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ERGODICITY OF INHOMOGENEOUS MARKOV CHAINS
THROUGH ASYMPTOTIC PSEUDOTRAJECTORIES1

BY MICHEL BENAÏM∗, FLORIAN BOUGUET†,‡,2 AND BERTRAND CLOEZ§

Université de Neuchâtel∗, Inria BIGS†, IECL‡ and
MISTEA, INRA, Montpellier SupAgro, Université Montpellier§

In this work, we consider an inhomogeneous (discrete time) Markov
chain and are interested in its long time behavior. We provide sufficient con-
ditions to ensure that some of its asymptotic properties can be related to the
ones of a homogeneous (continuous time) Markov process. Renowned ex-
amples such as a bandit algorithms, weighted random walks or decreasing
step Euler schemes are included in our framework. Our results are related to
functional limit theorems, but the approach differs from the standard “Tight-
ness/Identification” argument; our method is unified and based on the notion
of pseudotrajectories on the space of probability measures.

1. Introduction. In this paper, we consider an inhomogeneous Markov chain
(yn)n≥0 on R

D , and a nonincreasing sequence (γn)n≥1 converging to 0, such that∑∞
n=1 γn = +∞. For any smooth function f , we set

(1.1) Lnf (y) := E[f (yn+1) − f (yn) | yn = y]
γn+1

.

We shall establish general asymptotic results when Ln converges, in some sense
explained below, toward some infinitesimal generator L. We prove that, under rea-
sonable hypotheses, one can deduce properties (trajectories, ergodicity, etc.) of
(yn)n≥1 from the ones of a process generated by L.

This work is mainly motivated by the study of the rescaling of stochastic ap-
proximation algorithms (see, e.g., [4, 33]). Classically, such rescaled algorithms
converge to Normal distributions (or linear diffusion processes); see, for example,
[15, 18, 30]. This central limit theorem is usually proved with the help of “Tight-
ness/Identification” methods. With the same structure of proof, Lamberton and
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Pagès get a different limit in [32]; namely, they provide a convergence to the sta-
tionary measure of a nondiffusive Markov process. Closely related, the decreasing
step Euler scheme (as developed in [31, 34]) behaves in the same way.

In contrast to this classical approach, we rely on the notion of asymptotic pseu-
dotrajectories introduced in [5]. Therefore, we focus on the asymptotic behavior
of Ln using Taylor expansions to deduce immediately the form of a limit gen-
erator L. A natural way to understand the asymptotic behavior of (yn)n≥0 is to
consider it as an approximation of a Markov process generated by L. Then, pro-
vided that the limit Markov process is ergodic and that we can estimate its speed
of convergence toward the stationary measure, it is natural to deduce convergence
and explicit speeds of convergence of (yn)n≥0 toward equilibrium. Our point of
view can be related to the Trotter–Kato theorem (see, e.g., [28]). The proof of
our main theorem, Theorem 2.6 below, is related to Lindeberg’s proof of the cen-
tral limit theorem; namely, it is based on a telescopic sum and a Taylor expan-
sion.

With the help of Theorem 2.6, the study of the long time behavior of (yn)n≥0
reduces to the one of a homogeneous-time Markov process. Their convergence
has been widely studied in the literature, and we can differentiate several ap-
proaches. For instance, there are so-called “Meyn-and-Tweedie” methods (or
Foster–Lyapunov criteria, see [12, 23, 24, 36]) which provide qualitative conver-
gence under mild conditions; we can follow this approach to provide qualitative
properties for our inhomogeneous Markov chain. However, the speed is usually
not explicit or very poor. Another approach consists in the use of ad hoc coupling
methods (see, e.g., [7, 16, 35]) either for a diffusion or a piecewise determinis-
tic Markov process (PDMP). Those methods usually prove themselves to be effi-
cient for providing explicit speeds of convergence, but rely on extremely particular
strategies. Among other approaches, let us also mention functional inequalities or
spectral gap methods (see, e.g., [1, 2, 11, 37]).

In this article, we develop a unified approach to study the long time behavior
of inhomogeneous Markov chains, which may also provide speeds of convergence
or functional convergence. To our knowledge, this method is original, and The-
orems 2.6 and 2.8 have the advantage of being self-contained. The main goal of
our illustrations, in Section 3, is to provide a simple framework to understand our
approach. For these examples, proofs seem more simple and intuitive, and we are
able to recover classical results as well as slight improvements.

This paper is organized as follows. In Section 2, we state the framework and
the main assumptions that will be used throughout the paper. We recall the notion
of asymptotic pseudotrajectory, and present our main result, Theorem 2.6, which
describes the asymptotic behavior of a Markov chain. We also provide two conse-
quences, Theorems 2.8 and 2.12, precising the geometric ergodicity of the chain or
its functional convergence. In Section 3, we illustrate our results by showing how
some renowned examples, including weighted random walks, bandit algorithms or
decreasing step Euler schemes, can be easily studied with this unified approach. In
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Section 4 and Appendix, we provide the proofs of our main theorems and of the
technical parts left aside while dealing with the illustrations.

2. Main results.

2.1. Framework. We shall use the following notation in the sequel:

• A multi-index is a D-tuple N = (N1, . . . ,ND) ∈ N
D ; we define the order N ≤

Ñ if, for all 1 ≤ i ≤ D,Ni ≤ Ñi . We define |N | =∑D
i=1 Ni and and we identify

an integer N with the multi-index (N, . . . ,N).
• For some multi-index N , C N is the set of functions f : RD → R which are Ni

times continuously differentiable in the direction i. For any f ∈ C N(RD), we
define

f (N) = ∂ |N |

∂
N1
x1 · · · ∂ND

xD

f,
∥∥f (N)

∥∥∞ = sup
x∈RD

∣∣f (N)(x)
∣∣.

• C N
b is the set of C N functions such that

∑
j≤N ‖f (j)‖∞ < +∞. Also, C N

c is the
set of C N functions with compact support, and C N

0 is the set of C N functions
such that lim‖x‖→∞ f (x) = 0.

• L (X) is the law of a random variable X and Supp(L (X)) its support.
• x ∧ y := min(x, y) and x ∨ y := max(x, y) for any x, y ∈ R.
• For some multi-index N,χN(x) :=∑D

i=1
∑Ni

k=0 |xi |k for x ∈ R
D .

Let us recall some basics about Markov processes. Given a homogeneous
Markov process (Xt)t≥0 with càdlàg trajectories a.s., we define its Markov semi-
group (Pt )t≥0 by

Ptf (x) = E
[
f (Xt) | X0 = x

]
.

It is said to be Feller if, for all f ∈ C 0
0 , Ptf ∈ C 0

0 and limt→0 ‖Ptf − f ‖∞ = 0.
We can define its generator L acting on functions f satisfying limt→0 ‖t−1(Ptf −
f ) − Lf ‖∞ = 0. The set of such functions is denoted by D(L), and is dense in
C 0

0 ; see, for instance, [17]. The semigroup property of (Pt ) ensures the existence
of a semiflow:

(2.1) �(ν, t) := νPt ,

defined for any probability measure ν and t ≥ 0; namely, for all s, t > 0, �(ν, t +
s) = �(�(ν, t), s).

Let (yn)n≥0 be a (inhomogeneous) Markov chain and let (Ln)n≥0 be a sequence
of operators satisfying, for f ∈ C 0

b ,

Lnf (yn) := E[f (yn+1) − f (yn) | yn]
γn+1

,
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where (γn)n≥1 is a decreasing sequence converging to 0, such that
∑∞

n=1 γn =
+∞. Note that the sequence (Ln) exists thanks to Doob’s lemma. Let (τn) be the
sequence defined by τ0 := 0 and τn :=∑n

k=1 γk , and let m(t) := sup{n ≥ 0 : t ≥
τn} be the unique integer such that τm(t) ≤ t < τm(t)+1. We denote by (Yt ) the
process defined by Yt := yn when t ∈ [τn, τn+1) and we set

(2.2) μt := L (Yt ).

Following [4, 5], we say that (μt )t≥0 is an asymptotic pseudotrajectory of �

(with respect to a distance d over probability distributions) if, for any T > 0,

(2.3) lim
t→∞ sup

0≤s≤T

d
(
μt+s,�(μt , s)

)= 0.

Likewise, we say that (μt )t≥0 is a λ-pseudotrajectory of � (with respect to d) if
there exists λ > 0 such that, for all T > 0,

(2.4) lim sup
t→+∞

1

t
log
(

sup
0≤s≤T

d
(
μt+s,�(μt , s)

))≤ −λ.

This definition of λ-pseudotrajectories is the same as in [4], up to the sign of λ.
In the sequel, we discuss asymptotic pseudotrajectories with distances of the

form

dF (μ, ν) := sup
f ∈F

∣∣μ(f ) − ν(f )
∣∣= sup

f ∈F

∣∣∣∣∫ f dμ −
∫

f dν

∣∣∣∣,
for a certain class of functions F . In particular, this includes total variation, Fortet–
Mourier and Wasserstein distances. In general, dF is a pseudodistance. Neverthe-
less, it is a distance whenever F contains an algebra of bounded continuous func-
tions that separates points (see [17], Theorem 4.5(a), Chapter 3). In all the cases
considered here, F contains the algebra C ∞

c and then convergence in dF entails
convergence in distribution (see Lemma A.1, whose proof is classical and is given
in the Appendix for the sake of completeness).

2.2. Assumptions and main theorem. In the sequel, let d1,N1,N2 be multi-
indices, parameters of the model. We will assume, without loss of generality, that
N1 ≤ N2. Some key methods of how to check every assumption are provided in
Section 3.

