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Abstract

The aim of this paper is to provide an efficient frequency-domain method for bifurcation analysis of nonlinear dy-
namical systems. The proposed method consists in directly tracking the bifurcation points when a system parameter
such as the excitation or nonlinearity level is varied. To this end, a so-called extended system comprising the equation
of motion and an additional equation characterizing the bifurcation of interest is solved by means of the Harmonic
Balance Method coupled with an arc-length continuation technique. In particular, an original extended system for the
detection and tracking of Neimark-Sacker (secondary Hopf) bifurcations is introduced. By applying the methodology
to a nonlinear energy sink and to a rotor-stator rubbing system, it is shown that the bifurcation tracking can be used to
efficiently compute the boundaries of stability and/or dynamical regimes, i.e., safe operating zones.

Keywords: Harmonic balance method, Periodic solutions, Quasiperiodic solutions, Continuation, Bifurcation
tracking, Limit point, Neimark-Sacker bifurcation, Floquet exponents, Nonlinear energy sink, Jeffcott rotor

1. Introduction

Industrial requirements in terms of security, cost reduction and increased performance push designers, manu-
facturers and operators to create more and more advanced technological equipment in which nonlinearities are now
common. In this context, understanding and controlling nonlinear effects due to contact, large deflections, links or
components such as bearings or friction dampers is an important issue. Resulting nonlinear systems can exhibit com-
plex dynamical behaviours with specific features such as multi-solutions for a single value of the system parameters,
amplitude or frequency jumps, internal resonances, period-doubling, quasi-periodic or chaotic motions [1–4]. How-
ever, for a given system, the systematic study of all these phenomena and their possible occurrence is generally out of
reach because of the large number of parameters to be considered and the limited available computational resources.
An overall understanding of the system’s dynamics can nevertheless be obtained through the computation of periodic
solutions, forced response curves and associated bifurcations.

The literature comprises various numerical methods for the direct computation of periodic solutions which can be
classified into two main categories, namely time domain and frequency domain approaches. The shooting method [5]
and orthogonal collocation [6] which rely on solving a nonlinear boundary value problem are two popular time domain
approaches. Orthogonal collocation is implemented for instance in AUTO [7] and MATCONT [8] softwares. In the
frequency domain, the most commonly used method is certainly the harmonic balance method (HBM) which consists
in approximating the unknown state variables by means of truncated Fourier series. Since nonlinearities cannot be
directly computed in the frequency domain, the standard HBM is usually coupled with the alternating frequency-time
(AFT) scheme [9] which computes the nonlinear terms in the time domain and subsequently their Fourier coefficients.
The AFT scheme is very popular due to its easy implementation, its computational efficiency and its ability to handle
almost any type of nonlinearities. Over the past decades, the HBM has been extended to quasi-periodic solutions
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[10–13] and many improvements have been proposed, such as adaptive schemes that improve the performance by
selecting only the harmonics of interest [14, 15] as well as methods to handle systems with many distinct states [16]
and strong or non-smooth nonlinearities [17, 18]. For the computation of forced response curves, i.e. the following of
periodic solutions when a control parameter is varied, the HBM is coupled with a continuation technique, e.g. the arc-
length continuation based on tangent prediction steps and orthogonal corrections [19, 20] or the so-called asymptotic
numerical method [21].

In an engineering context, the local stability of periodic solutions is often computed when following the response
curve since it distinguishes between solutions that may or not be experimentally observed. Several algorithms oper-
ating either in the time or frequency domain are available [22, 23]. The detection of bifurcations points is more rarely
performed. However, their computation is of prime interest. For instance, a limit point (also called fold bifurcation)
indicates a change of stability and is responsible for amplitude jumps that can lead to significant and possibly dramatic
changes in the system response. A Neimark-Sacker (secondary Hopf) bifurcation corresponds to a change of motion
regime and indicates the transition from a periodic to a quasiperiodic motion.

Consequently, the parametric analysis of bifurcations can be used to understand the effects of nonlinear phenomena
and to determine the boundaries of stability and/or dynamical regimes, i.e., safe operating zones. The resulting
bifurcation map is an efficient tool for designers in order to identify the relevant parameters ruling the system’s
behaviour and to choose appropriate sets of parameters that lead to optimal runs. A simplified approach for this
parametric analysis consists in calculating the whole response curves for several values of a chosen parameter, and
collect all the detected bifurcations. However, this approach is very expensive and produces unnecessary results since
only bifurcation points are of interest. A more efficient approach consists in detecting a starting bifurcation point for a
fixed value of the parameter of interest, then in directly tracking the path of bifurcations while this parameter is varied.

Two approaches exist for the precise computation of bifurcation points. The first one is based on the use of
so-called standard extended systems and consists in introducing one or more additional equations characterizing the
bifurcation. The second approach relies on minimally extended systems and bordering techniques in which only
one scalar function is added. The direct calculation of limit points of nonlinear equations depending on a parameter
was first introduced by Seydel [24, 25], Moore and Spence [26] using standard extended systems. Many authors
also utilized this approach for the direct calculation of critical points for post-buckling finite element problems [27–
29]. It was recently combined with HBM by Petrov [30] for the detection of branch point bifurcations, where two
branches of solutions intersect, and branch-switching along curves of periodic solutions. The direct calculation of
limit points by means of minimally extended systems was introduced in [31] and subsequently used and improved by
many authors [32, 33]. The computation of Hopf bifurcations for dynamical systems by means of standard extended
systems originates from the work of Jepson [34]. Several variations and improvements have then been developed
by Griewank and Reddien [35] or Roose et al. [36, 37] among others. This type of algorithm is frequently used in
fluid mechanics to detect instabilities when the Reynolds number reaches critical values [38]. Such standard extended
systems are implemented in AUTO [7] and LOCA [39] softwares. The computation of Hopf bifurcations by means
of minimally extended systems is detailed in [32][40][41]. These minimally extended systems are implemented in
MATCONT [8] software. A comprehensive review of the methods suitable for detecting bifurcations can be found in
[19] while in [42] authors focus on Hopf bifurcations.

The numerical continuation of bifurcation points is much less addressed in the literature. The continuation of paths
of limit points of nonlinear equations having two parameters was first investigated by Jepson and Spence [43] with
standard extended systems. In a mechanical context, it was later used for studying the sensitivity of critical buckling
loads to imperfections [44–46]. In MATCONT, the continuation of codimension-1 bifurcations of dynamical systems
is performed by means of minimally extended systems. In [47], Detroux et al. combined this approach with the HBM
for the tracking of limit point, branch point and Neimark-Sacker bifurcations of large-scale mechanical systems. In
this paper, we combine HBM and standard extended systems. We already used this approach in [48] in the case of
limit points. Here, this work is extended to all types of codimension-1 bifurcations. In particular, we build on the
work of Griewank and Reddien [35] in order to propose an efficient algorithm for the computation and the tracking of
Neimark-Sacker bifurcations.

