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On the use of a high-order discontinuous Galerkin
method for DNS and LES of wall-bounded turbulence
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aONERA - The French Aerospace Lab, FR-92322 Châtillon, France

Abstract

We assess the performance of a high-order discontinuous Galerkin (DG) ap-
proach to simulate wall-bounded turbulent flows for a range of Reynolds num-
bers. First, a plane channel flow configuration with turbulent heat transfer at
Reτ = 640 is considered. Second, a detached flow configuration is investigated.
This configuration represents the flow over periodically arranged hills. Four
bulk Reynolds numbers Reb are considered: 2 800, 10 595, 19 000, and 37 000.
For Reb = 2 800 direct numerical simulation (DNS) is used. Large-eddy simu-
lations (LES) based on the WALE subgrid-scale model are carried out for the
higher Reb. The simulation results are compared to reference data from CFD
and experiment. hp-convergence analyses are performed which demonstrate the
superior performance of increasing the polynomial order as compared to refin-
ing the mesh. It appears from this work that the use of a subgrid modelling
approach together with local hp-adaptation could greatly improve the accuracy
of the solution without penalising the computational cost of the simulation.

Keywords: Discontinuous Galerkin method, large-eddy simulation, direct
numerical simulation, wall-bounded turbulence

1. Introduction

The development of mathematical and numerical tools for the solution of
the Navier-Stokes (N-S) equations in the turbulent flow regime is a topic of
acknowledged practical importance to scientists and engineers. The pioneering
work of Orszag and Patterson in 1972 [1], proved that it is possible to perform
computer simulations of fully developed turbulent flows, called direct numeri-
cal simulations (DNS). DNS provides a deterministic time-dependent numerical
solution of the fluid flow equations, in which all the scales of motion are accu-
rately resolved. Unfortunately, DNS is computationally very expensive, and is
restricted to low-to-moderate Reynolds numbers. This fact has motivated the
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scientific community to explore alternative approaches capable of reducing the
number of degrees of freedom (DOFs) necessary to resolve the turbulence.

The large-eddy simulation (LES) approach provides a way of reducing the
size of the numerical problem at hand by solving explicitly only for the large-
scale motions while modelling the effect of the small (or subgrid) scales on
the resolved field. The separation of scales between large and small can be
achieved either by applying a spatial filter to the N-S equations or by means of
a projection operation [2, 3].

The accurate and efficient simulation of turbulent flows imposes two main
requirements on the discretization scheme. First, it must be able to provide very
low levels of dissipation and dispersion. The aim is to resolve accurately over
long integration periods the finest scales of turbulence that can be represented
on the computational grid. Second, it must be highly parallelizable so that we
can achieve high parallel performance on many-core architectures.

The high-order discontinuous Galerkin (DG) method [4, 5, 6, 7] meets these
two requirements, i.e. high-order accuracy and excellent parallel capabilities [8].
This is the reason why the scientific community is showing a growing interest
in this type of approach [9, 10].

The DG method is based on the variational projection of the N-S equations
onto a hierarchy of polynomial basis functions. They combine some features of
finite volume (FV) methods and finite element (FE) methods. It is characterised
by being locally conservative and by providing high-order spectral accuracy not
only in the interior of the computational domain but also at the physical bound-
aries, and on irregular meshes. Another attractive feature of the DG method is
the possibility to enforce boundary conditions weakly, which has been shown by
a number of authors to improve the quality of the solution [11, 12, 13]. Modal
DG approximations also provide a natural framework for the implementation
of adaption algorithms based on local p-refinement, by locally increasing (or
decreasing) the polynomial order within the elements. Furthermore, the com-
pacity of the DG scheme greatly simplifies the implementation of h-refinement
techniques involving hanging nodes [14].

The overall flexibility provided by the DG approach therefore makes this
type of discretization a very appealing tool for the simulation of inhomogeneous
high-Reynolds-number flows.

A small number of (well-resolved) DNS computations using DG have been
reported in the literature. We can cite the work of Wei and Pollard [15, 16] who
applied the DG method to study the compressible turbulent channel flow for a
range Mach numbers. In [17, 18] Chapelier et al. have used the DG method to
perform DNS of freely decaying and wall-bounded turbulent flows, highlighting
the benefits of the DG approach over traditional numerical schemes in terms of
number of DOFs. Diosady et al. [19, 20] have also performed DNS simulations
of a number of turbulent flow configurations. In [19], the authors demonstrate
the superiority of high-order over low-order methods at equal number of DOFs.
In [21], Bassi et al. use an implicit high-order DG method to perform a DNS of
the incompressible flow past a sphere at ReD = 1 000.

A greater number of under-resolved DNS, often also called no-model or im-
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plicit LES (ILES), computations can be found in the recent literature (see e.g.
[21, 22, 23, 24, 25, 26, 27, 28]). In the absence of an explicit subgrid-scale
model, the philosophy behind ILES is to exploit the dissipation properties of
the DG scheme to achieve a stable simulation. In order to reduce the numerical
errors due to aliasing when very coarse meshes are used, some authors pro-
pose to use additional stabilisation techniques, such as polynomial de-aliasing
(over-integration) or polynomial filtering (see e.g. [29, 30, 22]).