The first assumption we need is crucial. It defines the asymptotic homogeneous
Markov process ruling the asymptotic behavior of (yn).

ASSUMPTION 2.1 (Convergence of generators). There exist a nonincreasing
sequence (εn)n≥1 converging to 0 and a constant M1 [depending on L (y0)] such
that, for all f ∈ D(L) ∩ C N1

b and n ∈N

, and for any y ∈ Supp(L (yn)),∣∣Lf (y) −Lnf (y)

∣∣≤ M1χd1(y)
∑

j≤N1

∥∥f (j)
∥∥∞εn.
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The following assumption is quite technical, but turns out to be true for most
of the limit semigroups we deal with. Indeed, this is shown for large classes of
PDMPs in Proposition 3.6 and for some diffusion processes in Lemma 3.12.

ASSUMPTION 2.2 (Regularity of the limit semigroup). For all T > 0, there
exists a constant CT such that, for every t ≤ T , j ≤ N1 and f ∈ C N2

b ,

Ptf ∈ C N1
b ,

∥∥(Ptf )(j)
∥∥∞ ≤ CT

∑
i≤N2

∥∥f (i)
∥∥∞.

The next assumption is a standard condition of uniform boundedness of the
moments of the Markov chain. We also provide a very similar Lyapunov criterion
to check this condition.

ASSUMPTION 2.3 (Uniform boundedness of moments). Assume that there
exists a multi-index d ≥ d1 such that one of the following statements holds:

(i) There exists a constant M2 [depending on L (y0)] such that

sup
n≥0

E
[
χd(yn)

]≤ M2.

(ii) There exists V : RD → R+ such that, for all n ≥ 0, E[V (yn)] < +∞.
Moreover, there exist n0 ∈ N


, a,α,β > 0, such that V (y) ≥ χd(y) when |y| > a,
such that, for n ≥ n0, and for any y ∈ Supp(L (yn))

LnV (y) ≤ −αV (y) + β.

In this assumption, the function V is a so-called Lyapunov function. The multi-
index d can be thought of as d = d1 (which is sufficient for Theorem 2.6 to hold).
However, in the setting of Assumption 2.11, it might be necessary to consider
d > d1. Of course, if Assumption 2.3 holds for d ′ > d , then it holds for d . Note
that we usually can take V (y) = eθy , so that we can choose every component of d

as large as needed.

REMARK 2.4 [(ii) ⇒ (i)]. Computing E[χd(yn)] to check Assumption 2.3(i)
can be involved, so we rather check a Lyapunov criterion. It is classic that (ii)
entails (i). Indeed, denoting by n1 := n0 ∨ min{n ∈ N


 : γn < α−1} and vn :=
E[V (yn)], it is clear that

vn+1 ≤ vn + γn+1(β − αvn).

From this inequality, it is easy to deduce that, for n ≥ n1, vn+1 ≤ βα−1 ∨ vn and
then by induction vn ≤ βα−1 ∨ vn1 , which entails (i). Then

E
[
χd(yn)

]= P
(|yn| ≤ a

)
E
[
χd(yn) | |yn| ≤ a

]+ P
(|yn| > a

)
E
[
χd(yn) | |yn| > a

]
≤ χd(a) + β

α
∨
(

sup
k≤n1

vk

)
.
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Note that, with a classical approach, Assumption 2.3 would provide tightness
and Assumption 2.1 would be used to identify the limit.

The previous three assumptions are crucial to provide a result on asymptotic
pseudotrajectories (Theorem 2.6), but are not enough to quantify speeds of con-
vergence. As it can be observed in the proof of Theorem 2.6, such speed relies
deeply on the asymptotic behavior of γm(t) and εm(t). To this end, we follow the
guidelines of [4] to provide a condition in order to ensure such an exponential
decay. For any nonincreasing sequences (γn), (εn) converging to 0, define

λ(γ, ε) = − lim sup
n→∞

log(γn ∨ εn)∑n
k=1 γk

,

where γ and ε, respectively, stand for the sequences (γn)n≥0 and (εn)n≥0.

REMARK 2.5 (Computation of λ(γ, ε)). With the notation of [4], Proposi-
tion 8.3, we have λ(γ, γ ) = −l(γ ). It is easy to check that, if εn ≤ γn for n large,
λ(γ, ε) = λ(γ, γ ) and, if εn = γ

β
n with β ≤ 1, λ(γ, ε) = βλ(γ, γ ). We can mimic

[4], Remark 8.4, to provide sufficient conditions for λ(γ, ε) to be positive. Indeed,
if γn = f (n), εn = g(n) with f,g two positive functions decreasing toward 0 such
that
∫+∞

1 f (s) ds = +∞, then

λ(γ, ε) = − lim sup
x→∞

log(f (x) ∨ g(x))∫ x
1 f (s) ds

.

Typically, if

γn ∼ A

na log(n)b
, εn ∼ B

nc log(n)d

for A,B,a, b, c, d ≥ 0, then:

• λ(γ, ε) = 0 for a < 1.
• λ(γ, ε) = (c ∧ 1)A−1 for a = 1 and b = 0.
• λ(γ, ε) = +∞ for a = 1 and 0 < b ≤ 1.

Now, let us provide the main results of this paper.

THEOREM 2.6 (Asymptotic pseudotrajectories). Let (yn)n≥0 be an inhomo-
geneous Markov chain and let � and μ be defined as in (2.1) and (2.2). If As-
sumptions 2.1, 2.2, 2.3 hold, then (μt )t≥0 is an asymptotic pseudotrajectory of �

with respect to dF , where

F =
{
f ∈ D(L) ∩ C N2

b : Lf ∈ D(L),‖Lf ‖∞ + ‖LLf ‖∞

+ ∑
j≤N2

∥∥f (j)
∥∥∞ ≤ 1

}
.

Moreover, if λ(γ, ε) > 0, then (μt )t≥0 is a λ(γ, ε)-pseudotrajectory of � with
respect to dF .
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2.3. Consequences. Theorem 2.6 relates the asymptotic behavior of the
Markov chain (yn) to the one of the Markov process generated by L. However,
to deduce convergence or speeds of convergence of the Markov chain, we need
another assumption.

ASSUMPTION 2.7 (Ergodicity). Assume that there exist a probability distri-
bution π , constants v,M3 > 0 [M3 depending on L (y0)], and a class of functions
G such that one of the following conditions holds:

(i) G ⊆ F and, for any probability measure ν, for all t > 0,

dG
(
�(ν, t),π

)≤ dG (ν,π)M3e−vt .

(ii) There exists r,M4 > 0 such that, for all s, t > 0

dG
(
�(μs, t),π

)≤ M3e−vt

and, for all T > 0, with CT defined in Assumption 2.2,

T CT ≤ M4erT .

(iii) There exist functions ψ :R+ →R+ and W ∈ C 0 such that

lim
t→∞ψ(t) = 0, lim‖x‖→∞W(x) = +∞, sup

n≥0
E
[
W(yn)

]
< ∞

and, for any probability measure ν, for all t ≥ 0,

dG
(
�(ν, t),π

)≤ ν(W)ψ(t).

Since standard proofs of geometric ergodicity rely on the use of Grönwall’s
lemma, Assumption 2.7(i) and (ii) are quite classic. In particular, using Foster–
Lyapunov methods entail such inequalities (see, e.g., [23, 36]). However, in a
weaker setting (sub-geometric ergodicity for instance) Assumption 2.7(iii) might
still hold; see, for example, [26], Theorem 3.6, [14], Theorem 3.2z, or [20], The-
orem 4.1. Note that, if W = χd , then supn≥0 E[W(yn)] < ∞ automatically from
Assumption 2.3. Note that, in classical settings where T CT ≤ M4erT , we have
(i) ⇒ (ii) ⇒ (iii).

THEOREM 2.8 (Speed of convergence toward equilibrium). Assume that As-
sumptions 2.1, 2.2, 2.3 hold and let F be as in Theorem 2.6:

(i) If Assumption 2.7(i) holds and λ(γ, ε) > 0 then, for any u < λ(γ, ε) ∧ v,
there exists a constant M5 such that, for all t > t0 := (v − u)−1 log(1 ∧ M3),

dG (μt ,π) ≤ (M5 + dG (μ0, π)
)
e−ut .

(ii) If Assumption 2.7(ii) holds and λ(γ, ε) > 0 then, for any u < vλ(γ, ε)(r +
v + λ(γ, ε))−1, there exists a constant M5 such that, for all t > 0,

dF∩G (μt ,π) ≤ M5e−ut .
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(iii) If Assumption 2.7(iii) holds and convergence in dG implies weak conver-
gence, then μt converges weakly toward π when t → ∞.

The first part of this theorem is similar to [4], Lemma 8.7, but provides sharp
bounds for the constants. In particular, M5 and t0 do not depend on μ0 [in Theo-
rem 2.8(i) only]; see the proof for an explicit expression of M5. The second part,
however, does not require G to be a subset of F , which can be rather involved to
check, given the expression of F given in Theorem 2.6. The third part is a direct
consequence of [4], Theorem 6.10; we did not meet this case in our main examples,
but we discuss the convergence toward sub-geometrically ergodic limit processes
in Remark 3.14.

REMARK 2.9 (Rate of convergence in the initial scale). Theorem 2.8(i) and
(ii) provide a bound of the form

dH
(
L(Yt ),π

)≤ Ce−ut ,

for some H ,C,u and all t ≥ 0. This easily entails, for another constant C and all
n ≥ 0,

dH
(
L(yn),π

)≤ Ce−uτn.