The paper is organized as follows. The formulation of the harmonic balance method for the continuation of
periodic solutions is presented in Section 2. The stability analysis and the characterization of the bifurcations are
based on the Floquet exponents obtained from a quadratic eigenvalue problem as described in Section 3. The extended
systems used for the computation of the bifurcations are then detailed in Section 4, with emphasis on computational
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issues such as the efficient calculation of the derivatives involved in the Newton-Raphson iterations. The direct
tracking of these bifurcations, i.e., the continuation of bifurcation curves is addressed in Section 5. The performance
of the proposed approach is demonstrated in Section 6 on two nonlinear dynamical problems: a nonlinear vibration
absorber and a nonlinear Jeffcott rotor. Finally, conclusions are drawn in the last section.

2. Equilibrium path

2.1. Harmonic Balance Method
A forced nonlinear dynamical system with n degrees of freedom (DOFs) governed by the following set of equa-

tions of motion is considered

r(x, ω, t) = Mẍ(t) + Cẋ(t) + Kx(t) + fnl(x, ẋ) − p(ω, t) = 0 (1)

with x(t) the displacement vector containing the n DOFs, M, C, K the generalized mass, damping and stiffness
matrices, fnl the vector of nonlinear forces, p(ω, t) the periodic excitation forces and ω the excitation frequency.

Harmonic balance method is used for its efficiency compared to time integration to predict periodic solutions.
Assuming that the harmonic response has the same period τ = 2π/ω as the excitation, the displacements, nonlinear
forces and excitation forces can be represented as Fourier series up to order H

x(t) = X0 +

H∑
k=0

Xk
c cos(kωt) + Xk

s sin(kωt)

fnl(x, ẋ) = F0 +

H∑
k=0

Fk
c cos(kωt) + Fk

s sin(kωt) (2)

p(ω, t) = P0 +

H∑
k=0

Pk
c cos(kωt) + Pk

s sin(kωt)

where

X =
[
X0T

, X1
c

T
, X1

s
T
, . . . , XH

c
T
, XH

s
T ]T

Fnl =
[
F0T

, F1
c

T
, F1

s
T
, . . . , FH

c
T
, FH

s
T ]T (3)

P =
[
P0T

, P1
c

T
, P1

s
T
, . . . , PH

c
T
, PH

s
T ]T

are vectors of Fourier coefficients of size L = n × (2H + 1) . Equation (2) can be rewritten in the compact form

x(t) = (T(ωt) ⊗ In)X
fnl(x, ẋ) = (T(ωt) ⊗ In)Fnl (4)

p(ω, t) = (T(ωt) ⊗ In)P

where the linear operator T stands for the inverse Fourier transform and is made of trigonometric functions

T(ωt) = [1 cos(ωt) sin(ωt) . . . cos(Hωt) sin(Hωt)] (5)

In is the n × n identity matrix and ⊗ is the Kronecker tensor product. Similarly, introducing the derivative operator

∇ = diag(0,∇1, ...,∇ j, ...,∇H) with ∇ j = j
[

0 1
−1 0

]
(6)

the velocity and acceleration vectors can be written as follows

ẋ(t) = ω(T(ωt) ⊗ In)(∇ ⊗ In)X = ω[(T(ωt)∇) ⊗ In]X (7)

ẍ(t) = ω2(T(ωt) ⊗ In)(∇2 ⊗ In)X = ω2[(T(ωt)∇2) ⊗ In]X
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A Galerkin procedure is then applied to the equations of motion, which consists in projecting Eq.(1) on the trigono-
metric basis T(ωt) with respect to the scalar product

〈 f , g〉 =
2
τ

∫ τ

0
f .g dt (8)

By introducing Eqs.(4) and (7) into the resulting equations and using the orthogonality property 〈T(ωt),T(ωt)〉 =

I2H+1, the nonlinear system of n equations (1) in the time domain is transformed into a nonlinear algebraic system of
dimension L in the frequency domain

R(X, ω) = Z(ω)X + Fnl(X) − P = 0 (9)

where
Z(ω) = ω2∇2 ⊗ M + ω∇ ⊗ C + I2H+1 ⊗ K = diag(K,Z1, ..Z j, ..ZH) (10)

Z j =

[
K − j2ω2 M ωC
−ωC K − j2ω2 M

]
(11)

An incremental-iterative Newton-Raphson procedure is used to obtain solutions of Eq.(9), with corrections δX given
by

Rk
XδX = −Rk (12)

Xk+1 = Xk + δX (13)

where RX stands for the derivative of R with respect to X and the superscript k indicates an evaluation with updated
variables at iteration k, i.e.

Rk = R(Xk) Rk
X =

∂R
∂X

∣∣∣∣∣
X=Xk

(14)

2.2. Continuation technique and path-following
Nonlinear systems often have several possible responses for a given excitation frequency ω. The pseudo-arc

length continuation method [49] combined with the above-mentioned algorithm permits following the solution branch
beyond limit points in order to obtain both stable and unstable solutions of the response curve. It is based on tangent
prediction and orthogonal corrections [19]. For this purpose, not only X but also ω is considered as an unknown. Once
a starting point (X0, ω0) on the solution curve has been obtained by solving Eq.(12), a tangent vector t = (∆X,∆ω) is
obtained from

[RX Rω]
[
∆X
∆ω

]
= 0 (15)

where Rω = ∂R/∂ω. A normalization condition ‖t‖ = ∆XT ∆X + ∆ω2 = 1 is added to make the tangent vector unitary
and the prediction step gives a solution at distance ∆s along direction t[

X1

ω1

]
=

[
X0

ω0

]
+ ∆s t (16)

Then, this prediction is corrected iteratively in the direction orthogonal to t until the convergence criterion ‖Rk‖ ≤ ε is
satisfied, with ε a user-defined accuracy. The corrections δXk+1 and δωk+1 are given by the system of L + 1 equations[

Rk
X Rk

ω

∆XT ∆ω

] [
δXk+1

δωk+1

]
=

[
−Rk

0

]
(17)

and the solution at iteration k + 1 is obtained with

Xk+1 = Xk + δXk+1

ωk+1 = ωk + δωk+1 (18)