As regards to the application of the DG method to LES based on subgrid-
scale modelling we can cite a number of works. Van Der Bos et al. [31] have
performed LES of homogeneous isotropic turbulence (HIT) at low Reynolds
number using the DG approach. They performed a parametric study in terms of
the approximation order, the type of convective flux function and the value of the
Smagorinsky constant. They found the best results when using the Smagorinsky
model and a high order of accuracy. Marek et al. [32] have performed an LES
of an incompressible free round jet at ReD = 20 000 using an eddy-viscosity
approach. Abbà et al. [33] have developed an anisotropic dynamic model in
the context of a high-order DG method for compressible LES. To this end, the
authors exploit the hierarchical nature of the FE basis to define the grid and
test filters via projection operators. In [34], Chapelier et al. have proposed a
variational multiscale approach based on a modal DG method and applied it to
the Taylor-Green vortex configuration at Re = 3 000. Finally, Beck et al. [35]
have studied the influence of over-integration on the performance of subgrid-
scale models. The authors demonstrate the benefits of using de-aliasing when a
subgrid-scale closure is used at high polynomial degrees.

In this work we will focus on the use of a high-order modal DG approach
to perform DNS and LES of two wall-bounded flow configurations for a range
of Reynolds numbers. Firstly, under-resolved DNS simulations of a turbulent
plane channel flow configuration with heat transfer at Reτ = 640 are performed.
The adopted strategy consists in modifying the mesh size and the polynomial
degree so that the number of DOFs remains constant. The results from the DG
simulations are compared against the reference DNS data available in [36].

A detached flow configuration, the periodic flow over a 2D hill, is also in-
vestigated. This configuration represents the flow over periodically arranged
hills. This test case is of interest for the evaluation of high-order methods in the
context of DNS and LES, due to the periodic boundary conditions and the 2D
character of the geometry which significantly reduces the computational cost. A
number of DG simulations of this configuration at Reb = 2800 and 10 595 have
been reported in the recent literature (see e.g. [19, 26, 33]). Here, we extend
the study by also considering the higher Reynolds numbers Reb = 19 000 and
37 000.

Four different bulk Reynolds numbers, Reb based on the bulk velocity at the
hill crest ub and the hill height h, are therefore considered: 2 800, 10 595, 19 000,
and 37 000. The lowest Reynolds number case is computed using DNS and the
three other cases are computed using LES based on the WALE subgrid-scale
model [37]. An additional no-model LES of the Reb = 10 595 configuration is
performed and the results are compared to the corresponding model-based LES.
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The DG solutions are compared to the CFD data provided by Breuer et al. [38]
(Reb = 2800 and Reb = 10, 595) using the second-order FV code LESOCC on
a curvilinear grid and by Manhart et al. [39] (Reb = 37, 000) using the second-
order FV code MGLET on a Cartesian mesh. All LES results are also compared
to the experimental data provided by Rapp [40].

This work is aimed at demonstrating the capability of the DG method to
produce accurate results for physically complex problems with a reduced number
of DOFs. We also highlight the beneficial effect of employing an LES subgrid
modelling approach (as opposed to a no-model approach) on coarse meshes when
we move towards higher Reynolds numbers.

2. Governing equations

The equations governing the evolution of a Newtonian fluid are the N-S
equations

∂U

∂t
+∇ · (fc − fv) = S (1)

where, U = (ρ, ρV, ρE)
T

is the vector of conservative variables. The vectors fc
and fv are the convective and viscous fluxes, respectively,

fc =
(
ρV, ρV ⊗V + p ¯̄I, (ρE + p) V

)T
fv = (0, ¯̄τ, ¯̄τ ·V − q)

T
(2)

and S is a source term. In (2) ρ represents the density, E the total energy per
unit mass, V is the velocity vector, and ⊗ denotes the tensor product. The
total energy per unit volume is given by

ρE =
p

γ − 1
+

1

2
ρ‖V‖2 (3)

where the adiabatic index γ =
cp
cv

is the ratio of specific heat capacities at con-
stant pressure and constant volume conditions, respectively. The static pressure
p is related to the static temperature T through the equation of state p = ρRT .
Here the gas constant is defined as R = cp − cv. The stress tensor ¯̄τ is related
to the velocity gradients by the Stokes relations

¯̄τ = µ

[
1

2

(
∇V +∇VT

)
− 2

3
∇ ·V ¯̄I

]
(4)

and the heat-flux vector is given by

q = −κ∇T (5)

where κ =
cpµ
Pr is the thermal conductivity. The Prandtl number Pr is assumed

to be constant and equal to 0.71. The Sutherland law provides an expression
for the dynamic viscosity µ as a function of the temperature.
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3. LES modelling approach

In this section, the LES approach adopted in this work is briefly outlined. For
a detailed description of the compressible LES formalism used in this research
the reader is referred to [41, 42, 34].

In what follows we use Favre (or density-weighted) filtering to define a re-
solved quantity φ̃ in terms of the resolved (projected) conservative variables,

φ̃ =
ρφ

ρ̄
(6)

In order to model the effect of the unresolved scales on the resolved field, a
subgrid-scale stress term τsgsij is added to the momentum equations. We make
use of an eddy-viscosity assumption to express this term as a function of the
known resolved field, namely,

τsgsij = ρ̄νt

(
2S̃ij −

2

3
S̃kkδij

)
; S̃ij =

1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(7)

where ρ̄ is the resolved density, νt is the eddy viscosity, and S̃ij denotes the
resolved rate-of-strain tensor. In (7), ũi denotes the i-th component of the
velocity vector V. Based on the same hypothesis considered by Ducros et al.
[43] and Lesieur et al. [41] a subgrid heat-flux vector term is also added to the
energy equation,

Qi = ρ̄cp
νt
Prt

∂T̃

∂xi
(8)

in which Prt is the turbulent Prandtl number which is set to 0.6 .
The LES simulations presented in this paper have been performed using the

Wall-Adapting Local Eddy-viscosity (WALE) model proposed by Nicoud and
Ducros [37]. This model is based on a tensor invariant and is able to represent
the proper scaling at the wall, νt = O(y3). In the WALE approach, the eddy
viscosity νt is expressed as