Let us detail this bound for three examples where ε ≤ γ :

• If γn = An−1/2, then dH (L(yn),π) ≤ Ce−2Au
√

n.
• If γn = An−1, then dH (L(yn),π) ≤ Cn−Au.
• If γn = A(n log(n))−1, then dH (L(yn),π) ≤ C log(n)−Au.

In a nutshell, if γn is large, the speed of convergence is good but λ(γ, γ ) is small.
In particular, even if γn = n−1/2 provides the better speed, Theorem 2.8 does not
apply. Remark that the parameter u is more important at the discrete time scale
than it is at the continuous time scale.

REMARK 2.10 (Convergence of unbounded functionals). Theorem 2.8 pro-
vides convergence in distribution of (μt ) toward π , that is, for every f ∈ C 0

b (RD),

lim
t→∞μt(f ) = π(f ).

Nonetheless, Assumption 2.3 enables us to extend this convergence to unbounded
functionals f . Recall that, if a sequence (Xn)n≥0 converges weakly to X and

M := E
[
V (X)

]+ sup
n≥0

E
[
V (Xn)

]
< +∞

for some positive function V , then E[f (Xn)] converges to E[f (X)] for every func-
tion |f | < V θ , with θ < 1. Indeed, let (κm)m≥0 be a sequence of C ∞

c functions
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such that ∀x ∈ R
D, limm→∞ κm(x) = 1 and 0 ≤ κm ≤ 1. We have, for m ∈ N,∣∣E[f (Xn) − f (X)
]∣∣≤ ∣∣E[(1 − κm(Xn)

)
f (Xn)

]∣∣+ ∣∣E[(1 − κm(X)
)
f (X)
]∣∣

+ ∣∣E[f (Xn)κm(Xn) − f (X)κm(X)
]∣∣

≤ E
[∣∣f (Xn)

∣∣ 1θ ]θE[(1 − κm(Xn)
) 1

1−θ
]1−θ

+E
[∣∣f (X)

∣∣ 1θ ]θE[(1 − κm(X)
) 1

1−θ
]1−θ

+ ∣∣E[f (Xn)κm(Xn) − f (X)κm(X)
]∣∣

≤ Mθ
E
[(

1 − κm(Xn)
) 1

1−θ
]1−θ

+ Mθ
E
[(

1 − κm(X)
) 1

1−θ
]1−θ

+ ∣∣E[f (Xn)κm(Xn) − f (X)κm(X)
]∣∣,

so that, for all m ∈ N,

lim sup
n→∞

E
[
f (Xn) − f (X)

]≤ 2Mθ
E
[(

1 − κm(X)
) 1

1−θ
]1−θ

.

Using the dominated convergence theorem, limn→∞E[f (Xn) − f (X)] = 0 since
the right-hand side converges to 0. Note that the condition |f | ≤ V θ can be slightly
weakened using the generalized Hölder’s inequality on Orlicz spaces (see, e.g.,
[9]). Although, note that E[V (Xn)] may not converge to E[V (X)].

The following assumption is purely technical but is easy to verify in all of our
examples, and will be used to prove functional convergence.

ASSUMPTION 2.11 (Control of the variance). Define the following operator:

�nf = Lnf
2 − γn+1(Lnf )2 − 2fLnf.

Assume that there exists a multi-index d2 and M6 > 0 such that, if ϕi is the pro-
jection on the ith coordinate,

Lnϕi(y) ≤ M6χd2(y), �nϕi(y) ≤ M6χd2(y),

and

Lnχd2(y) ≤ M6χd2(y), �nχd2(y) ≤ M6χd(y),

where d is defined in Assumption 2.3.

THEOREM 2.12 (Functional convergence). Assume that Assumptions 2.1, 2.2,
2.3, 2.7 hold and let π be as in Assumption 2.7. Let Y

(t)
s := Yt+s and Xπ be the
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process generated by L such that L (Xπ
0 ) = π . Then, for any m ∈ N


, let 0 < s1 <

· · · < sm, (
Y (t)

s1
, . . . , Y (t)

sm

) L−→ (Xπ
s1

, . . . ,Xπ
sm

)
.

Further, if Assumption 2.11 holds, then the sequence of processes (Y
(t)
s )s≥0 con-

verges in distribution, as t → +∞, toward (Xπ
s )s≥0 in the Skorokhod space.

For reminders about the Skorokhod space, the reader may consult [6, 25, 27].
Note that the operator �n we introduced in Assumption 2.11 is very similar to the
carré du champ operator in the continuous-time case, up to a term γn+1(Lnf )2

vanishing as n → +∞ (see, e.g., [1, 2, 25]). Moreover, if we denote by (Kn) the
transition kernels of the Markov chain (yn), then it is clear that

∀n ∈ N, γn+1�nf = Knf
2 − (Knf )2.

3. Illustrations.

3.1. Weighted random walks. In this section, we apply Theorems 2.6 and 2.8
to weighted random walks (WRWs) on R

D . Let (ωn) be a positive sequence, and
γn := ωn(

∑n
k=1 ωk)

−1. Then, set

xn :=
∑n

k=1 ωkEk∑n
k=1 ωk

, xn+1 := xn + γn+1(En+1 − xn).

Here, xn is the weighted mean of E1, . . . ,En, where (En) is a sequence of centered
independent random variables. Under standard assumptions on the moments of En,
the strong law of large numbers holds and (xn) converges to 0 a.s. Thus, it is natural
to apply the general setting of Section 2 to yn := xnγ

−1/2
n and to define μt as in

(2.2). As we shall see, computations lead to the convergence of Ln, as defined in
(1.1), toward

Lf (y) := −ylf ′(y) + σ 2

2
f ′′(y),

where l and σ are defined below. Hence, the properly normalized process asymp-
totically behaves like the Ornstein–Uhlenbeck process; see Figure 1. This process
is the solution of the following stochastic differential equation (SDE):

dXt = −lXt dt + σ dWt,

see [2] for instance. In the sequel, define F as in Theorem 2.6 with N2 = 3, and
ϕi the projection on the ith coordinate.
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FIG. 1. Trajectory of the interpolated process for the normalized mean of the WRW with ωn = 1
and L (En) = (δ−1 + δ1)/2.

PROPOSITION 3.1 (Results for the WRW). Assume that

E

[
D∑

i=1

ϕi(En+1)
2

]
= σ 2, sup

n≥1
γ 2
n ω4

nE
[‖En‖4]< +∞,

sup
n

γn

n∑
i=1

ω2
i < +∞,

and that there exist l > 0 and β > 1 such that

(3.1)

√
γn

γn+1
− 1 − √

γnγn+1 = −γnl +O
(
γ β
n

)
.

Then (μt ) is an asymptotic pseudotrajectory of �, with respect to dF .
Moreover, if λ(γ, γ (β−1)∧ 1

2 ) > 0 then, for any u < lλ(γ, γ (β−1)∧ 1
2 )(l + λ(γ,

γ (β−1)∧ 1
2 ))−1, there exists a constant C such that, for all t > 0,

(3.2) dF (μt ,π) ≤ Ce−ut ,

where π is the Gaussian distribution N (0, σ 2/(2l)).
Moreover, the sequence of processes (Y

(t)
s )s≥0 converges in distribution, as t →

+∞, toward (Xπ
s )s≥0 in the Skorokhod space.

It is possible to recover the functional convergence using classical results: for
instance, one can apply [30], Theorem 2.1, Chapter 10, with a slightly stronger as-
sumption on (γn). Yet, to our knowledge, the rate of convergence (3.2) is original.
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REMARK 3.2 (Powers of n). Typically, if γn ∼ An−α , then we can easily
check that:

• if α = 1, then (3.1) holds with l = 1 − 1
2A

and β = 2;
• if 0 < α < 1, then (3.1) holds with l = 1 and β = 1+α

α
> 2.

Observe that, if ωn = na for any a > −1, then γn ∼ 1+a
n

and (3.1) hold with l =
1+2a
2+2a

and β = 2.

We will see during the proof that checking Assumptions 2.1, 2.2, 2.3 and 2.7 is
quite direct.

PROOF OF PROPOSITION 3.1. For the sake of simplicity, we do the computa-
tions for D = 1. We have

yn+1 =
√

γn

γn+1
yn + √

γn+1(En+1 − √
γnyn),

so

Lnf (y) = γ −1
n+1E
[
f (yn+1) − f (yn) | yn = y

]= γ −1
n+1E
[
f
(
y + In(y)

)− f (y)
]
,

with In(y) := (
√

γn

γn+1
− 1 −√

γnγn+1)y +√
γn+1En+1. Simple Taylor expansions

provide the following equalities (where O is the Landau notation, deterministic
and uniform over y and f , and β := β ∧ 3

2 ):

In(y) = (−γnl +O
(
γ β
n

))
y + √

γn+1En+1,

I 2
n (y) = γn+1E

2
n+1 + χ2(y)(1 + En+1)O

(
γ

β
n+1

)
,

I 3
n (y) = χ3(y)

(
1 + En+1 + E2

n+1 + E3
n+1
)
O
(
γ

β
n+1

)
.

In the setting of Remark 3.2, note that β = 3
2 . Now, Taylor formula provides a

random variable ξ
y
n such that

f
(
y + In(y)

)− f (y) = In(y)f ′(y) + I 2
n (y)

2
f ′′(y) + I 3

n (y)

6
f (3)(ξy

n

)
.

