in each sz Otherwise, S7 is a b-block of BB,.. Let 17;

be the dummy vertex with dummy edges incident to every vertex of Pg(Sj41) for j =1,2,...,k—1.
Let u;(r) be the dummy vertex with dummy edges incident to every vertex of {a],a5,as}. Let
pi = mi(a}) for each i. From Lemma 3.1, we get pairwise internally disjoint paths X ,, from uy
to E in T),(v) for each i = 1,2,3. By applying Lemma 3.2, we get pairwise internally disjoint
paths X ,. from 173 to K in T, (v) for each i, where 2 < j < k — 1. Let Y, = X, — u},_, and

o

X ol
Yjp, = Xjp —uj —u

J i1 for each 4, j. We now list the three pairwise internally disjoint paths Y7 ,,

from 271 to r in each T'B;. ,, to complete the proof.
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Let V(S1) = {v0, vpy, Vpy, Ups } such that m(vg) = 0 and m(v,,) = p; for i = 1,2,3. Recall that

vy, = vg . By the definition of each E(ﬁg,pi), either v,, or vy can be on the path X» ,,.
Case 1. S7 is a b-block of Si(ry-

By Lemma 3.7, we have pairwise internally disjoint paths Z7 ,, from ug(r) to r in T'B, ,,, where
1 <i<3anda) € V(Z1,,). Furthermore, from Corollary 3.2, we get pairwise internally disjoint
paths P,, from p(v) to u;(r) in TB, ,,, where 1 < i < 3 and a} € V(P,,). Since (v,,,p(v)) € E(TB,,),
P,, —p(r) is the path from v,, to ug(r) in TB,,,. lfv,, € V(Xs,,), we get paths Y1 ,, = Z2 ,, 21, —
u;(r) for each 7. Otherwise vg € V(Xz ;). Since (vo,p(vo),v,s) is a subgraph of E(Hy ,,), we

get the path Y7, = (vo, p(v0), Vps) Z2,p5 Z1,p5 — u;(,r). In addition, Y1, = Z2,,Z1,p, — ug( ) and

T

Yipy = 22,02 21,00 — UE(T).
Case 2. S7 is not a block of Si(r)-

Notice that Sp is a b-block and I(v) < I(r). By Lemma 3.8, we have pairwise internally disjoint
paths Z; ,, from ug(v) to 7 in T B, ,, where 1 < i < 3 and hy) ,, € V(Z1,,). Furthermore, from
Lemma 3.6, we get pairwise internally disjoint paths P,, from p(v) to u;(v) inTB, ,,, where 1 <17 <3
and hy(y),p, € V(Pp,;). Since (v, p(v)) € E(TBy.p,), Py, —p(r) is the path from v,, to u;(v) in TB,,.
If v,, € V(Xa,,), we get paths Y1 ,, = Z2 5, Z1,p, — u;(v) for each i. Otherwise vy € V(Xa,p,). Since
(v0,p(v0),vps) is a subgraph of E(Hy) ,,), we get the path Y1 5, = (vo, p(v0), Vps) Z2,p5 21,5 — u;(v).

In addition, Y1 ,, = Z2 5, Z1,p, — u;(v) and Y1 p, = 22y Z1,py — u;(v).

It concludes that paths Yy ,, Y1, ... Y1,y from u; to r in T,%pi, for ¢ = 1,2,3, are pairwise

internally disjoint.

Q. E. D.

Theorem 3.6. The construction of 3-1STs of P, rooted at r,2 < l(r) < n, can be solved in O(|V|)

time, where |V| is the number of vertices of Py,.