νt = (CW∆)2

(
S̃dijS̃

d
ij

) 3
2

(
S̃ijS̃ij

) 5
2

+
(
S̃dijS̃

d
ij

) 5
4

(9)

where S̃dij is defined as

S̃dij =
1

2

(
g̃2
ij + g̃2

ji

)
− 1

3
δij g̃

2
kk (10)

and it represents the symmetric part of the tensor g̃2
ij = g̃ikg̃kj , where g̃ij =

∂ũi/∂xj . The filter width ∆ is defined in terms of the DG discretization pa-
rameters h and p as ∆ = h/(p + 1), and the model constant takes a value of
0.55 ≤ CW ≤ 0.6 as recommended in [37].
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4. The discontinuous Galerkin method

The simulation results presented here have been performed using the high-
order DG solver Aghora [44, 18] developed at Onera. This solver is designed to
solve the full set of compressible N-S equations on unstructured grids.

The DG discretization used in this work is based on a modal approach that
relies on the use of a hierarchy of orthogonal polynomial functions as basis
for the Galerkin projection. The modal basis used is that proposed in [45]
by Bassi et al. The discrete orthogonal polynomial spaces are directly com-
puted in physical space. The methodology consists in defining a starting set of
monomial basis functions in each (arbitrarily shaped) element and applying a
modified Gram-Schmidt orthogonalization procedure. This ensures the orthog-
onality of the basis, and thereby the diagonality of the mass matrix. Numerical
integration is efficiently performed by means of a Gaussian quadrature. The
time integration is performed by using a strong stability preserving third-order
Runge-Kutta scheme [46]. The DG method implemented in the Aghora solver
is briefly outlined below.

We start by defining a shape-regular partition of the domain Ω, into N non-
overlapping and non-empty cells κ of characteristic size h.We also define the
sets Ei and Eb of interior and boundary faces in Ωh, such that Eh = Ei ∪ Eb.

Let Vph = {φ ∈ L2(Ωh) : φ|κ ∈ Pp(κ), ∀κ ∈ Ωh} be the functional space

of piecewise polynomials of degree at most p, and (φ1
κ, . . . , φ

Np
κ ) ∈ Pp(κ) a

hierarchical and orthonormal modal basis of Vph, of dimension Np, confined to
κ. The solution in each element is thus expressed as

uh(x, t) =

Np∑
l=1

φlκ(x)Ul
κ(t), ∀x ∈ κ, κ ∈ Ωh, ∀t ≥ 0, (11)

in which the polynomial coefficients (Ul
κ)1≤l≤Np

represent the DOFs of the
discrete problem in element κ. The semi-discrete variational form of system of
equations (1) thus reads: find uh in Vph such that ∀ φh ∈ Vph we have

ˆ
Ωh

φh∂tuhdV + Lc(uh, φh) + Lv(uh, φh) =

ˆ
Ωh

φhSh (12)

In Eqn. (12) Lc and Lv represent the variational projection of the convective
and viscous terms, respectively, onto the functional space Vph. Similarly, the
right-hand-side of Eqn. (12) is the variational projection of the source term S
onto Vph.

We now introduce the following notation: for a given interface e in Ei
we define the average operator {u} = (u+ + u−)/2 and the jump operator
[[u]] = u+n+ − u−n−, where u+ and u− are the traces of the variable u at the
interface between elements κ+ and κ− (see Fig. 1). The DG discretization of
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Figure 1: Trace of a variable on a face.

the convective terms then reads

Lc(uh, φh) = −
ˆ

Ωh

fc(uh) · ∇hφhdV

+

ˆ
Ei

[[φh]]hc(u
+
h ,u

−
h ,n)dS +

ˆ
Eb
φ+
h fc
(
ub(u

+
h ,n)

)
· ndS (13)

The numerical flux hc is chosen so that it is consistent and compact. For the
simulations presented in this paper the local Lax-Friedrichs (LLF) flux has been
employed.

hc(u
+
h ,u

−
h ,n) = {fc(uh)}+ α

[[uh]]

2
(14)

(15)

α = max{ρs
(
∂(fc(u) · n)

∂u

)
: u = u±h } (16)

in which ∂
∂u (fc(u) · n) is the Jacobian matrix of the convective fluxes in the n

direction and ρs is the spectral radius of the Jacobian matrix. The discretization
of the viscous terms is performed using the symmetric interior penalty (SIP)
method [47], described in [48],

Lv(uh, φh) =

ˆ
Ωh

fv(uh,∇huh) · ∇hφhdV

−
ˆ
Ei

[[φh]]
{
fv
(
uh,∇huh

)}
· ndS −

ˆ
Eb
φ+
h fv
(
ub(u

+
h ,n),∇ub(u

+
h ,n)

)
· ndS

−
ˆ
Ei

[[uh]]
{
GT
(
uh
)
∇hφh

}
· ndS −

ˆ
Eb

(u+
h − ub(u

+
h ,n))

{
GT
(
ub
)
∇hφ+

h

)}
· ndS

+

ˆ
Ei
ηIP [[uh]][[φh]]dS +

ˆ
Eb
ηIP
(
u+
h − ub(u

+
h ,n)

)
φ+
h dS (17)

where G = ∂fv/∂
(
∇huh

)
is the so-called homogeneity tensor. The penalty

parameter ηIP has to be chosen sufficiently large to ensure the coercivity of the
bilinear form and thus the numerical stability of the simulation [47].
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5. Turbulent heat transfer in a plane channel at Reτ = 640

Following the work of Abe et al. [49] we consider a fully developed turbulent
flow in a plane channel with a passive scalar field representing the temperature
in an incompressible flow. The size of the computational domain is 12.8h×2h×
6.4h, where h is half the height of the channel. Periodicity and homogeneity
of the flow is assumed in the streamwise and spanwise directions. To study
the heat transfer in the channel, the authors consider an additional equation
governing the transport of the temperature

∂ρθ

∂t
+∇ · (ρθu)−∇ ·

(
κ

cp
∇θ
)

= fθ (18)

The temperature θ thus behaves as a passive scalar and fθ is a source term that
ensures a constant heat-flux at the wall Qw.