Then it follows that

Lnf (y) = γ −1
n+1E

[
In(y)f ′(y) + I 2

n (y)

2
f ′′(y) + I 3

n (y)

6
f (3)(ξy

n

) ∣∣∣ yn = y

]
= γ −1

n+1

[(−γnl +O
(
γ 3/2
n

))
y + √

γn+1E[En+1]]f ′(y)

+ 1

2γn+1
γn+1E

[
E2

n+1 + χ2(y)O
(
γ

β
n+1

)]
f ′′(y)(3.3)
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+ γ −1
n+1χ3(y)E

[
1 + En+1 + E2

n+1 + E3
n+1
]∥∥f (3)

∥∥∞O
(
γ

β
n+1

)
= −ylf ′(y) + χ1(y)

∥∥f ′∥∥∞O
(
γ β−1
n

)+ σ 2

2
f ′′(y)

+ χ2(y)
∥∥f ′′∥∥∞O

(
γ β−1
n

)+ χ3(y)
∥∥f (3)
∥∥∞O
(
γ β−1
n

)
.

From (3.3), we can conclude that∣∣Lnf (y) −Lf (y)
∣∣= χ3(y)

(∥∥f ′∥∥∞ + ∥∥f ′′∥∥∞ + ∥∥f (3)
∥∥∞)O(γ β−1

n

)
.

As a consequence, the WRW satisfies Assumptions 2.1 with d1 = 3, N1 = 3 and
εn = γ

β−1
n . Note that (see Remark 2.5) λ(γ, ε) = β − 1 if γn = n−1.

Now, let us show that Ptf admits bounded derivatives for f ∈ F . Here, the
expressions of the semigroup and its derivatives are explicit and the computa-
tions are simple (see [1, 2]). Indeed, Ptf (x) = E[f (xe−lt + √

1 − e−2ltG)] and
(Ptf )(j)(y) = e−j ltPtf

(j)(y), where L (G) = N (0,1). Then it is clear that∥∥(Ptf )(j)
∥∥∞ = e−j lt

∥∥Ptf
(j)
∥∥∞ ≤ ∥∥f (j)

∥∥∞.

Hence, Assumption 2.2 holds with N2 = 3 and CT = 1. Without loss of generality
(in order to use Theorem 2.12 later), we set d = 4.

Now, we check that the moments of order 4 of yn are uniformly bounded. Ap-
plying Cauchy–Schwarz’s inequality,

E

[∥∥∥∥∥
n∑

i=1

ωiEi

∥∥∥∥∥
4]

= E

[
n∑

i=1

ω4
i ‖Ei‖4 + 6

∑
i<j

ω2
i

∥∥E2
i

∥∥ω2
j‖Ej‖2

]

≤ C

(
n∑

i=1

ω2
i

)2

,

for some explicit constant C. Then, since

E
[‖yn‖4]= γ 2

nE

[∥∥∥∥∥
n∑

i=1

ωiEi

∥∥∥∥∥
4]

≤ C sup
n≥1

(
γn

n∑
i=1

ω2
i

)2

,

the sequence (yn)n≥0 satisfies Assumption 2.3.
It is classic, using coupling methods with the same Brownian motion for in-

stance, that, for any probability measure ν,

dG
(
�(ν, t),π

)≤ dG (ν,π)e−lt ,

where π = N (0, σ 2/(2l)ID) and dG is the Wasserstein distance (G is the set of
1-Lipschitz functions, see [10]). We have, for s, t > 0,

dG
(
�(μs, t),π

)≤ dG (μs,π)e−lt ≤ (M2 + π(χ1)
)
e−lt .

In other words, Assumption 2.7(ii) holds for the WRW model with M3 = M2 +
π(χ1),M4 = 1, v = l, r = 0 and F ⊆ G .
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FIG. 2. Trajectory of the interpolated process for the toy model of Remark 3.3 with
L (Fn) = L (Gn) = (δ−1 + δ1)/2.

Finally, it is easy to check Assumption 2.11 in the case of the WRW, with d2 =
2, and then �nχ2 ≤ M6χ4 (that is why we set d = 4 above).

Then Theorems 2.6, 2.8 and 2.12 achieve the proof of Proposition 3.1. �

REMARK 3.3 (Building a limit process with jumps). In this paper, we mainly
provide examples of Markov chains converging (in the sense of Theorem 2.6) to-
ward diffusion processes (see Section 3.1) or jump processes (see Section 3.2).
However, it is not hard to adapt the previous model to obtain an example converg-
ing toward a diffusion process with jumps (see Figure 2): this illustrates how every
component (drift, jump and noise) appears in the limit generator. The intuition is
that the jump terms appear when larger and larger jumps of the Markov chain occur
with smaller and smaller probability. For an example when D = 1, take

ωn := 1, En :=
{
Fn if Un ≥ √

γn,

γ −1/2
n Gn if Un <

√
γn,

yn := 1√
γn

n∑
k=1

Ek,

where (Fn)n≥1, (Gn)n≥1 and (Un)n≥1 are three sequences of i.i.d. random vari-
ables, such that E[F1] = 0,E[F 2

1 ] = σ 2,L (G1) = Q, L (U1) is the uniform dis-
tribution on [0,1]. In this case, γn = 1/n and it is easy to show that Ln as defined
in (1.1) converges toward the following infinitesimal generator:

Lf (y) := −1

2
yf ′(y) + σ 2

2
f ′′(y) +

∫
R

[
f (y + z) − f (y)

]
Q(dz),

so that Assumption 2.1 holds with d1 = 3, N1 = 3, εn = n−1/2.
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3.2. Penalized bandit algorithm. In this section, we slightly generalize the pe-
nalized bandit algorithm (PBA) model introduced by Lamberton and Pagès, and
we recover [32], Theorem 4. Such algorithms aim at optimizing the gain in a game
with two choices, A and B , with respective unknown gain probabilities pA and
pB . Originally, A and B are the two arms of a slot machine, or bandit. Throughout
this section, we assume 0 ≤ pB < pA ≤ 1.

Let s : [0,1] → [0,1] be a function, which can be understood as a player’s
strategy, such that s(0) = 0, s(1) = 1. Let xn ∈ [0,1] be a measure of her trust
level in A at time n. She chooses A with probability s(xn) independently from the
past, and updates xn as follows:

xn+1 Choice Result

xn + γn+1(1 − xn) A Gain
xn − γn+1xn B Gain
xn + γ 2

n+1(1 − xn) B Loss
xn − γ 2

n+1xn A Loss

Then (xn) satisfies the following stochastic approximation algorithm:

xn+1 := xn + γn+1(Xn+1 − xn) + γ 2
n+1(X̃n+1 − xn),

where

(3.4) (Xn+1, X̃n+1) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1, xn) with probability p1(xn),

(0, xn) w.p. p0(xn),

(xn,1) w.p. p̃1(xn),

(xn,0) w.p. p̃0(xn),

with

(3.5)
p1(x) = s(x)pA, p0(x) = (1 − s(x)

)
pB,

p̃1(x) = (1 − s(x)
)
(1 − pB), p̃0(x) = s(x)(1 − pA).

Note that the PBA of [32] is recovered by setting s(x) = x in (3.5).
From now on, we consider the algorithm (3.4) where p1,p0, p̃1, p̃0 are non-

necessarily given by (3.5), but are general nonnegative functions whose sum is 1.
Let F be as in Theorem 2.6 with N2 = 2, and yn := γ −1

n (1 − xn) the rescaled
algorithm. Let Ln be defined as in (1.1),

(3.6) Lf (y) := [p̃0(1) − yp1(1)
]
f ′(y) − yp′

0(1)
[
f (y + 1) − f (y)

]
,

and π the invariant distribution for L (which exists and is unique, see Remark 3.7).
Under the assumptions of Proposition 3.4, it is straightforward to mimic the

results [32] and ensure that our generalized algorithm (xn)n≥0 satisfies the ODE
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lemma (see, e.g., [30], Theorem 2.1, Chapter 5), and converges toward 1 almost
surely.

PROPOSITION 3.4 (Results for the PBA). Assume that γn = n−1/2, that
p1, p̃1, p̃0 ∈ C1

b,p0 ∈ C2
b , and that

p0(1) = p̃1(1) = 0, p′
0(1) ≤ 0, p1(1) + p′

0(1) > 0, p̃1(0) > 0.

If, for 0 < x < 1, (1 − x)p1(x) > xp0(x), then (μt ) is an asymptotic pseudotra-
jectory of �, with respect to dF .

Moreover, (μt ) converges to π and the sequence of processes (Y
(t)
s )s≥0 con-

verges in distribution, as t → +∞, toward (Xπ
s )s≥0 in the Skorokhod space.

The proof is given at the end of the section; before that, let us give some in-
terpretation and heuristic explanation of the algorithm. The random sequence (yn)

satisfies

yn+1 = yn +
(

γn

γn+1
− 1
)
yn − (Xn+1 − xn) − γn+1(X̃n+1 − xn),

thus, defining Ln as in (1.1),

Lnf (y) = γ −1
n+1E
[
f (yn+1) − f (yn) | yn = y

]
= γ −1

n+1E
[
f
(
y + In(y)

)− f (y) | yn = y
]
,

where

(3.7) In(y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I 1
n (y) :=

(
γn

γn+1
− 1 − γn

)
y

w.p. p1(1 − γny),

I 0
n (y) := 1 +

(
γn

γn+1
− 1 − γn

)
y

w.p. p0(1 − γny),

Ĩ 1
n (y) :=

(
γn

γn+1
− 1 − γnγn+1

)
y

w.p. p̃1(1 − γny),

Ĩ 0
n (y) := γn+1 +

(
γn

γn+1
− 1 − γnγn+1

)
y

w.p. p̃0(1 − γny).