Finally, an adaptive step-length algorithm [19] based on the number of iterations in the corrector step is used to ensure
robust continuation.
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2.3. Computation of nonlinear terms and derivatives

Nonlinear forces are usually much easier to evaluate in the time domain than in the frequency domain. Therefore,
the Fourier coefficients of nonlinear efforts Fnl and their derivative ∂Fnl

∂X involved in the Newton-Raphson iterations
are obtained by Alternating Frequency-Time (AFT) method [9]. The AFT algorithm uses discrete Fourier transforms
(DFT) to compute the nonlinear forces in the time domain and then switches back to the frequency domain

X
DFT−1

−−−−−→ x(t), ẋ(t) −−−→ fnl(x, ẋ)
DFT
−−−→ Fnl(X) (19)

Defining N uniformly spaced time samples ti = i ∆t, i = 1 . . .N, such that ∆t = τ/N with N ≥ 2H + 1 and the
corresponding vectors of N time samples of the displacements and nonlinear forces

x̄ = [x(t1), . . . , x(tN)]T

f̄nl = [ fnl(t1), . . . , fnl(tN)]T (20)

and using Eq.(4) yields the following inverse-DFT relations between the vectors of time samples and the Fourier
coefficients [50]

x̄ = [T(ωt1) ⊗ In, . . . ,T(ωtN) ⊗ In]T X = (Γ ⊗ In)X
¯̇x = [T(ωt1) ⊗ In, . . . ,T(ωtN) ⊗ In]T (∇ ⊗ In)X = ω(Γ ⊗ In)(∇ ⊗ In)X = ω[(Γ∇) ⊗ In]X

(21)

Once f̄nl has been computed in the time domain using x̄ and ¯̇x, the following DFT relation is used to go back to the
frequency domain

Fnl = (Γ ⊗ In)−1 f̄nl = (Γ−1 ⊗ In) f̄nl (22)

Remarkably, matrices Γ and Γ−1 do not depend on ω and thus can be conveniently written as follows after introducing
θi = ωti = 2πi/N

Γ =


1 cos θ1 sin θ1 . . . cos Hθ1 sin Hθ1
...

...
...

...
...

1 cos θN sin θN . . . cos HθN sin HθN

 (23)

Γ−1 =
1
N



1 . . . 1
2 cos θ1 . . . 2 cos θN

2 sin θ1 . . . 2 sin θN
...

...
2 cos Hθ1 . . . 2 cos HθN

2 sin Hθ1 . . . 2 sin HθN


(24)

Using the chain rule, the derivative of Fnl can then be obtained

∂Fnl

∂X
=
∂Fnl

∂ f̄nl

∂ f̄nl

∂x̄
∂x̄
∂X

+
∂Fnl

∂ f̄nl

∂ f̄nl

∂ ¯̇x
∂ ¯̇x
∂X

= (Γ−1 ⊗ In)
∂ f̄nl

∂x̄
(Γ ⊗ In) + (Γ−1 ⊗ In)

∂ f̄nl

∂ ¯̇x
ω[(Γ∇) ⊗ In] (25)

with the nN × nN block-diagonal matrices of time samples of fnl derivatives

∂ f̄nl

∂x̄
= diagblk

(
∂ fnl

∂x

∣∣∣∣∣
t=t1

, . . . ,
∂ fnl

∂x

∣∣∣∣∣
t=tN

)
∂ f̄nl

∂ ¯̇x
= diagblk

(
∂ fnl

∂ẋ

∣∣∣∣∣
t=t1

, . . . ,
∂ fnl

∂ẋ

∣∣∣∣∣
t=tN

) (26)

In the case of systems with distinct states, the differentiation of the nonlinear force Fnl requires a specific treatment as
detailed in [16].
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The Jacobian RX is eventually given by

RX = Z(ω) +
∂Fnl

∂X
(27)

The expression of Rω is immediate from Eqs.(9) and (10)

Rω = ZωX (28)

where
Zω =

∂Z
∂ω

= 2ω∇2 ⊗ M + ∇ ⊗ C (29)

3. Stability analysis and bifurcation points

The continuation technique permits to find several solutions on the response curve for one given excitation. How-
ever, some of them are not stable and can not be experimentally reproduced. In addition, only periodic solutions are
found with the HBM described in the previous section. As a result, stability analysis and detection of bifurcations
indicating changes of dynamical regime are essential tools in numerical simulations.

Stability of solutions can be examined by means of Hill’s method which is variant of Floquet theory for frequency-
domain methods such as HBM [22, 23]. Hill’s method consists in perturbing the equations of motion (1) around a
periodic solution and applying the same Galerkin procedure as in Section 2.1 for HBM. The following quadratic
eigenvalue problem is obtained

(RX + Λ∆1 + Λ2∆2)φ = 0 (30)

where φ = φ1 + iφ2 are complex eigenvectors, RX is the Jacobian defined by Eq.(27) and

∆1 = 2ω∇ ⊗ M + I2H+1 ⊗ C = diag
(
C,

[
C 2ωM

−2ωM C

]
, . . . ,

[
C 2HωM

−2HωM C

])
(31)

∆2 = I2H+1 ⊗ M (32)

It should be noted that 2L = 2n(2H + 1) complex eigenvalues Λ are obtained from Eq.(30), of which only the 2n ones
with the smallest imaginary part are expected to have a physical meaning and correspond to the Floquet exponents
[51] denoted λi, i = 1 . . . 2n in the following.

By definition, a singular point appears when a Floquet exponent λ is null (see Fig.1), i.e. when the determinant
ϕ = det(RX) vanishes. The indicator ϕ is thus monitored during the continuation of the response curve and a change
of sign of ϕ between two consecutive points indicates the presence of a limit or branch point. The type of solution can
be classified as follows [19, 32]

Regular point if ϕ = det(RX) , 0 and RT
ωφ , 0

Limit point (LP) / Fold bifurcation if ϕ = det(RX) = 0 and RT
ωφ , 0

Branch point (BP) if ϕ = det(RX) = 0 and RT
ωφ = 0

(33)