Among the different simulations reported in [49], we focus on the DNS at
Reynolds number Reτ = 640 and Prandtl number Pr = 0.71, performed using
an incompressible solver on a grid composed of 1024× 256× 1024 nodes.

We also define the bulk Reynolds number based on the bulk velocity ub as

Reb =
ub2h

ν
= 24 428 ub =

1

2h

ˆ 2h

0

u1(y)dy

A forcing term is introduced in the x-momentum equation, −(∇xp)o, and in
the energy equation, −u(∇xp)o. The pressure gradient (∇xp)o is considered
spatially constant and ensures a target mass flow rate ṁ0 corresponding to the
specified Reb. Thus, the value of the Reτ is an outcome of the simulation that
will allow us to assess the accuracy of the employed numerical approach. Based
on the algorithm proposed by Deschamps [50] in the incompressible case, and
extended to the compressible case by Lenormand et al. [51, 52] the pressure
gradient is computed at each time step as

(∇xp)n+1
o = (∇xp)no +

1

LyLz∆t

(
ṁ0 − 2ṁn + ṁn−1

)
(19)

where ṁn is the mass flow rate computed at time step n, and Ly and Lz repre-
sent the dimensions of the computational domain in the normal and spanwise
directions, respectively.

To maintain consistency with the work presented in [49], Eqn. (18) is solved
at each time-step by using the DG approach presented in Sec. 4. By doing so
we obtain a scalar field devoid of compressibility effects and therefore a truthful
comparison with the DNS results reported in [49] can be made. The source term
fθ is defined in terms of the imposed wall heat-flux1 Qw as

fθ = −ρu1(∇xθ)o ; (∇xθ)o = − Qw
cp(ρu)bh

(20)

1The heat-flux associated with the passive scalar Qw should not be mistaken for the heat-
flux q that appears in the compressible energy equation.
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Simulation Order (p+ 1) # Elements # DOFs
Abe et al. [49] 4 1024× 256× 1024 268.4 M

DG-p2 3 84× 22× 84 4.19 M
DG-p3 4 64× 16× 64 4.19 M
DG-p4 5 52× 12× 52 4.06 M

Table 1: Computational grids.

Simulation ∆t (ub/h)/10−4 CPU time/tc Reτ
DG-p2 5.0 1.00 619
DG-p3 8.0 1.16 676
DG-p4 6.7 1.36 647

Table 2: Computational details for the plane channel flow DG simulations.

5.1. Computational details

Under-resolved DNS computations of the configuration described above have
been performed using the Aghora DG solver. Three different levels of hp-
refinement have been considered in this study, for which the number of DOFs is
the same and equal to approximately 4.2 million (see Table 1). This resolution
is four times coarser in each space direction than that used in the reference
DNS. To ensure the stability of the simulation at this coarse resolution, over-
integration is used as de-aliasing technique by considering an extra-quadrature
point in each spatial direction. For a pth-order simulation we thus have (p+ 1)3

DOFs in each element, and (p+ 2)3 quadrature nodes.
The resolution at the wall is evaluated in wall units, i.e. ∆y+ = Reτ (∆y/h),

where ∆y denotes the height of the first cell at the wall, and Reτ = uτ h/ν is the
friction Reynolds number. The friction velocity is given by uτ =

√
τw/ρw, being

τw the wall-shear stress and ρw the density at the wall. Note that in the DG
approach, an estimate of ∆y+ can be obtained by dividing the cell height by the
number of DOFs within the element. For a polynomial approximation of degree
p we therefore define y+ = ∆y+/(p+1)/2. For the simulations presented in Sec.
5.2 this leads to the following values : y+ < 2, ∆x+ < 34, and ∆z+ < 17. These
values are well within the recommendations given by Piomelli and Chasnov [53]
for wall-resolving LES: y+ < 2, ∆x+ = 50− 150, and ∆z+ ≈ 15− 40.

The normalised values of the time step used in the different computations
are compiled in Table 2. The CPU time per convective-time unit tc = 12.8h/ub
required by each simulation is also provided in this table. Note that these times
have been normalised by that of the cheapest simulation DG− p2.

5.2. Simulation results

Figures 2 and 3 show a comparison between the profiles of mean velocity
and velocity correlations obtained from the DG computations and the reference
DNS data provided in [36]. It is important to bear in mind that the value of uτ
used to normalised the DG profiles is determined from the value of Reτ yielded
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Figure 2: Profiles of mean velocity U+ (left) and rms of the velocity fluctuations u+rms, v+rms,
w+

rms (right) for DG computations of the channel flow. Comparison against reference DNS
data.

Figure 3: Profiles of cross correlations −uv+ for DG computations of the channel flow. Com-
parison against reference DNS data.

by the simulation (see Table 2). This allows us to assess the quality of our
results in an objective manner.

We clearly see that the best accuracy is obtained when using a fifth-order
approximation on a coarse mesh. These results highlight the benefit of increasing
the polynomial order with respect to reducing the mesh size, as regards the
accuracy of the solution. This point has also been demonstrated in previous
work [17, 42, 18].