Taylor expansions provide the convergence of Ln toward L. As a consequence,
the properly renormalized interpolated process will asymptotically behave like a
PDMP (see Figure 3). Classically, one can read the dynamics of the limit process
through its generator (see, e.g., [13]): the PDMP generated by (3.6) has upward
jumps of height 1 and follows the flow given by the ODE y′ = p̃0(1) − yp1(1),
which means it converges exponentially fast toward p̃0(1)/p1(1).
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FIG. 3. Trajectory of the interpolated process for the rescaled PBA, setting s(x) = x in (3.5).

REMARK 3.5 (Interpretation). Consider the case (3.5). Here, Proposition 3.4
states that the rescaled algorithm (yn) behaves asymptotically like the process gen-
erated by

Lf (x) = (1 − pA − xpA)f ′(x) + pBs′(1)x
[
f (x + 1) − f (x)

]
.

Intuitively, it is more and more likely to play the arm A (the one with the greatest
gain probability). Its successes and failures appear within the drift term of the
limit infinitesimal generator, whereas playing the arm B with success will provoke
a jump. Finally, playing the arm B with failure does not affect the limit dynamics
of the process (as p̃1 does not appear within the limit generator). To carry out the
computations in this section, where we establish the speed of convergence of (Ln)

toward L, the main idea is to condition E[yn+1] given typical events on the one
hand, and rare events on the other hand. Typical events generally construct the
drift term of L and rare events are responsible of the jump term of L (see also
Remark 3.3).

Note that one can tune the frequency of jumps with the parameter s′(1). The
more concave s is in a neighborhood of 1, the better the convergence is. In par-
ticular, if s′(1) = 0, the limit process is deterministic. Also, note that choosing a
function s nonsymmetric with respect to (1/2,1/2) introduces an a priori bias; see
Figure 4.

Let us start the analysis of the rescaled PBA with a global result about a large
class of PDMPs, whose proof is postponed to the Appendix. This lemma provides
the necessary arguments to check Assumption 2.2.

PROPOSITION 3.6 (Assumption 2.2 for PDMPs). Let X be a PDMP with in-
finitesimal generator

Lf (x) = (a − bx)f ′(x) + (c + dx)
[
f (x + 1) − f (x)

]
,
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FIG. 4. Various strategies for s(x) = x, s concave, s with a bias.

such that a, b, c, d ≥ 0. Assume that either b > 0, or b = 0 and a �= 0. If f ∈ C N
b ,

then for all 0 ≤ t ≤ T , Ptf ∈ C N
b . Moreover, for all n ≤ N ,

∥∥(Ptf )(n)
∥∥∞ ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n∑
k=0

(
2|d|
b

)n−k∥∥f (k)
∥∥∞ if b > 0,

n∑
k=0

n!
k!
(
2|d|T )n−k∥∥f (k)

∥∥∞ if b = 0.

Note that a very similar result is obtained in [3], but for PDMPs with a diffusive
component.

REMARK 3.7 (The stationary probability distribution). Let (Xt)t≥0 be the
PDMP generated by L defined in Proposition 3.6. By using the same tools as in
[32], Theorem 6, it is possible to prove existence and uniqueness of a stationary
distribution π on R+. Applying Dynkin’s formula with f (x) = x, we get

∂tE[Xt ] = a + c − (b − d)E[Xt ].

If one uses the same technique with f (x) = xn, it is possible to deduce the nth mo-
ment of the invariant measure π , and Dynkin’s formula applied to f (x) = exp(λx)

provides exponential moments of π (see [8], Remark 2.2, for the detail).
In the setting of (3.6), one can use the reasoning above to show that, by denoting

by mn = ∫∞0 xnπ(dx) for n ≥ 0,

mn = −p′
0(1)

n(p1(1) + p′
0(1))

n−2∑
k=1

(
n

k − 1

)
mk + 2p̃0(1) + (n − 1)p′

0(1)

2(p1(1) + p′
0(1))

mn−1,

with the convention
∑i

k=i+1 = 0.

PROOF OF PROPOSITION 3.4. First, let us specify the announced convergence
of Ln toward L; recall that γn = n−1/2 and χd(y) =∑d

k=0 |y|k , so that In(y) in
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(3.7) rewrites

In(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
n + 1 − √

n − 1√
n

y w.p. p1(1 − γny),

1 +
√

n + 1 − √
n − 1√

n
y w.p. p0(1 − γny),

√
n − √

n + 1√
n + 1

y w.p. p̃1(1 − γny),

1√
n + 1

+
√

n − √
n + 1√

n + 1
y w.p. p̃0(1 − γny),

and the infinitesimal generator rewrites

Lnf (y) = p1(1 − γny)

γn+1

[
f
(
y + I 1

n (y)
)− f (y)

]
+ p0(1 − γny)

γn+1

[
f
(
y + I 0

n (y)
)− f (y)

]
(3.8)

+ p̃1(1 − γny)

γn+1

[
f
(
y + Ĩ 1

n (y)
)− f (y)

]
+ p̃0(1 − γny)

γn+1

[
f
(
y + Ĩ 0

n (y)
)− f (y)

]
.

In the sequel, the Landau notation O will be deterministic and uniform over both
y and f .

First, we consider the first term of (3.8) and observe that

p1(1 − γny) = p1(1) + yO(γn),

and that

I 1
n (y) =

(
γn

γn+1
− 1 − γn

)
y =
(

1

2n
+ o
(
n−1)− 1√

n

)
y = −yγn

(
1 +O(γn)

)
,

so that I 1
n (y)2 = y2O(γ 2

n ). Since γn ∼ γn+1, and since the Taylor formula gives a
random variable ξ

y
n such that

f
(
y + I 1

n (y)
)− f (y) = I 1

n (y)f ′(y) + I 1
n (y)2

2
f ′′(ξy

n

)
,

we have

γ −1
n+1

[
f
(
y + I 1

n (y)
)− f (y)

]= −yf ′(y) + χ2(y)
(∥∥f ′∥∥∞ + ∥∥f ′′∥∥∞)O(γn).

Then easy computations show that

(3.9)

p1(1 − γny)

γn+1

[
f
(
y + I 1

n (y)
)− f (y)

]
= −p1(1)yf ′(y) + χ3(y)

(∥∥f ′∥∥∞ + ∥∥f ′′∥∥∞)O(γn).
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The third term in (3.8) is expanded similarly and writes

(3.10)
p̃1(1 − γny)

γn+1

[
f
(
y + Ĩ 1

n (y)
)− f (y)

]= χ3(y)
(∥∥f ′∥∥∞ + ∥∥f ′′∥∥∞)O(γn),

while the fourth term becomes

(3.11)

p̃0(1 − γny)

γn+1

[
f
(
y + Ĩ 0

n (y)
)− f (y)

]
= p̃0(1)f ′(y) + χ3(y)

(∥∥f ′∥∥∞ + ∥∥f ′′∥∥∞)O(γn).

Note the slight difference with the expansion of the second term, since we have,
on the one hand,

p0(1 − γny)

γn+1
= − γn

γn+1
yp′

0(1) + γ 2
n

γn+1
y2p′′(ξy

n

)= −yp′
0(1) + χ2(y)O(γn),

where ξ
y
n is a random variable, while, on the other hand,

f
(
y + I 0

n (y)
)− f (y) = f (y + 1) − f (y) + χ1(y)

∥∥f ′∥∥∞O(γn).

Then

(3.12)

p0(1 − γny)

γn+1

[
f
(
y + I 0

n (y)
)− f (y)

]
= −yp′

0(1)
[
f (y + 1) − f (y)

]+ χ3(y)
(‖f ‖∞ + ∥∥f ′∥∥∞)O(γn).

Finally, combining (3.9), (3.10), (3.11) and (3.12), we obtain the following speed
of convergence for the infinitesimal generators:

(3.13)
∣∣Lnf (y) −Lf (y)

∣∣= χ3(y)
(‖f ‖∞ + ∥∥f ′∥∥∞ + ∥∥f ′′∥∥∞)O(γn),

establishing that the rescaled PBA satisfies Assumption 2.1 with d1 = 3, N1 = 2
and εn = γn. Assumption 2.2 follows from Proposition 3.6 with N2 = 2.

In order to apply Theorem 2.6, it would remain to check Assumption 2.3, that is
to prove that the moments of order 3 of (yn) are uniformly bounded. This happens
to be very difficult and we do not even know whether it is true. As an illustration
of this difficulty, the reader may refer to [19], Remark 4.4, where uniform bounds
for the first moment are provided using rather technical lemmas, and only for an
overpenalized version of the algorithm.

In order to overcome this technical difficulty, we introduce a truncated Markov
chain coupled with (yn), which does satisfy a Lyapunov criterion. For l ∈ N


 and
δ ∈ (0,1], we define (y

(l,δ)
n )n≥0 as follows:

y(l,δ)
n :=

{
yn for n ≤ l,(
y

(l,δ)
n−1 + In−1

(
y

(l,δ)
n−1

))∧ δγ −1
n for n > l.
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In the sequel, we denote with an exposant (l, δ) the equivalents of Ln, Yt ,μt for
(y

(l,δ)
n )n≥0. We prove that (L(l,δ)

n )n≥0 satisfies our main assumptions, and conse-
quently (μ

(l,δ)
t )t≥0 is an asymptotic pseudotrajectory of � (at least for δ small

enough and l large enough), which is the result of the combination of Lemma 3.8
and Theorem 2.6.

LEMMA 3.8 (Behavior of the truncated chain). For δ small enough and l large
enough, the inhomogeneous Markov chain (y

(l,δ)
n )n≥0 satisfies Assumptions 2.1,

2.2, 2.3 and 2.11.