−iκ

λ=

λ=

−iλ=

λ=+i

0λ=

+i κ

π/τ

Unstable

Period doubling

Neimark−Sacker

Limit point

Branch point

Neimark−Sacker

Period doubling

Stable

Im

Re

π/τ

Figure 1: Floquet exponents crossing the imaginary axis on the complex plane indicate a bifurcation
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Figure 2: Bifurcation points : (a) LP: Limit point (b) BP: Branch point (c) NS: Neimark-Sacker bifurcation ; Solid/dashed line: stable/unstable
branch

where φ is the eigenvector associated with the null eigenvalue Λ = 0 of RX . A Neimark-Sacker (NS) or secondary
Hopf bifurcation indicates a transition from periodic to quasi-periodic regime (see Fig.2) for solutions of the time-
domain equation (1). Its analogue in the framework of the frequency-domain HBM is a Hopf bifurcation which
indicates a transition from a fixed point (solution with constant Fourier coefficients) to a limit cycle (solution with
periodic Fourier coefficients). Considering this equivalence, both denominations will be used indifferently in the
following. A NS bifurcation occurs when a complex conjugate pair of Floquet exponents crosses the imaginary axis
of the complex plane with λ = ±iκ, κ , π/τ (see Fig.1). The presence of a NS bifurcation along the equilibrium
curve can thus be detected by monitoring the evolution of the Floquet exponents. Indicators which vanish at a NS
bifurcation are available [19, 32, 40]

ϕNS 1 =
∏

1≤ j<i≤n

λi + λ j

ϕNS 2 = det(2A � I2n)
(34)

where A is the diagonal matrix of the 2n Floquet exponents A = diag(λ1, . . . , λ2n) and � stands for the bialternate
product. These two indicators are equivalent because matrix 2A � I2n has eigenvalues λi + λ j. However, one has to
be careful when using them since they vanish not only for NS bifurcations but also for a pair of opposite real Floquet
exponents λ = ±κ indicating a neutral saddle point.

4. Localization of bifurcation points

As stated in the introduction, two approaches exist for the precise computation of bifurcation points. The first one
relies on so-called standard extended systems and consists in introducing one or more additional equations character-
izing the bifurcation [19, 26]. The second approach relies on bordering techniques and minimally extended systems
in which only one scalar function is added [32, 40, 47]. The approach based on standard extended systems is used in
the present paper. The main motivation for this choice is the ease of implementation since the additional equations
involved in standard extended systems have the same form and thus involve the same derivatives whatever the type
of bifurcation, as shown in the next sections. The counterpart is an increase in the size of the problem, as compared
to minimally extended systems, but the extra computational cost can be reduced with the use of a block elimination
algorithm [52].

The following procedure is used to locate bifurcation points. When a change of sign of indicators ϕ or ϕNS is
detected between two consecutive solution points, the point with the smallest absolute value of the indicator is used
as a starting point (X0, ω0) for the fully extended system.

4.1. Localization of limit points (LP) / Fold bifurcations

To locate limit points precisely, it is computationally more efficient to use the equation RXy = 0, obtained by
substituting Λ = 0 into (30), rather than the test function ϕ = det(RX) = 0 for the additional equation of the extended
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system. The resulting 2L + 1 extended system for localizing LPs takes the form

G(Y) =

R(X, ω)
RXφ

φTφ − 1

 = 02L+1 (35)

with Y = (X,φ, ω). The first equation defines the equilibrium path, the second one characterizes the limits points
and the last one normalizes the eigenvector φ. This extended system was first introduced by Moore and Spence [26].
System (35) can be solved by a Newton-Raphson method, with corrections at iteration k given by

GY (Yk) δY = −G(Yk) (36)

Yk+1 = Yk + δY (37)

with δY = (δX, δφ, δω). Eq.(36) can be written explicitly as
Rk

X 0L×L Rk
ω

(RXφ)k
X Rk

X (RXφ)k
ω

0T
L 2φkT 0


δXδφ
δω

 = −


Rk

Rk
Xφ

k

φkT
φk − 1

 (38)

In practice, the eigenvector corresponding to the smallest eigenvalue of RX(X0, ω0) can be used as a starting value
φ0 for φ. The 2L + 1 extended system (38) is regular at limit points and can be inverted. If L is large, a block
elimination algorithm [52] can be used in order to deal with sub-systems of size L only, involving RX , and thus reduce
the computational work. In this case, one has to deal with RX becoming singular when approaching the limit point
[28, 53].

4.2. Localization of branch points (BP)
Based on the classification (33), the following additional equation in introduced in order to discriminate branch

points from limit points
RT
ωφ = 0 (39)

Contrary to limit points, system (38) is singular at branch points. In order to avoid the singularity when approaching
branch points, a penalty term γe j is introduced where e j is a unit vector with j-th component equal to 1 and γ is
an auxiliary variable [53]. In practice, the initial value initial value for γ is assumed to be 0 and the eigenvector
corresponding to the smallest eigenvalue of RX(X0, ω0) can be used as a starting value φ0 for φ. Consequently, the
2L + 2 extended system to be solved during the Newton-Raphson procedure is given by

Rk
X 0L×L Rω e j

(RXφ)k
X Rk

X (RXφ)k
ω 0L

0T
L 2φkT 0 0

0T
L RT

ω 0 0



δX
δφ
δω
δγ

 = −


Rk + γke j

Rk
Xφ

k

φkT
φk − 1

Rk
ω

T
φk

 (40)

Again, a block elimination algorithm can be used in order to solve sub-systems of size L involving RX only, with a
particular attention on RX becoming progressively ill-conditioned [30].

4.3. Localization of Neimark-Sacker (NS) bifurcations
The original extended system presented here takes inspiration from the approach of Griewank and Reddien [35]

which has been adapted to work within the framework of the HBM.
By substituting Λ=±iκ and φ=φ1±iφ2 into (30) and identifying real and imaginary parts, two equations charac-

terizing NS bifurcations are obtained. Along with equilibrium and normalization equations, they provide the 3L + 2
extended system for locating NS bifurcations

K(X,φ1,φ2, κ, ω) =


R(X, ω)

RXφ1 − κ∆1φ2 − κ
2∆2φ1

RXφ2 + κ∆1φ1 − κ
2∆2φ2

qTφ1
φT

1φ1 − 1

 = 03L+2 (41)
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where q a constant vector with non zero projection on span{φ1,φ2}. It is worth noting that other normalizations are
possible, which can affect the algorithm behaviour. For instance, replacing qTφ1 = 0 and φT

1φ1 = 1 by qTφ1 = 0 and
qTφ2 = 1 in (41) leads to other solutions. In this case, for κ = 0, one has φ1 = 0 and the augmented system is reduced
to (35) and therefore limit points are obtained [35][37]. Obviously, these normalizations should be avoided if only NS
bifurcations are tracked, but they can be of interest for switching from a branch of LPs to a branch of NS bifurcations.