Important discrepancies are found for the DG−p2 computation with respect
to the two other computations. These are probably due to the fact that the
corresponding value of Reτ is in this case significantly lower than the reference
value of 640, leading to an overestimation of the streamwise velocity. It is worth
noting that the slight oscillations observed on the profiles of the root-mean-
square (rms) of the velocity fluctuations are due to the discontinuous character
of the DG solution. Indeed, we have found that the wavelength associated with
these oscillations corresponds to the distance between elements.

As regards the solution to the passive scalar equation, only the DG − p4
discretization has been considered. The reason is the very slow statistical con-
vergence of this quantity, specially when using a compressible solver, which leads
to a high computational cost. Figure 4 shows the profiles of the mean scalar
and the correlations of the scalar and velocity fluctuations. These data have
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Figure 4: Profiles of mean scalar θ+ (left) and rms θ+rms and correlations of the scalar and
velocity fluctuations uθ+ and vθ+ (right) for DG − p4 computation of the channel flow.
Comparison against reference DNS data.

been normalised by uτ and the friction temperature θτ = Qw/ρwcpuτ . We can
observe the very good agreement found with the reference data. This is despite
the great reduction in the number of DOFs with respect to the reference DNS.

6. Turbulent flow over a 2D periodic hill

In this section, we consider a fully developed turbulent flow over a 2D peri-
odic hill. This test case was initially proposed in an ERCOFTAC/IAHR work-
shop in 1995. A detailed description of the geometrical configuration of the
channel as well as of the flow conditions can be found on the ERCOFTAC
QNET-CFD website [56].

This configuration represents the flow over periodically arranged hills. The
flow presents separation from the curved surface, reattachment, and post reat-
tachment recovery.

The dimensions of the channel are as follows : Lx = 9h in the streamwise
direction, Ly = 3.035h in the vertical direction, and Lz = 4.5h in the span-
wise direction, where h is the hill height at the crest. Periodicity of the flow
is assumed in the streamwise and spanwise directions, and isothermal no-slip
boundary conditions are imposed on the lower and upper walls. The flow is
driven by a mean pressure gradient in the streamwise direction. This body
force ∇xp is implemented as a forcing term in the x-momentum and energy
equations, as explained in Sec. 5.

The Mach number is set to M0 = 0.1 so that the flow regime is quasi-
incompressible. The bulk Reynolds number Reb is defined based on the bulk
velocity ub and on the hill height, h, namely,

Reb =
ubh

ν
ub =

1

2.035

ˆ 3.035h

h

u1(y)dy (21)

Four different values of Reb have been considered: 2 800, 10 595, 19 000, and
37 000. As already mentioned in Sec. 1, the case at Reb = 2 800 is considered
as a DNS. For the higher values of Reb we employ an LES approach based
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(a) Coarse mesh 32× 16× 16 (b) Fine mesh 64× 32× 32

Figure 5: Fourth-order meshes used in the DG simulations.

Grid resolution # Elements Grid order

LESOCC - 12.4 M 1

MGLET 216×168×104 3.77 M 1

Coarse mesh 32×16×16 8 192 4

Fine mesh 64×32×32 65 536 4

Table 3: Grid resolutions used in the reference and DG computations.

on the WALE model [37]. An additional no-model LES computation of the
Reb = 10 595 configuration is also performed.

The following sections provide a summary of the computational parameters
and the grids used in these simulations, as well as a summary of the main results
obtained.

6.1. Computational details

Two levels of mesh refinement have been used in this study, shown in Fig. 5.
A coarse fourth-order mesh composed of 8 192 elements and a twice finer version
of this mesh composed of 65 536 elements. Both meshes were generated using
the 3D finite element mesh generator Gmsh [57].The details of the high-order
grids used for the DG simulations as well as those used in the reference FV
computations in [38] (LESOCC code) and [39] (MGLET code) are provided in
Table 3. The polynomial degree of the simulations is set to p =3, 4 up to 5 for
the DNS on the coarse grid, and p =3 and 4 for all other simulations.

As for the channel flow computations presented in the Sec. 5, the resolution
at the wall is evaluated in terms of the normalised values ∆y+ = ∆y uτ/ν.
In this case, the friction velocity, uτ , is measured at the point of maximum
wall-shear stress, which is located on the windward side of the hill as we will
see in Sec. 6.2.1. Figure 6 shows the distribution of wall distances y+ and
grid spacings (∆x+, ∆z+) along the channel. The values of y+ at the point of
maximum wall-shear stress are compiled in Table 4. We observe that for the
fifth-order DNS computation on the fine mesh a value of y+ < 1 is found which
is sufficient for a wall-resolved simulation. On the coarser meshes this value was
close to 2 (not included in Table 4). For the higher-Reynolds-number cases the
values of y+ are above the recommended value for a wall-resolving LES [53],
although in line with the values reported in [39] for the MGLET simulations at
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Figure 6: Streamwise distribution of y+ (right) and ∆x+, ∆z+ (left) in the DG simulations.

Reb LES approach Simulation # DOFs y+
max

2800 - DG-p4 fine 1.02 M 0.9

10 595 no-model DG-p3 fine 4.19 M 2.9

10 595 WALE DG-p3 fine 4.19 M 2.8

19 000 WALE DG-p3 fine 4.19 M 4.5

37 000 WALE DG-p3 fine 4.19 M 7.2

Table 4: Wall resolution y+max at point of maximum wall-shear stress for the DG simulations.

Reb = 10 595 and Reb = 37 000. As pointed out by the author, the distance
over which this maximum wall stress is acting on the flow is very short (≈ 0.5h),
and at all other positions the wall resolution can be considered as sufficient, as
can be seen in Fig. 6.