Now, we shall prove that (μt )t≥0 is an asymptotic pseudotrajectory of � as well.
Indeed, let ε > 0 and l be large enough such that P(∀n ≥ l, γnyn ≤ δ) ≥ 1 − ε (it is
possible since γnyn = 1 − xn converges to 0 in probability). Then, for T > 0, f ∈
F , s ∈ [0, T ]∣∣μt+s(f ) − �(μt , s)(f )

∣∣≤ ∣∣μt+s(f ) − μ
(l,δ)
t+s (f )

∣∣
+ ∣∣�(μ(l,δ)

t , s
)
(f ) − �(μt , s)(f )

∣∣
+ ∣∣μ(l,δ)

t+s (f ) − �
(
μ

(l,δ)
t , s

)
(f )
∣∣

≤ (2‖f ‖∞ + 2‖f ‖∞
)(

1 − P(∀n ≥ l, γnyn ≤ δ)
)

+ ∣∣μ(l,δ)
t+s (f ) − �

(
μ

(l,δ)
t , s

)
(f )
∣∣

≤ 4ε + ∣∣μ(l,δ)
t+s (f ) − �

(
μ

(l,δ)
t , s

)
(f )
∣∣,

since ‖f ‖∞ ≤ 1. Taking the suprema over [0, T ] and F yields

(3.14)

lim sup
t→∞

sup
s∈[0,T ]

dF
(
μt+s,�(μt , s)

)
≤ 4ε + lim sup

t→∞
sup

s∈[0,T ]
dF
(
μ

(l,δ)
t+s ,�

(
μ

(l,δ)
t , s

))
.

Using Lemma 3.8, Theorem 2.6 holds for (μ
(l,δ)
t )t≥0 and (3.14) rewrites

lim sup
t→∞

sup
s∈[0,T ]

dF
(
μt+s,�(μt , s)

)≤ 4ε,

so that (μt )t≥0 is an asymptotic pseudotrajectory of �.
Finally, for t > 0, T > 0, f ∈ C 0

b , s ∈ [0, T ], set νt := L ((Y
(t)
s )0≤T ) and ν :=

L ((Xπ
s )0≤T ). We have∣∣νt (f ) − ν(f )

∣∣≤ ∣∣νt (f ) − ν
(l,δ)
t (f )

∣∣+ ∣∣ν(l,δ)
t (f ) − ν(f )

∣∣
≤ 2‖f ‖∞

(
1 − P(∀n ≥ l, γnyn ≤ δ)

)+ ∣∣ν(l,δ)
t (f ) − ν(f )

∣∣(3.15)

≤ 2ε + ∣∣ν(l,δ)
t (f ) − ν(f )

∣∣.
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Since (y
(l,δ)
n )n≥0 satisfies Assumption 2.11, we can apply Theorem 2.12 so that

the right-hand side of (3.15) converges to 0, which concludes the proof. �

REMARK 3.9 (Rate of convergence toward the stationary measure). For such
PDMPs, exponential convergence in Wasserstein distance has already been ob-
tained (see [8], Proposition 2.1, or [19], Theorem 3.4). However, we are not in the
setting of Theorem 2.8, since γn = n−1/2. Thus, λ(γ, ε) = 0, and there is no expo-
nential convergence. This highlights the fact that the rescaled algorithm converges
too slowly toward the limit PDMP.

REMARK 3.10 (The overpenalized bandit algorithm). Even though we do not
consider the overpenalized bandit algorithm introduced in [19], the tools are the
same. The behavior of this algorithm is the same as the PBAs, except from a pos-
sible (random) penalization of an arm in case of a success; it writes

xn+1 = xn + γn+1(Xn+1 − xn) + γ 2
n+1(X̃n+1 − xn),

where

(Xn+1, X̃n+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, xn) with probability pAxnσ,

(0, xn) with probability pB(1 − xn)σ,

(1,0) with probability pAxn(1 − σ),

(0,1) with probability pB(1 − xn)(1 − σ),

(xn,1) with probability (1 − pB)(1 − xn),

(xn,0) with probability (1 − pA)xn.

Setting yn = γ −1
n (1 − xn), and following our previous computations, it is easy to

show that the rescaled overpenalized algorithm converges, in the sense of Assump-
tion 2.1, toward

Lf (y) = [1 − σpA − pAy]f ′(y) + pBy
[
f (y + 1) − f (y)

]
.

3.3. Decreasing step Euler scheme. In this section, we turn to the study of the
so-called decreasing step Euler scheme (DSES). This classical stochastic proce-
dure is designed to approximate the stationary measure of a diffusion process of
the form

(3.16) Xx
t = x +

∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) dWs

with a discrete Markov chain

(3.17) yn+1 := yn + γn+1b(yn) + √
γn+1σ(yn)En+1,

for any nonincreasing sequence (γn)n≥1 converging toward 0 such that
∑∞

n=1 γn =
+∞ and (En) a suitable sequence of random variables. In the sequel, we shall
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recover the convergence of the DSES toward the diffusion process at equilibrium,
as defined by (3.16). If γn = γ in (3.17), this model would be a constant step Euler
scheme as studied by [39, 40], which approaches the diffusion process at time t

when γ tends to 0. By letting t → +∞ in (3.16), it converges to the equilibrium
of the diffusion process. We can concatenate those steps by choosing γn vanishing
but such that

∑
n γn diverges. The DSES has already been studied in the literature;

see, for instance, [31, 34].
It is simple, following the computations of Sections 3.1 and 3.2, to check that

Ln converges (in the sense of Assumption 2.1) toward

Lf (y) := b(y)f ′(y) + σ 2(y)

2
f ′′(y).

In the sequel, define F as in Theorem 2.6 with N2 = 3.

PROPOSITION 3.11 (Results for the DSES). Assume that (En) is a se-
quence of sub-Gaussian random variables (i.e., there exists κ > 0 such that
∀θ ∈ R,E[exp(θE1)] ≤ exp(κθ2/2)), and E[E1] = 0 and E[E2

1] = 1. Moreover,
assume that b,σ ∈ C ∞ whose derivatives of any order are bounded, and that σ

is bounded. Eventually, assume that there exist constants 0 < b1 ≤ b2 and 0 < σ1
such that, for |y| > A,

(3.18) −b2y
2 ≤ b(y)y ≤ −b1y

2, σ1 ≤ σ(y).

If γn = 1/n, then (μt ) is a 1
2 -pseudotrajectory of �, with respect to dF .

Moreover, there exists a probability distribution π and C,u > 0 such that, for
all t > 0,

dF (μt ,π) ≤ Ce−ut .

Further, the sequence of processes (Y
(t)
s )s≥0 converges in distribution, as t →

+∞, toward (Xπ
s )s≥0 in the Skorokhod space.

Note that one could choose a more general (γn), provided that λ(γ, γ ) > 0.
In contrast to classical results, Proposition 3.11 provides functional convergence.
Moreover, we obtain a rate of convergence in a more general setting than [34],
Theorem IV.1, see also [31]. Indeed, let us detail the difference between those
settings with the example of the Kolmogorov–Langevin equation:

dXt = ∇V (Xt) dt + σ dBt .

A rate of convergence may be obtained in [34] only for V uniformly convex; al-
though, we only need V to be convex outside some compact set. Let us recall
that the uniform convexity is a strong assumption ensuring log-Sobolev inequality,
Wasserstein contraction; see, for instance, [1, 2].
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PROOF OF PROPOSITION 3.11. Recalling (yn) in (3.17) and Ln in (1.1), we
have

Ln(y) = γ −1
n+1E
[
f
(
y + γn+1b(y) + √

γn+1σ(y)En+1
)− f (y) | yn = y

]
.

Easy computations show that Assumption 2.1 holds with εn = √
γn, N1 = 3,

d1 = 3.
We aim at proving Assumption 2.2, that is, for f ∈ F , j ≤ 3 and t ≤ T , that

(Ptf )(j) exists and ∥∥(Ptf )(j)
∥∥∞ ≤ CT

3∑
k=0

∥∥f (k)
∥∥∞.

It is straightforward for j = 0, but computations are more involved for j ≥ 1. Let
us denote by (Xx

t )t≥0 the solution of (3.16) starting at x. Since b and σ are smooth
with bounded derivatives, it is standard that x �→ Xx

t is C 4 (see, for instance, [29],
Chapter II, Theorem 3.3). Moreover, ∂xX

x
t satisfies the following SDE:

∂xX
x
t = 1 +

∫ t

0
b′(Xx

s

)
∂xX

x
s ds +

∫ t

0
σ ′(Xx

s

)
∂xX

x
s dWs.

For our purpose, we need the following lemma, which provides a constant for
Assumption 2.2 of the form CT = C1eC2T . It is of course possible to explicit the
constants C1 and C2 for the second and third derivatives in its proof. However,
here we are only interested in checking Assumption 2.7(ii).

LEMMA 3.12 (Estimates for the derivatives of the diffusion). Under the as-
sumptions of Proposition 3.11, for p ≥ 2 and t ≤ T ,

E
[∣∣∂xX

x
t

∣∣p]≤ exp
((

p
∥∥b′∥∥∞ + p(p − 1)

2

∥∥σ ′∥∥2∞)T )
and

E
[∣∣∂xX

x
t

∣∣]≤ exp
((∥∥b′∥∥∞ + 1

2

∥∥σ ′∥∥2∞)T ).
For any p ∈N


, there exist positive constants C1,C2 not depending on x, such that

E
[∣∣∂2

xXx
t

∣∣p]≤ C1eC2T , E
[∣∣∂3

xXx
t

∣∣p]≤ C1eC2T .