Once a starting point (X0, ω0) on the equilibrium path in the neighbourhood of the NS bifurcation is available,
the eigenvector corresponding to the complex eigenvalue Λ= iκ of RX(X0, ω0) can be used as a starting value for φ=

φ1+iφ2. This initial solution is then corrected by means of Newton-Raphson iterations resulting from the linearization
of Eq.(41)


Rk

X 0L×L 0L×L 0L Rk
ω

(RXφ1)k
X Rk

X − (κk)2∆2 −κk∆k
1 −∆k

1φ
k
2 − 2κk∆2φ

k
1 (RXφ1)k

ω − κ
k(∆1φ2)k

ω

(RXφ2)k
X κk∆k

1 Rk
X − (κk)2∆2 +∆k

1φ
k
1 − 2κk∆2φ

k
2 (RXφ2)k

ω + κk(∆1φ1)k
ω

0T
L qT 0T

L 0 0
0T

L 2φk
1

T 0T
L 0 0




δX
δφ1
δφ2
δκ
δω



= −


Rk

Rk
Xφ

k
1 − κ

k∆k
1φ

k
2 − (κk)2∆k

2φ
k
1

Rk
Xφ

k
2 + κk∆k

1φ
k
1 − (κk)2∆k

2φ
k
2

qTφk
1

φk
1

T
φk

1 − 1

 (42)

Again, a block elimination algorithm can be used in order to solve sub-systems of size L only. This time, no particular
procedure is necessary for RX since it is non-singular at NS bifurcations.

4.4. Computation of the additional derivatives involved the extended systems

Expressions for the derivatives RX and Rω are given in Eqs. (27) and (28). Since the vector of Fourier coefficients
φ does not depend on ω, the derivative (RXφ)ω is given by

(RXφ)ω = (RX)ω φ = Zωφ (43)

with Zω calculated with Eq.(29). Similarly, the derivatives involving ∆1 are obtained from Eq.(31) as follows

(∆1φ)ω = (∆1)ω φ = 2(∇ ⊗ M)φ (44)

The derivative (RXφ)X can be computed by means of the AFT method much in the same way as for ∂Fnl
∂X in Section 2.3

(RXφ)X = (Γ−1 ⊗ In)
∂rxϕ

∂x̄
(Γ ⊗ In) (45)

with the nN × nN block-diagonal matrix of time samples

∂rxϕ

∂x̄
= diagblk

(
∂rxϕ

∂x

∣∣∣∣∣
t=t1

, . . . ,
∂rxϕ

∂x

∣∣∣∣∣
t=tN

)
(46)

where rx is the derivative of the equilibrium residual (1) in the time domain and the eigenmode ϕ in the time domain
can be obtained from

ϕ̄ = [ϕ(t1), . . . ,ϕ(tN)]T = (Γ ⊗ In)φ (47)

(rxϕ)x can be obtained analytically in very simple cases only. For complicated systems or systems with many DOFs,
it can be approximated by finite differences [27]

(rxϕ)x =
∂rxϕ

∂x
'

1
εx

[rx(x + εxϕ) − rx(x)] (48)
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Similarly, (RXφ)X can also be computed directly in the frequency domain as

(RXφ)X '
1
εX

[RX(X + εXφ) − RX(X)] (49)

In Eqs. (48) and (49), the proper scaling of the perturbations εxϕ and εXφ with respect to x and X is essential to
ensure good accuracy and robustness of the numerical differentiation. This is accomplished by means of the following
formulas in which a suitable value for η has to be chosen. Using η = 10−6 has been found to provide good results for
a large range of applications.

εx = η

(
‖x‖
‖ϕ‖

+ η

)
εX = η

(
‖X‖
‖φ‖

+ η

)
(50)

5. Parametric continuation of bifurcation points

The following computational procedure is used to follow a branch of bifurcation points :

1. For a fixed value α0 of a system parameter, nonlinearity or excitation level for instance, follow the equilibrium
path (see Section 2.2) until a bifurcation point (X0, ω0, α0) is encountered and precisely detected (Section 4),
which serves as a starting point.

2. Free α and follow the path of bifurcations by a continuation method.

The last step is carried out by adding a pseudo-arc length constraint equation to one of the extended systems (38)(40)(42)
depending on the type on bifurcation to be followed. As in Section 2.2, a tangent vector t = (∆X,∆ω,∆α) is first
computed, then the next bifurcation point if obtained after Newton-Raphson corrections orthogonal to t.

In the case of LP tracking, these corrections are solutions of the 2L + 2 extended system
Rk

X 0L×L Rk
ω Rk

α

(RXφ)k
X Rk

X (RXφ)k
ω (RXφ)k

α

0T
L 2φkT 0 0

∆XT 0T
L ∆ω ∆α



δX
δφ
δω
δα

 = −


Rk

Rk
Xφ

k

φkT
φk − 1
0

 (51)

and the two additional derivatives Rα and (RXφ)α are given by

Rα =
∂Z
∂α

X +
∂Fnl

∂α
−
∂P
∂α

(RXφ)α =

(
∂Z
∂α

+
∂2Fnl

∂X∂α

)
φ (52)

Analytical expressions for these two derivatives depend on the system parameter α under consideration and vary
with each case. In order to compute them conveniently for any system parameter, finite differences can be used with
εα = η(|α| + η) and η = 10−6

Rα(X, ω, α) '
1
εα

[R(X, ω, α + εα) − R(X, ω, α)] (53)

(RXφ)α(X, ω, α) '
1
εα

[RX(X, ω, α + εα) − RX(X, ω, α)]φ (54)

Similarly, in the case of BP tracking, Newton-Raphson corrections are solutions of the 2L + 3 extended system
Rk

X 0L×L Rω e j Rk
α

(RXφ)k
X Rk

X (RXφ)k
ω 0L (RXφ)k

α

0T
L 2φkT 0 0 0

0T
L RT

ω 0 0 0
∆XT 0T

L ∆ω 0 ∆α




δX
δφ
δω
δγ
δα

 = −


Rk + γke j

Rk
Xφ

k

φkT
φk − 1

Rk
ω

T
φk

0


(55)
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Finally, in the case of NS tracking, Newton-Raphson corrections are solutions of the 3L + 3 extended system