The normalised time step used in the different computations is of the order
of 10−4. It is worth noting that in this case the severe restriction on the time
step arises from the convective time scale of the acoustic waves due to the low
value of the Mach number (M0 = 0.1), and not from the viscous time scale
associated with the penalty term in the SIP method.

The solution is advanced in time until a statistically steady state is reached.
From this point, the flow statistics are gathered over a sufficient number of
convective times tc = Lx/ub. The time-averaged data is also averaged in the
spanwise direction to achieve more rapidly statistical convergence.

6.2. Simulation results

The results from the different DG simulations are analysed in detailed in
the following sections. To this end, the profiles of mean streamwise and vertical
velocity, as well as the turbulent stresses are compared against the available
reference data at different stations along the streamwise direction. The locations
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(a) Reb = 2800 (b) Reb = 10 595

(b) Reb = 19 000 (c) Reb = 37 000

Figure 7: Streamlines of the time-averaged streamwise velocity field U/ub from DG simulations
(see Table 4).

(a) Reb = 2800 (b) Reb = 2800 up to Reb = 37 000

Figure 8: Profiles of wall-shear stress at bottom wall for the DG simulations.

inspected correspond to x/h =0.05, 0.5, 2, 4, 6, and 8. We pay particular
attention to stations x/h =0.5, 2, 4, and 6. The first x/h =0.5 corresponds
to a position located right after the separation region and intersects the strong
shear layer generating from the detachment point. The second station x/h =2
is located in the middle of the recirculation region. Station x/h =4 is placed
at the end of the recirculation bubble (close to the reattachment point for the
lower Reynolds numbers) and x/h =6 is located downstream the recirculation
zone in the reattached flow.

The DG solutions are compared to the CFD data provided by Breuer et
al. (Reb = 2 800 and Reb = 10 595) using the second-order FV incompressible
solver LESOCC on a curvilinear grid [38] and by Manhart et al. (Reb = 37 000)
using the second-order FV incompressible solver MGLET on a Cartesian mesh
[39]. All LES results are also compared to the experimental data provided by
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Simulation #DOFs ∆t (ub/h)/10−4 #Cores CPU time/tc

LESOCC FV-p1 13.1 M 20 - -

DG-p3 Coarse 0.52 M 2.5 264 1.0

DG-p4 Coarse 1.02 M 2.5 264 2.8

DG-p5 Coarse 1.77 M 1.7 264 13.1

DG-p3 Fine 4.19 M 1.8 2208 10.8

DG-p4 Fine 8.19 M 1.4 2208 39.9

Table 5: Computational details of DG-DNS computations at Reb = 2 800.

Rapp [40].

6.2.1. Qualitative comparison of DG solutions at Reb=2 800 up to 37 000

The streamlines of the time-averaged velocity field forReb=2 800 up to 37 000
are depicted in Fig. 7. As expected, the reattachment point moves upstream
with increasing Reynolds number, reducing the size of the recirculation bubble.
The position of the reattachment point at the lowest Reynolds number is xR/h ≈
5.4 which is in agreement with the value reported in [38]. For Reb=10 595 the
reattachment point is located at xR/h ≈ 3.9, which is slightly different from
the experimental value (xR/h ≈ 4.21) [55] and from the reference LESOCC
simulation (xR/h ≈ 4.69). Finally, for the highest Reynolds number Reb=37 000
the reattachment point is located at xR/h ≈ 3.2 not far from the value of
xR/h ≈ 3.68 reported by Chaouat and Schiestel [54] in their hybrid RANS/LES
simulation on a grid composed of 1 M points.

The profiles of time-averaged wall-shear stress at the bottom wall forReb=2 800
are depicted in Fig. 8(a). We observe that all discretizations, except for the
DG − p3 simulation on the coarse mesh, are able to reproduce the peak of
maximum wall-shear stress. The strong oscillations near the separation point
exhibited by the DG− p3 and DG− p4 coarse-mesh simulations are clearly due
to a lack of resolution in this area. Indeed, this oscillating behaviour disappears
when the polynomial degree is increased. This is shown by the results obtained
from the DG−p5 coarse-mesh simulation, which closely match the data obtained
from the best resolved simulations for a reduced number of degrees of freedom
(1.77 M in the DG − p5 with respect to 4.19 M and 8.19 M in the DG − p3
and DG−p4 fine-mesh simulations, respectively). This outcome emphasises the
greater advantage of using local hp-adaptation for flow configurations featuring
highly localised phenomena.

In Fig. 8(b) we compare the profiles of wall-shear stress for all four Reynolds
numbers. The trends are in agreement with the results reported in [38].

6.3. DNS results at Reb = 2 800

Table 5 summarises the five DNS simulations performed at Reb = 2 800. The
CPU time required to advance one convective time is also shown in this table.
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Note, that this cost is normalised by that of the cheapest DNS computation,
i.e. DG− p3 on the coarse mesh.

Figures 10 and 11 show the profiles of averaged velocity and turbulent
stresses obtained from the DG-DNS at the different levels of resolution con-
sidered (see Table 5). They are compared to the DNS data from the LESOCC
code. It can be observed that all DG simulations are able to reproduce the main
features of the flow (separation, recirculation and reattachment). Naturally, the
best match with the reference DNS is obtained for the DG − p4 simulation on
the fine grid (8.19 M DOFs), as we reach numerical convergence in terms of
number of degrees of freedom.

However, if we look carefully at the solution from the DG− p5 coarse-mesh
simulation we observe that the match with the DG − p4 fine-mesh simulation
and the reference data is remarkably good. This is taking into account the great
reduction in the number of DOFs with respect to the two other simulations (8.19
M and 13.1 M, respectively). It is also worth noting that the computational cost
of the DG− p5 is significantly lower than that of the DG− p4 simulation and
only slightly higher than that of the DG− p3 simulation on the fine mesh (see
Table 5).