Proof. The construction of 3-ISTs rooted at r, 2 < [(r) < n, contains the Backbone Estab-
lishment Stage and the Branching Stage. Let r = (k;x,y). In the Backbone Establishment Stage,
every vertex (k — j; [57], LQ%J), for j = 0,1,...,k — 1, is an ancestor of r and can be decided in
O(1) time, implying every a-block can be found in O(1) time. Since every cluster of BB, can be

colored by constant time, m; coloring costs O(|V (BB, )|) time. We then need additional constant
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time to have an RootColoring Algorithm. Vertices of hy of a cluster are decided in constant time
and hence every Hy; is established in constant time. Since each edge set E(H,;),i = 1,2,3 has
|V (BB,)| — 1 edges and each edge of E(H, ;) can be checked in constant time, the finding of E(H, ;)

costs O(|V(BB,;)|) time. Therefore, Backbone Establishment Stage costs O(|V (BB,)|) time.

In Branching Stage, every flat subpyramid P, (p(v)) needs O(|V (P, (p(v)))|) time 7y coloring.
By Theorem 3.2, the construction of 3-ISTs of every P,(p(v)) rooted at p(v) can be solved in
O(|V(Pn(p(v)))|) time, where v € V(A;)) U V4. The overall time complexity of Branching Stage is
O(|V (P, —BB,)|). That is, the construction of 3-ISTs of IP,, rooted at r, can be solved in O(|V (P,,)|)
time.

Q. E. D.
4 Conclusion Remarks

In this paper, we present linear time algorithms to construct 3-ISTs in an n-dimensional pyramid
P,,. To the best of our knowledge, this is the first result for constructing ISTs in PP,,. The tree height
and the average distance of an IST are considered as two performance metrics in our algorithms.
The height of a tree T is the the number of vertices in a longest path from the root to a leaf. The
average distance of T is the average of all distances from any vertex to the root. The resulting
values are shown in Table 1. In Table 1, the column “height” provides an upper bound to the values
of the average distance of a tree, where n is the dimension of the given network. Columns 4-10
demonstrate average distances for different network scales. The data are calculated on different
scenarios to see the tree heights and the average distances for different scales of pyramid networks.
Although the values of average distances are associated with a proportional increase in the dimension
of the networks, the resulting values of T’ ngpli and TT27 p; are still bounded by 2.81n,2.81n and 6.54n,

respectively, even when the given network is of order over 1 million vertices.
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Figure 1: A top view of the pyramid P5.
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Figure 2: The bold cluster edges establish three subgraphs (a)ﬁhpl, (b)ﬁkm, (C)Hk,p3 of a cluster
Sk, where the parent vertex of the top-left block is of color 0. The dash lines indicate layer edges.

(a) o (b) Iy © 11,

Figure 3: The four possible m; colorings Ily, I1;, IIy and II3 of a cluster Sy, when Ay is (a) the top-left
block; (b) the top-right block; (c) the bottom-left block; (d) the bottom-right block of Sk.
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Figure 4: The three subgraphs (a)Hy, ,, (b)Hg p,, (¢)H} p, of a cluster Sy, where the top-left block

of S} is an a-block.

Table 1: The table of tree heights and average distances

n (dimension)
| [(r) [ height 2 | 3] 4] 5 | 6 | 7] 10
| [V(RP,)| | 21 | 85 341 1,365 | 5461 | 21,845 | > 1 million
). Ty, 5n — 2 2.14n | 2390 | 253n| 2.62n | 2.69n | 2.73n 2.81n
T/% on — 3 1.71n 2.06n 2.28n 2.42n 2.52n 2.59n 2.71n
T,.T, 5n — 2 2.14n | 2390 | 253n| 2.62n| 2.69n | 2.73n 2.81n
T, 5n — 2 2.10n | 237n | 253n| 2.62n| 2.68n| 2.73n 2.81n
T, T, <5n—11 | <2.14n | <3.456n | <4.43n | <5.11n | <5.58n | <5.92n < 6.54n
+5l(r) + €
T2, <9n—19 | <2.50n | <2.60n | <3.35n | <3.99n | <4.47n | < 4.83n < 5.48n
+4l(r) + ¢
e: the distance from an a-vertex of Sy to 7.
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