Rk
X 0L×L 0L×L 0L Rk

ω Rk
α

(RXφ1)k
X Rk

X − (κk)2∆2 −κk∆k
1 −∆k

1φ
k
2 − 2κk∆2φ

k
1 (RXφ1)k

ω − κ
k(∆1φ2)k

ω (RXφ1)k
α − κ

k(∆1)k
αφ

k
2 − (κk)2(∆2)k

αφ
k
1

(RXφ2)k
X κk∆k

1 Rk
X − (κk)2∆2 +∆k

1φ
k
1 − 2κk∆2φ

k
2 (RXφ2)k

ω + κk(∆1φ1)k
ω (RXφ2)k

α + κk(∆1)k
αφ

k
1 − (κk)2(∆2)k

αφ
k
2

0T
L qT 0T

L 0 0 0
0T

L 2φk
1

T 0T
L 0 0 0

∆XT 0T
L 0T

L ∆ω 0 ∆α



×



δX
δφ1
δφ2
δκ
δω
δα


= −



Rk

Rk
Xφ

k
1 − κ

k∆k
1φ

k
2 − (κk)2∆k

2φ
k
1

Rk
Xφ

k
2 + κk∆k

1φ
k
1 − (κk)2∆k

2φ
k
2

qTφk
1

φk
1

T
φk

1 − 1
0


(56)

where the derivatives (∆1)α and (∆2)α are not null only if the system parameter α is involved in matrix M or C.

6. Applications

The proposed bifurcation tracking technique is applied to a nonlinear energy sink (NES) and a nonlinear Jeffcott
rotor in order to demonstrate its capabilities and performance. These applications also aim at showing that bifurcation
tracking can be used as an efficient tool for the design and performance tuning of nonlinear dynamical systems.

6.1. Nonlinear energy sink (NES)

The first application concerns a linear oscillator with an attached nonlinear energy sink (NES) under harmonic
external forcing. Unlike common linear vibration absorbers, NES are efficient in a wide range of frequencies and
over a range of amplitudes of the external forcing [54]. This is due mainly to a qualitatively different dynamical
behaviour in close vicinity of the main resonance, where the NES can exhibit quasi-periodic rather than periodic
response [55, 56]. Indeed, the energy of vibration is transferred to the NES and damped out in quasi-periodic regime,
leading to energy level reduction and attenuation of vibrations of the primary oscillator.

In the case of strongly nonlinear vibration absorber, it was shown in [57] that, depending on system parameters,
weak or strong quasi-periodic regimes occur, both of them providing efficient vibration absorption. Thus, in order
to perform a careful tuning, it is essential to determine the range of parameters in which quasi-periodic beating
responses are possible. Since a weak quasi-periodic response relates to a periodic response loosing its stability via
NS bifurcation, the boundaries for the quasi-periodic response can be obtained by the parametric continuation of NS
bifurcations introduced in this paper.

The system under consideration consists of a linear oscillator and a small essentially nonlinear attachment, as
described in [57]. The linear oscillator is the primary structure with mass m1 and the nonlinear attachment with small
mass m2 is the NES. They are coupled through a pure cubic elastic force and a viscous damper. For simplicity, the
stiffness of the linear oscillator is chosen such that its resonance frequency is equal to 1. The system is governed by
the following equations

ẍ1 + ελ(ẋ1 − ẋ2) + x1 + εknl(x1 − x2)3 = εAcos(ωt)

ε ẍ2 + ελ(ẋ2 − ẋ1) + εknl(x2 − x1)3 = 0
(57)

with x1 and x2 the displacements of the linear oscillator and the absorber (NES), respectively, ε = m2/m1 << 1 the
mass ratio, ελ the damping coefficient, εknl the nonlinear stiffness coefficient and εA the amplitude of the external
force. In the following, ε = 0.1 and λ = 0.4 are fixed while knl and A are varied for tuning purpose.

First, A = 0.3 is kept fixed and the dynamics of the coupled nonlinear system is investigated for several values of
knl. The forced response is computed by HBM and continuation technique as described in Section 2. Convergence
of the results is obtained with H = 3 harmonics and verified by comparison with time integration. Stability analysis
and detection of bifurcations are performed according to Sections 3 and 4. The amplitude x1 of the linear oscillator
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is plotted in Figure 3, where solid lines stand for stable periodic solutions, dashed lines for unstable ones and triangle
markers for NS bifurcations. For knl=1, a periodic response is obtained for all frequencies. For greater values of knl,
the NS bifurcations clearly define frequency zones in which the quasi-periodic beating response is the only stable
response. The system response in these quasi-periodic zones can be easily computed by time integration. Since its
amplitude is modulated, the total average system energy

Etot =

〈
ẋ2

1

2
+ ε

ẋ2
2

2
+

x2
1

2
+ εknl

(x1 − x2)4

4

〉
t

(58)

is used instead, with the average performed over a period of time 50 times longer than the modulation period. The
total system energy Etot vs. excitation frequency ω is plotted in Fig. 4. In this figure, the unstable periodic responses
have been replaced by stable quasi-periodic ones in the zones of quasi-periodic beating. It can be observed that the
level of total system energy is reduced when knl is increased, therefore demonstrating the absorber efficiency.

Obtaining the boundaries for the quasi-periodic beating response by this way is a tedious task, since the computa-
tion of frequency response and the detection of bifurcations have to be repeated for each value of knl in the range of
interest. An efficient alternative consists in using the direct bifurcation tracking presented in Section 5. To do so, a
response curve is first computed for an arbitrary fixed value of knl, e.g. knl=3, until the first NS bifurcation is detected.
Then, knl is considered as a new unknown and this NS bifurcation is used as a starting point for the direct continuation
of the curve of NS bifurcations. Doing so, the boundaries for the quasi-periodic beating response are obtained with
only one computation. This curve is represented as a 3D-plot in Fig. 5. The frequency responses plotted in Fig. 5
for some values of knl were not used for the computations. They are presented here to make the interpretation of the
3D-plot easier and to show that the direct NS tracking works as expected and is accurate.