As already discussed in the previous section, the DG − p3 and DG − p4
coarse-mesh simulations exhibit an oscillatory behaviour in the vicinity of the
separation point (see Fig. 10).These oscillations disappear when the polynomial
order is increased to p = 5. We can also observe the presence of spurious over-
shoots in the profiles of 〈u′u′〉 at practically all stations. The locations of these
peaks actually coincide with the grid element interfaces and are a consequence
of the discontinuous character of the DG solutions at this coarse resolution.
These jumps are smoothed out when the polynomial degree is increased, as can
be observed from the 〈u′u′〉 profiles in the DG− p5 simulation.

We can conclude from this analysis that an optimal performance of the DG
method could be obtained by appropriate local hp-adaptation. This would allow
us to greatly reduce the cost of the simulation while keeping the same level of
accuracy as that provided by uniform h and/or p-refinement.

6.4. LES results at Reb = 10 595

Figures 12 and 13 show the profiles of mean velocity and turbulent stresses
obtained from the DG − p3 fine-mesh simulations using the no-model and the
WALE approaches. They are compared to the LES data produced by the
LESOCC code as well as to the experimental data from Rapp [40].

It can be seen from these plots that at this relatively low Reynolds number
the results yielded by the no-model and the WALE approaches are not fun-
damentally different. The WALE approach, however, seems to provide slightly
better results in the region close behind the separation point (x = 0.5h). This is
specially the case for the mean vertical velocity profile as well as for the turbulent
stresses, for which the no-model simulation presents a more marked overshoot
near the wall. The profiles obtained using the WALE approach appear to be
closer to the reference data. These comments also hold for the area located
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(a) Reb = 2 800 (b) Reb = 10 595

Figure 9: Instantaneous field of vorticity magnitude at Reb = 2 800 and 10 595.

in the middle of the separation zone (corresponding to x = 2h), although the
differences become gradually less significant as we exit the recirculation zone
(x = 4h). Finally, in the area well behind the recirculation bubble (x = 6h)
both simulations provide similar results. However, the WALE simulation ap-
pears to represent with higher fidelity the mean vertical velocity profile which
is closer to the experiment, though significantly far from the simulation.

It is also worth noting the smoothing effect that the addition of the subgrid
model has on 〈u′u′〉. Indeed, at all stations, we observe that the unphysical
peaks generated by the DG method at the element interfaces are considerably
damped when the WALE approach is used.

Figures 9(a) and (b) show the field of instantaneous vorticity magnitude
displayed by the DG solutions at Reb = 2 800 and 10 595, respectively. We can
see on these plots the finer structures present in the flow at this higher Reb.

6.5. LES results at Reb = 19 000

Figures 14 and 15 show the profiles of mean velocity and turbulent stresses
obtained from the DG − p3 fine-mesh simulation using the WALE approach.
They are compared to the experimental data from Rapp [40].

In view of the results from the previous section, only the WALE approach
has been considered at this higher Reynolds number. In particular, due to
the fact that the raw DG scheme did not appear to provide a sufficient level
of dissipation to achieve a stable simulation. This was also the case for the
Reb = 37 000 simulation.

An overall good agreement is found between the results from this simulation
and the experimental data. The main differences are found in the vicinity
of the separation point. At this location the profiles of 〈u′v′〉 from the DG
simulation present a strong overshoot near the wall. This result might suggest
a need to improve the resolution in this area. In the recirculation region (x =
2h) however, the numerical solution is in relatively good agreement with the
experimental data. Right after the recirculation bubble (x = 4h and x = 6h)
the match between the mean vertical velocity profiles deteriorates, while at
the final stations (x = 8h) the agreement between the DG profiles and the
experiment improves considerably.

It is difficult discern, however, whether the discrepancies observed at some
stations in the channel are due to numerical errors, or to measurement uncer-
tainties during the experiment. Further DG simulations at this higher Reynolds
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number, ideally using a locally hp-adapted grid, could help understand the na-
ture of these differences.

6.6. LES at Reb = 37 000

Figures 16 and 17 show the profiles of mean velocity and turbulent stresses
obtained from the DG − p3 fine-mesh simulation using the WALE approach.
They are compared to the LES data produced by the MGLET code [39] as well
as to the experimental data from Rapp [40].

An overall good agreement is found between the mean streamwise velocity
profiles and the reference data. Some discrepancies between the experimental
data and the DG solution are found however for the mean vertical velocity
profiles, which appear in general to be closer to the reference CFD data. The
match between the turbulent stresses 〈u′u′〉 and 〈u′v′〉 from the DG simulation
and the experiment is relatively good. Note that the overshoot that appears
near the bottom wall at x = 0.5h in both profiles is also observed in the MGLET
profiles as well as in the numerical results reported by Chaouat and Schiestel in
[54].

7. Conclusions

The accuracy of a modal DG approach to simulate wall-bounded turbulent
flows for a range of Reynolds numbers has been assessed in this work.

Firstly, under-resolved DNS computations of a plane channel flow configu-
ration with turbulent heat transfer at Reτ = 640 have been carried out. The
DG simulations involve four times less DOFs in each space direction than the
reference DNS simulation of Abe et al. [49]. In the absence of a subgrid model,
a simple de-aliasing of the solution via overintegration is sufficient to achieve a
stable simulation at this relatively low Reynolds number. The hp-convergence
analyses clearly demonstrate the greater advantage of using high-order approx-
imations on very coarse meshes, as opposed to mesh refinement in combination
with low-order schemes. We actually find the best match with the reference
DNS data for the fifth-order simulation on the coarsest mesh.