The proof of the lemma is postponed to the Appendix. Using Lemma 3.12, and
since f and its derivatives are bounded, it is clear that x �→ Ptf (x) is three times
differentiable, with

(Ptf )′(x) = E
[
f ′(Xx

t

)
∂xX

x
t

]
,

(Ptf )′′(x) = E
[
f ′′(Xx

t

)(
∂xX

x
t

)2 + f ′(Xx
t

)(
∂2
xXx

t

)]
,

(Ptf )(3)(x) = E
[
f (3)(Xx

t

)(
∂xX

x
t

)3 + 3f ′′(Xx
t

)(
∂xX

x
t

)(
∂2
xXx

t

)
+ f ′(Xx

t

)(
∂3
xXx

t

)]
.

As a consequence, Assumption 2.2 holds, with CT = 3C3
1e3C2T and N2 = 3.
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Now, we shall prove that Assumption 2.3(ii) holds with V (y) = exp(θy), for
some (small) θ > 0. Thanks to (3.18), we easily check that, for Ṽ (y) = 1 + y2,

(3.19) LṼ (y) ≤ −α̃Ṽ (y) + β̃,

with α̃ = 2b1 and

β̃ = (2b1 + S) ∨
(
A sup

[−A,A]
b + S2

2
+ 2b1

(
1 + A2)).

Then [34], Proposition III.1, entails Assumption 2.3(ii). Finally, Theorem 2.6
applies and we recover [30], Theorem 2.1, Chapter 10.

Then Theorem 2.6 provides the asymptotic behavior of the Markov chain
(yn)n≥0 (in the sense of asymptotic pseudotrajectories). If we further want speeds
of convergence, we shall use Theorem 2.8 and prove the ergodicity of the limit
process; to that end, combine (3.19) with [36], Theorem 6.1 (which provides expo-
nential ergodicity for the diffusion toward some stationary measure π ), as well as
Lemma 3.12, to ensure Assumption 2.7(ii) with G = {g ∈ C 0(R) : |g(y)| ≤ 1+y2}
(v and r are not explicitly given). Note that we used the fact that σ is lower-
bounded, which implies that the compact sets are small sets. Moreover, the choice
γn = n−1 implies λ(γ, ε) = 1/2. Then the assumptions of Theorem 2.8 are satis-
fied, with u0 = v(1 + 2v + 2r)−1.

Finally, we can easily check Assumption 2.11 for some d ∈ N, since yn admits
uniformly bounded exponential moments. Then using Theorem 2.12 completes the
proof. �

3.4. Lazier and lazier random walk. We consider the lazier and lazier random
walk (LLRW) (yn)n≥0 defined as follows:

(3.20) yn+1 :=
{
yn + Zn+1 with probability γn+1,

yn with probability 1 − γn+1,

where (Zn) is such that L (Zn+1 | y0, . . . , yn) = L (Zn+1 | yn); we denote the con-
ditional distribution Q(yn, ·) := L (Zn+1 | yn). In the sequel, define F := {f ∈
C 0

b : 7‖f ‖∞ ≤ 1} and Lf (y) = ∫
R

f (y + z)Q(y, dz) − f (y), which is the gener-
ator of a pure-jump Markov process (constant between two jumps).

This example is very simple and could be studied without using our main re-
sults; however, we still develop it in order to check the sharpness of our rates of
convergence (see Remak 3.15).

PROPOSITION 3.13 (Results for the LLRW model). The sequence (μt ) is an
asymptotic pseudotrajectory of �, with respect to dF .

Moreover, if λ(γ, γ ) > 0, then (μt ) is a λ(γ, γ )-pseudotrajectory of �.
Further, if L satisfies Assumption 2.7(i) for some v > 0 then, for any u < v ∧

λ(γ, γ ), there exists a constant C such that, for all t > 0,

dF (μt ,π) ≤ Ce−ut .
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Remark that the distance dF in Proposition 3.13 is the total variation distance
up to a constant.

PROOF OF PROPOSITION 3.13. It is easy to check that (1.1) entails

Lnf (y) =
∫
R

f (y + z)Q(y, dz) − f (y) = Lf (y).

It is clear that the LLRW satisfies Assumption 2.1 with d1 = 0,N1 = 0, εn = 0,
and Assumption 2.2 with CT = 1,N2 = 0. Since d = d1 = 0, Assumption 2.3 is
also clearly satisfied. Eventually, note that λ(γ, ε) = λ(γ, γ ). Then Theorem 2.6
holds. Finally, if L satisfies Assumption 2.7(i), it is clear that Theorem 2.8 applies.

�

The assumption on L satisfying Assumption 2.7(i) (which strongly depends on
the choice of Q), can be checked with the help of a Foster–Lyapunov criterion; see
[36] for instance.

REMARK 3.14 (Constructing limit processes with a slow speed of conver-
gence). The framework of the LLRW provides a large pool of toy examples. Let
R be some Markov transition kernel on R, and define Q(y,A) = R(y, y + A), for
any y ∈ R and A Borelian set, where y + A = {z ∈ R : z − y ∈ A}. Let (yn)n≥0 be
the LLRW defined in (3.20). Proposition 3.13 holds, and the limit process gener-
ated by Lf (y) = ∫

R
f (y + z)Q(y, dz)−f (y) is just a Markov chain generated by

R indexed by a Poisson process. Precisely, if Nt is a Poisson process of intensity 1,

�(ν, t) = E
[
νRNt
]
.

This construction allows us to build a variety of limit processes for the LLRW,
with a slow speed of convergence if needed. Indeed, choose R to be the Markov
kernel of a sub-geometrically ergodic Markov chain converging to a stationary
measure π at polynomial speed (for instance the kernels introduced in [26]); the
limit process will inherit the slow speed of convergence. More precisely, there exist
β ≥ 1, a class of functions G and a function W such that

dG
(
νRn,π

)≤ ν(W)

(1 + n)β
.

Then

dG
(
�(ν, t),π

)≤ E

[
ν(W)

(1 + Nt)β

]
which goes to 0 at polynomial speed. Then, if supnE[W(yn)] < +∞, which could
be proven via troncature arguments as in Section 3.2, we can use Theorem 2.8(iii)
to conclude that (yn) converges weakly toward π .

Note that another example of sub-geometrically ergodic process is provided
in [14], Theorem 5.4. The elliptic diffusions mentioned in this article converge
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slowly toward equilibrium, and could be approximated by a Euler scheme as in
Section 3.3. In this example again, the use of troncature arguments to check As-
sumption 2.3 could be enough for Theorem 2.8(iii) to hold.

REMARK 3.15 (Speed of convergence under Doeblin condition). Assume
there exists a measure ψ and ε > 0 such that for every y and measurable set A, we
have ∫

1y+z∈AQ(y, dz) ≥ εψ(A).

It is the classical Doeblin condition, which ensures exponential uniform ergodicity
in total variation distance. It is classic to prove that under this condition there exists
an invariant distribution π , such that, for every μ and t ≥ 0,

dF (μPt ,π) ≤ e−tεdF (μ,π) ≤ e−tε.

Indeed, one can couple two trajectories as follows: choose the same jump times
and, using the Doeblin condition, at each jumps, couple them with probability ε.
The coupling time then follows an exponential distribution with parameter ε. Then
the conclusion of Proposition 3.13 holds with v = ε−1.

However, one can use the Doeblin argument directly with the inhomogeneous
chain. Let us denote by (Kn) its sequence of transition kernels. From the Doeblin
condition, we have, for every μ,ν and n ≥ 0,

dF (μKn, νKn) ≤ (1 − γn+1ε)dF (μ, ν)

and as π is invariant for Kn (it is straighforward because π is invariant for Q) then

dF (μKn,π) ≤ (1 − γn+1ε)dF (μ,π).

A recursion argument then gives

dF
(
L(yn),π

)≤ n∏
k=0

(1 − γk+1ε)dF
(
L(y0),π

)
.

But

n∏
k=0

(1 − γk+1ε) = exp

(
n∑

k=0

ln(1 − γk+1ε)

)
≤ exp

(
n∑

k=0

ln(1 − γk+1ε)

)

≤ e−ε
∑n

k=0 γk+1 .

As a conclusion, Proposition 3.13 and the direct approach provide the same rate
of convergence for the LLRW under Doeblin condition.
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REMARK 3.16 (Nonconvergence in total variation). Assume that yn ∈ R+ and
Zn = −yn/2. We then have that

yn =
n∏

i=1

�̃iy0, �̃i =
⎧⎪⎨⎪⎩

1 with probability 1 − γi,

1

2
with probability γi,

where �̃i are independent random variables. Borel–Cantelli’s lemma entails that
(yn)n≥0 converges to 0 almost surely and, here,

Lf (y) = f

(
y

2

)
− f (y).

A process with such a generator never hits 0 whenever it starts with a positive value
and, then does not converge in total variation distance. Nevertheless, it is easy to
prove that for any y and t ≥ 0,

dG(δyPt , δ0) ≤ E

[
1

2Nt

]
y ≤ e−t/2y,

where G is any class of functions included in {f ∈ C 1
b : ‖f ′‖∞ ≤ 1}, and (Nt ) a

Poisson process. In particular, Assumption 2.7(ii) holds and there is convergence
of our chain to zero in distribution, as well as a rate of convergence in the Fortet–
Mourier distance.

4. Proofs of theorems. In the sequel, we consider the following classes of
functions:

F1 := {f ∈ D(L) : Lf ∈ D(L),‖f ‖∞ + ‖Lf ‖∞ + ‖LLf ‖∞ ≤ 1
}
,

F2 :=
{
f ∈ D(L) ∩ C N2

b : ∑
j≤N2

∥∥f (j)
∥∥∞ ≤ 1

}
,

F := F1 ∩ F2.