Projections of the NS tracking curve on the Etot − knl and knl −ω planes are plotted in Fig. 6. They provide useful
information for designing the NES. The areas inside and outside the NS tracking curve correspond to quasi-periodic
beating responses and to periodic responses without beating, respectively. It can be seen from Fig. 6(a) that the total
system energy for beating responses decreases monotonically with knl increasing. Moreover, for a given value of knl,
the system energy level is comprised between the two values given by the NS tracking curve. From Fig. 6(b), the
range of frequencies in which a beating response occurs can be directly read for each value of knl. It can also be
observed that in zone (A) for knl < 1.92 there is no possibility of a quasi-periodic beating response. In zone (B) for
1.92 < knl < 7.78, there is a wide range of frequencies centered on the resonance. This operating zone is optimal and
the highest value of knl in this zone (knl ' 7.78) appears to be the optimal one. In zone (C) for 7.78 < knl < 11.28, the
quasi-periodic area is divided into two smaller areas separated by a periodic area. The left-hand side quasi-periodic
area is really narrow and the right-hand side one is not centered on the resonance. As a consequence, this is not an
optimal operating zone. In zone (D) for knl > 11.28, the quasi-periodic area is not centered on the resonance. In
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Figure 5: Frequency responses and Neimark-Sacker bifurcation tracking for ε=0.1, λ=0.4, A=0.3 and varying knl.
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Figure 9: Projection of the Neimark-Sacker bifurcations tracking for ε=0.1, λ=0.4, knl=5 and varying A.
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addition, the frequency responses for these values of knl are very complex and there may be other stable solutions than
the expected quasi-periodic response. Thus, this is not a safe operating zone.

The amplitude A of the external force is now used as the varying parameter while other system parameters ε=0.1,
λ=0.4 and knl=5 are kept fixed. The total system energy vs. excitation frequency ω is plotted in Fig. 7 for A=0.1, 0.2,
0.3, 0.4. As expected, it can be observed that, away from the resonance where the response is periodic, the level of
total system energy increases with A. However, in the vicinity of the resonance where quasi-periodic beating response
occurs, the average energy level is almost the same whatever the value of A, therefore demonstrating the constant
absorber efficiency over a range of amplitudes of the external forcing. In order to determine the boundaries of the
quasi-periodic beating area, NS tracking is performed, starting from the first detected NS bifurcation on the frequency
curve for A=0.3. The resulting tracking curve in presented in the 3D-plot of Fig. 8 and its projections on the Etot − A
and A − ω planes are plotted in Fig. 9. Again, four operating zones can be identified.

In zone (A) for A < 0.186 there is no possibility of a quasi-periodic beating response. Zone (B), for 0.186 <
A < 0.374, defines an optimal operating zone since it contains a wide range of frequencies centred on the resonance.
In zone (C) for 0.374 < A < 0.45, the main quasi-periodic area is not centred any more on the resonance. As a
consequence, this is not an optimal operating zone. Zone (D), for A > 0.45, is not a safe operating zone because
the quasi-periodic area is not centred on the resonance and there may be other stable solutions than the expected
quasi-periodic response.

From the computations presented in this example, it appears that the direct parametric continuation of bifurcation
points exhibits a considerable efficiency and can be used as a fast tuning tool for the design of NES systems, since the
optimal range of operating parameters can be determined with only one computation.

6.2. Nonlinear Jeffcott rotor
The second test case is the modified Jeffcott rotor presented in Fig. 10 which can interact at the disk location with

a stator modelled as an additional stiffness [12, 58]. The rotor is made of a weightless shaft carrying a disk with mass
m and radius Rdisc at the middle of the span. The clearance between the rotor and the stator is denoted by h. The
mass center of the rotor is located at a distance e from its geometrical center. The stator, which is rigidly fixed, has an
elastic contact surface modelled as a symmetrical set of radial springs with isotropic stiffness kc.

ω e

k

k

h

x

y

z

m

c

Figure 10: Nonlinear Jeffcott rotor with stator contact

Let the investigated motion be located in the first natural frequency range. Therefore there is no gyroscopic effect
to take into account in the equations of motion at the disk location described by

mẍ + cẋ + kx + kc(1 −
h
r

)(x − µy sign(vrel)) = meω2 cosωt

mÿ + cẏ + ky + kc(1 −
h
r

)(µx sign(vrel) + y) = meω2 sinωt
(59)

with k the stiffness of the shaft, r =
√

x2 + y2 the radial displacement, meω2 the mass unbalance amplitude and
vrel = ( x

r ẏ − y
r ẋ) + Rdiscω the relative velocity between the rotor and the stator at the contact point. When r < 0, there

is no rotor-stator contact and kc is set as nil.
All the calculations are carried out with the same set of parameters as in [12] and [58]: m = 1 kg, c = 5 N.s/m,

k = 100 N/m, kc = 2500 N/m, h = 0.105 m, e = 0.1 m, Rdisc = 20h, ω0 =
√

kc/m = 50 rad/s, except that the friction
coefficient µ is considered as the variable parameter.
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Figure 11: Forced response curve of the modified Jeffcott rotor for a friction coefficient µ = 0.2.
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Figure 12: Forced response curve of the modified Jeffcott rotor.

Firstly, the calculation of the system response to the unbalance force is performed for a friction coefficient µ =

0.2 by HBM and continuation technique. Based on comparison with results obtained by time integration, N = 15
harmonics are used for HBM computations. This high number of harmonics is required for a good representation
of the transition between the no-contact and the contact solution. Continuation, stability analysis and detection of
bifurcations, as described in Sections 3 and 4, are performed at the same time. The maximum amplitude of the
dimensionless radial displacement of the disk r/h with respect to the dimensionless excitation frequency ω̄ = ω/ω0 is
plotted in Fig. 11, where solid lines stand for stable periodic solutions, dashed lines for unstable ones, dotted lines for
quasi-periodic stable solutions, circle markers for LP and triangle markers for NS bifurcations. Periodic and quasi-
periodic solutions are calculated by HBM and time integration respectively. There is no contact between the rotor and
the stator until r/h = 1 (ω̄ ' 0.154). Then, the amplitude exceeds the initial clearance and the rotor rubs permanently
against the stator in a so-called synchronous full annular rub motion. This periodic rub motion remains stable until
ω̄ ' 0.289 where a NS bifurcation is detected. For higher values of ω̄, the periodic rub motion is unstable and the only
stable solution is the quasi-periodic partial rub motion characterized by rebounds and intermittent contact between
the rotor and the stator. This quasi-periodic partial rub motion remains stable until ω̄ ' 0.46. At this stage, there is a
sudden jump in amplitude and a backward whirl motion is triggered, which may severely damage the rotor system in
a very short time. The behaviours for µ = 0.05 and µ = 0.11 (Fig. 12) are qualitatively different. For µ = 0.05, the
periodic synchronous full annular rub motion is stable until the end of the contact indicated by the limit point at ω̄ ' 1
and is the only possible solution during the rotor-stator contact. For µ = 0.11, the response is also periodic after the
contact initiation but it does not remain stable until the limit point is reached. Indeed, two NS bifurcations are found
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Figure 13: Limit points tracking and Neimark-Sacker bifurcations tracking of the Jeffcott rotor as a function of friction coefficient µ.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.2  0.4  0.6  0.8  1  1.2

Fr
ic

ti
o
n
 c

o
ef

fi
ci

en
t 
µ

Frequency ω
_
 

LP tracking
NS tracking

NS
LP

contact
initiation

contact
end

0.05

0.11

0.2

Figure 14: Projection of the bifurcation tracking on ω̄ − µ plane. Comparison with results of Figs. 11 and 12.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.2  0.4  0.6  0.8  1  1.2

Fr
ic

ti
o
n
 c

o
ef

fi
ci

en
t 
µ

Frequency ω
_
 

LP tracking
NS tracking

Jiang [58]

no
contact

full
annular

rub

partial
rub no

contact

contact
initiation0

.1
5
4 contact

end 0
.8

5
4

quasi- periodic motion initiation

Figure 15: Projection of the bifurcation tracking on ω̄ − µ plane. Identification of the regions with different dynamical regimes.