In a second stage, the ability of the DG method to capture the Reynolds-
number dependent features in a detached flow configuration has been investi-
gated for Reynolds numbers ranging from Reb = 2 800 up to 37 000. As for the
channel flow configuration, hp-convergence studies have been carried out for the
DNS at Reb = 2 800. Once more, the outcome from this analysis demonstrates
the superior performance of increasing the polynomial order as compared to
refining the mesh, specially in the area close to separation. A very good agree-
ment with the reference simulation of Breuer et al. [38] is actually obtained by
considering a sixth-order discretization (p = 5) on a very coarse mesh, involv-
ing only 1.77 M DOFs with respect to the 13.1 M DOFs used in the reference
FV computation. This result emphasises the great advantage of using local hp-
adaptation for flow configurations featuring highly localised phenomena, as is
the case here.
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For Reb = 10 595, 19 000, and 37 000 fourth-order LES (p = 3) based on
the WALE approach have been carried out on a grid composed of 65 536 ele-
ments, which leads to 4.19M DOFs. All simulations are able to capture the
main features of the flow. In particular, a good agreement with the reference
data is found for Reb = 10 595 and Reb = 19 000. The discrepancies found for
Reb = 37 000 between the DG simulation and the experiment are in line with
those reported in [39] using the MGLET FV code on a mesh composed of 4.1M
points and in [54] using a hybrid RANS/LES approach on a 1 M point grid. An
additional no-model LES simulation has been performed at Reb = 10 595. The
solutions from the no-model and the WALE approaches do not appear to be fun-
damentally different. The WALE approach, however, seems to provide slightly
more accurate results, specially in the vicinity of the separation point and in the
recirculation area. The smoothing effect that the addition of the subgrid model
has on the 〈u′u′〉 profiles has also been highlighted. Indeed, at all stations, we
observe that the unphysical peaks generated by the interface jumps of the DG
solution are considerably damped by the use of a subgrid model. Note that for
Reb = 19 000 and 37 000 the no-model approach did not yield stable simula-
tions. This is a manifestation of the very low dissipation level provided by the
DG scheme, and the need to use subgrid-scale modelling when we move towards
higher Reynolds numbers. We see from these results that the combined used of
local hp-adaptation with a subgrid-scale modelling approach could fully exploit
the benefits of DG methods for industrial LES. Furthermore, in order to reduce
the computational cost associated with the use of high polynomial degrees it
would be advantageous to use a hybrid MPI/openMP approach, instead of the
pure MPI approach used in this work. This is the subject of current research in
the framework of the Aghora project.
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[33] Abbà A., Bonaventura L., Ninia M., and Restellic M., Dynamic models for
Large-Eddy Simulation of compressible flows with a high-order DG method,
Comput. Fluids 122 (2015) pp. 209–222.

[34] Chapelier J.-B., de la Llave Plata M., and Lamballais E., Development of
a multiscale LES model in the context of a modal discontinuous Galerkin
method, Comput. Meth. Appl. Mech. Eng. 307 (2016) pp. 275–299.
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[41] Lesieur M., Métais O., Comte P., Large-eddy simulations of turbulence,
Cambridge University Press, Cambridge 2005.
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Figure 10: DNS at Reb = 2 800. Comparison of DG simulations with reference data. ◦ :
LESOCC O(2); - - : DG− p3 coarse; - - : DG− p4 coarse; - - : DG− p5 coarse; — : DG− p3
fine; — : DG− p4 fine.
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(a) Reynolds stress 〈u′u′〉/u2b profiles
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(b) Shear stress 〈u′v′〉/u2b profiles

Figure 11: DNS at Reb = 2 800. Comparison of DG simulations with reference data. ◦ :
LESOCC O(2); - - : DG− p3 coarse; - - : DG− p4 coarse; - - : DG− p5 coarse; — : DG− p3
fine; — : DG− p4 fine.
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(a) Mean streamwise velocity U/ub profiles
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(b) Mean vertical velocity V/ub profiles

Figure 12: LES at Reb = 10 595. Comparison of DG simulations with reference data. • :
Experiment; ◦ : LESOCC O(2) (13.1 M dofs); — : No-model DG− p3 fine (4.19 M dofs); —
: WALE DG− p3 fine (4.19 M dofs).
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Figure 13: LES at Reb = 10 595. Comparison of DG simulations with reference data. • :
Experiment; ◦ : LESOCC O(2) (13.1 M dofs); — : No-model DG− p3 fine (4.19 M dofs); —
: WALE DG− p3 fine (4.19 M dofs).
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Figure 14: LES at Re = 19 000. Comparison of DG simulations with experimental data. • :
Experiment; — : WALE DG− p3 fine (4.19 Mdofs).
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(a) Reynolds stress 〈u′u′〉/u2b profiles
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(b) Shear stress 〈u′v′〉/u2b profiles

Figure 15: LES at Re = 19 000. Comparison of DG simulations with experimental data. • :
Experiment; — : WALE DG− p3 simulation on fine mesh (4.19 Mdofs).
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Figure 16: LES at Re = 37 000. Comparison of DG simulations with reference MGLET
simulation and experimental data. • : Experiment; ◦ : MGLET O(2) (4.1 Mdofs); — :
WALE DG− p3 fine (4.19 Mdofs).
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(a) Reynolds stress 〈u′u′〉/u2b profiles
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(b) Shear stress 〈u′v′〉/u2b profiles

Figure 17: LES at Re = 37 000. Comparison of DG simulations with reference MGLET
simulation and experimental data. • : Experiment; ◦ : MGLET O(2) (4.1 Mdofs); — :
WALE DG− p3 fine (4.19 Mdofs).
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