17



Type of computation Number of steps Relative average time per step Total time
Response curve + stability (µ=0.2) 56 1 56

LP tracking 54 1.6 87
NS tracking 79 2.3 182

Table 1: Computational cost of the bifurcation tracking for the Jeffcott rotor

at ω̄ = 0.847 and ω̄ = 0.963. Between these two frequencies, the only stable motions are the quasi-periodic partial
rub and the no-contact motions.

From this phenomenological analysis, it appears that the nature of the motion is highly dependent on the friction
coefficient µ and on the excitation frequency ω̄. Thus, a parametric analysis defining the boundaries of the different
dynamical regimes with respect to these two parameters is of great interest for designers and operators. Again, this
parametric analysis can be performed by means of the direct bifurcation tracking presented in Section 5. To do so, a
response curve is first computed for µ=0.2, until a NS bifurcation or a LP is detected. Then, µ is considered as a new
unknown and this NS bifurcation or LP is used as a starting point and the bifurcation tracking is performed in both
directions (increasing and decreasing values of µ). Doing so, the boundaries for the no-rub and the quasi-periodic
motions are obtained with only one computation. These LP and NS tracking curves are represented as a 3D-plot in
Fig. 13. A few response curves are also plotted to make the interpretation of the 3D-plot easier.

The projections of the tracking curves on plane ω̄ − µ plane are plotted in Figs. 14 and 15. For a given value of
µ, these curves provide the frequencies corresponding to the occurrence of LP and NS bifurcations. The horizontal
lines in Fig. 14 for µ = 0.05, µ = 0.11 and µ = 0.2 permit to compare the results of the bifurcation tracking with the
response curves of Figs. 11 and 12. Their intersections with the vertical lines and the two tracking curves precisely
delimit the different dynamical regimes encountered along the response curves. Thus, the two LP and NS tracking
curves divide the ω̄ − µ plane into several regions corresponding to the different possible dynamical regimes of the
rotor. These regions are identified in Fig. 15. The ends of the NS tracking curve give the two frequencies ω̄ = 0.154
and ω̄ = 0.854 corresponding to the initiation and end of the contact. The NS tracking curve also corresponds to the
boundary of the quasi-periodic regime. The motion is periodic (synchronous full annular rub motion) below this curve
and quasi-periodic (partial rub motion with rebounds) above it. Consequently, for µ < 0.108, the motion is purely
periodic and the rotor undergoes only full annular rub during the contact with the stator. For 0.108 < µ < 0.36, the
motion during contact can be periodic or quasi-periodic, depending on ω̄, and the range of periodic motion decreases
with µ increasing. For µ > 0.36, the motion during contact is purely quasi-periodic. Finally, it can observed that the
obtained NS tracking curve is in good agreement with the analytical results from Jiang [58].

The computational cost for each numerical procedure is summarised in Table 1. The computation of a single
response curve requires roughly 50-60 continuation steps. For µ=0.2, 56 adaptive continuation steps with an average
number of 3 Newton-Raphson iterations per step are necessary to compute the whole response curve with an accuracy
ε = 10−6 and assess stability by Hill’s method. The computational time for one step of response curve continuation is
normalized to 1 and used as a reference time. It can be inferred from this table that one step of LP and NS tracking
is respectively 1.6 and 2.3 times more costly than one step of response curve continuation. This increase is related to
the larger size of the augmented systems to be solved. For this example, the LP and NS tracking require 54 and 79
continuation steps respectively. Therefore, the computational costs for the complete LP and NS trackings appear to be
about 1.5 and 3 times higher than for a complete response curve. However, these costs do not include the computation
of the starting bifurcation point, which requires the continuation of the response curve for µ=0.2 until the detection
of the bifurcation points. For this application, 40 steps and 17 steps of continuation (with cost 1) are necessary to
reach and detect the LP and NS bifurcation respectively. Thus, the actual costs of the complete LP and NS trackings
are 87+40=127 and 182+17=199 respectively, i.e. they are equivalent to the computation of 2.3 and 3.5 complete
response curves.

7. CONCLUSIONS

An efficient frequency-domain method for the fast parametric analysis of bifurcations of nonlinear dynamical
systems has been presented. Instead of computing several response curves and detecting the bifurcation points, the
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proposed method consists in directly tracking the bifurcation points when a system parameter such as the excitation
or nonlinearity level is varied.

To this end, a so-called extended system comprising the equation of motion and an additional equation charac-
terizing the bifurcation of interest is solved by means of the Harmonic Balance Method coupled with an arc-length
continuation technique. In particular, an original extended system for the detection and tracking of Neimark-Sacker
(secondary Hopf) bifurcations has been proposed. Even if the additional equations characterizing the bifurcations
increase the size of the problem, it is shown that the computational cost can be reduced with the use of a block elim-
ination algorithm. Moreover, the additional equations have the same form and involve the same derivatives whatever
the type of bifurcation, thus making the numerical implementation easier.

The examples considered in this paper have shown the interest of the proposed bifurcation tracking for the paramet-
ric analysis of a nonlinear vibration absorber (NES) and a nonlinear rotor system. Indeed, with only one computation
a map showing the stability boundaries and changes of dynamical regime has been obtained. Moreover, the bifurca-
tion tracking has been shown to be only 2 or 3 times more costly than a conventional response curve calculation. As
a result, it can be used by engineers at the design stage to tune nonlinear systems efficiently.

The numerical developments have been fulfilled in both Matlab and Cast3M [59] softwares, paving the way for
applications of the method to the nonlinear dynamics of structures modelled with finite elements.
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