The class F1 is particularly useful to control Ptf (see Lemma 4.1), and the class
F2 enables us to deal with smooth and bounded functions (for the second part of
the proof of Theorem 2.6). Note that an important feature of F is that Lemma A.1
holds for F1 ∩ F2, so that F contains C ∞

c “up to a constant.”
Let us begin with preliminary remarks on the properties of the semigroup (Pt ).

LEMMA 4.1 (Expansion of Ptf ). Let f ∈ F1. Then, for all t > 0, Ptf ∈ F1
and

sup
f ∈F1

‖Ptf − f − tLf ‖∞ ≤ t2

2
.
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PROOF. It is clear that Ptf ∈ F1, since for all g ∈ D(L), PtLg = LPtg and
‖Ptg‖∞ ≤ ‖g‖∞. Now, if f ∈ F1, then

Ptf = f +
∫ t

0
PsLf ds = f + tLf + K(f, t),

where K(f, t) = Ptf − f − tLf . Using the mean value inequality, we have, for
x ∈ R

D ,∣∣K(f, t)(x)
∣∣= ∣∣∣∣∫ t

0
PsLf (x) ds −Lf (x)

∣∣∣∣≤ ∫ t

0

∣∣PsLf (x) −Lf (x)
∣∣ds

≤
∫ t

0
s‖LLf ‖∞ ds ≤ t2

2
,

which concludes the proof. �

PROOF OF THEOREM 2.6. For every t ≥ 0, set K(f, t) := Ptf − f − tLf

and recall that m(t) = sup{n ≥ 0 : t ≥ τn}. Then we have Yτm(t)
= Yt and τm(t) ≤

t < τm(t)+1. Let 0 < s < T . Using the following telescoping sum, we have

(4.1)

dF
(
μt+s,�(μt , s)

)
= dF
(
μτm(t+s)

,�(μτm(t)
, s)
)

≤ dF
(
�(μτm(t)

, τm(t+s) − τm(t)),�(μτm(t)
, s)
)

+ dF
(
μτm(t+s)

,�(μτm(t)
, τm(t+s) − τm(t))

)
≤ dF
(
�(μτm(t)

, τm(t+s) − τm(t)),�(μτm(t)
, s)
)

+
m(t+s)−1∑
k=m(t)

dF

(
�

(
μτk+1,

m(t+s)∑
j=k+2

γj

)
,�

(
μτk

,

m(t+s)∑
j=k+1

γj

))
,

with the convention
∑i

k=i+1 = 0. Our aim is now to bound each term of this
sum. The first one is the simplest: indeed, we have s ≤ τm(t+s)+1 − τm(t), so
s − γm(t+s)+1 ≤ τm(t+s) − τm(t) and τm(t+s) − τm(t) ≤ s + γm(t)+1. Denoting by
u = s ∧ (τm(t+s) − τm(t)) and h = |τm(t+s) − τm(t) − s| we have, by the semigroup
property,

dF
(
�(μt , τm(t+s) − τm(t)),�(μt , s)

)= dF
(
�
(
�(μt , u), h

)
,�(μt , u)

)
.

From Lemma 4.1, we know that for every f ∈ F1 and every probability measure ν,

∣∣�(ν,h)(f ) − ν(f )
∣∣= ∣∣ν(Phf − f )

∣∣≤ h + h2

2
≤ 3

2
h,

for h ≤ 1. It is then straightforward that

(4.2) dF
(
�(μt , τm(t+s) − τm(t)),�(μt , s)

)≤ 3

2
h ≤ 3

2
γm(t)+1.
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Now, we provide bounds for the generic term of the telescoping sum in (4.1). Let
f ∈ F1 and m(t) ≤ k ≤ m(t + s) − 1. On the one hand, using Lemma 4.1,

�

(
μτk

,

m(t+s)∑
j=k+1

γj

)
(f ) = μτk

P∑m(t+s)
j=k+1 γj

(f )

= μτk
(Pτm(t+s)−τk+1f )

+
∫ γk+1

0
μτk

(LPτm(t+s)−τk+1+uf ) du

= μτk
(Pτm(t+s)−τk+1f ) + γk+1μτk

(LPτm(t+s)−τk+1f )

+ K(Pτm(t+s)−τk+1f,γk+1).

On the other hand,

μτk+1(f ) = μτk
(f ) + γk+1μτk

(Lkf )

so that

�

(
μτk+1,

m(t+s)∑
j=k+2

γj

)
(f ) = μτk+1(Pτm(t+s)−τk+1f )

= μτk
(Pτm(t+s)−τk+1f ) + γk+1μτk

(LkPτm(t+s)−τk+1f ).

Henceforth,

�

(
μτk+1,

m(t+s)∑
j=k+2

γj

)
(f ) − �

(
μτk

,

m(t+s)∑
j=k+1

γj

)
(f )

≤ γk+1μτk

(
(Lk −L)Pτm(t+s)−τk+1f

)+ K(Pτm(t+s)−τk+1f,γk+1).

Now, we bound the previous term using Assumption 2.1, Assumption 2.2 and As-
sumption 2.3. Let m(t) ≤ k ≤ m(t + s) − 1. Recall that, since s < T , τm(t+s) −
τk+1 ≤ τm(t+s) − τm(t)+1 ≤ (t + s) − t ≤ T . Then, for all f ∈ F2,∣∣μτk

(
(Lk −L)Pτm(t+s)−τk+1f

)∣∣≤ μτk

(∣∣(Lk −L)Pτm(t+s)−τk+1f
∣∣)

≤ μτk

(
M1χd1

∑
j≤N1

∥∥(Pτm(t+s)−τk+1f )(j)
∥∥∞εk

)

≤ μτk

(
M1(N1 + 1)CT χd

∑
j≤N2

∥∥f (j)
∥∥∞εk

)

≤ M1(N1 + 1)CT E
[
χd(yk)

] ∑
j≤N2

∥∥f (j)
∥∥∞εk
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≤ M1M2(N1 + 1)CT

∑
j≤N2

∥∥f (j)
∥∥∞εk

≤ M1M2(N1 + 1)CT εk.

Gathering the previous bounds entails

m(t+s)−1∑
k=m(t)

dF

(
�

(
μτk+1,

m(t+s)∑
j=k+2

γj

)
,�

(
μτk

,

m(t+s)∑
j=k+1

γj

))

≤
m(t+s)−1∑
k=m(t)

(
M1M2(N1 + 1)CT γk+1εk + γ 2

k+1

2

)
(4.3)

≤ (T + 1)

(
M1M2(N1 + 1)CT + 1

2

)
(γm(t) ∨ εm(t)).

Thus, combining (4.1), (4.2) and (4.3) yields

(4.4) sup
s≤T

dF
(
μt+s,�(μt , s)

)≤ C′
T (γm(t) ∨ εm(t)),

with C′
T = 3

2 + (T + 1)(M1M2(N1 + 1)CT + 1
2). Then (μt )t≥0 is an asymptotic

pseudotrajectory of � (with respect to dF ).
Now, we turn to the study of the case λ(γ, ε) > 0. For any λ < λ(γ, ε), we have

(for n large enough) γn ∨ εn ≤ exp(−λτn). Then, for any t large enough,

γm(t) ∨ εm(t) ≤ e−λτm(t) ≤ eλ(t−τm(t))e−λt ≤ eλ(γ,ε)e−λt .

Now, plugging this upper bound in (4.4), we get, for λ < λ(γ, ε),

(4.5) sup
s≤T

dF
(
μt+s,�(μt , s)

)≤ eλ(γ,ε)C′
T e−λt .

Finally, we can deduce that

lim sup
t→+∞

1

t
log
(

sup
0≤s≤T

d
(
μt+s,�(μt , s)

))≤ −λ

for any λ < λ(γ, ε), which concludes the proof of Theorem 2.6. �

PROOF OF THEOREM 2.8. The first part of the proof is an adaptation of
[4]. Assume Assumption 2.7(i) and, without loss of generality, assume M3 > 1.
If v > λ(γ, ε), fix ε > v − λ(γ, ε), otherwise let ε > 0, and set u := v − ε,
Tε := ε−1 logM3. Since u < λ(γ, ε), and using (4.5), the following sequence of
inequalities holds, for any T ∈ [Tε,2Tε] and n ∈ N:

dG (μ(n+1)T ,π) ≤ dG
(
μ(n+1)T ,�(μnT , T )

)+ dG
(
�(μnT ,T ),π

)
≤ eλ(γ,ε)C′

T e−unT + M3dG (μnT ,π)e−vT

≤ eλ(γ,ε)C′
T e−unT + dG (μnT ,π)e−uT ,
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with C′
T = 3

2 + (T + 1)(M1M2(N1 + 1)CT + 1
2). Denoting by δn := dG (μnT ,π)

and ρ := e−uT , the previous inequality turns into δn+1 ≤ eλ(γ,ε)C′
T ρn + ρδn, from

which we derive

δn ≤ nρn−1C′
T eλ(γ,ε) + ρnδ0.

Hence, for every n ≥ 0 and T ∈ [Tε,2Tε], we have

dG (μnT ,π) ≤ e−(u−ε)nT (M5 + dG (μ0, π)
)

with

M5 = eλ(γ,ε)
(
sup
n≥0

ne−εnT
)(

sup
T ∈[Tε,2Tε]

C′
T

)
.

Then, for any t > Tε , let n = �tT −1
ε � and T = tn−1. Then T ∈ [Tε,2Tε] and the

following upper bound holds:

dG (μt ,π) ≤ (M5 + dG (μ0, π)
)
e−(u−ε)t .

Now, assume Assumption 2.7(ii). For any (small) ε > 0, there exists eλ(γ,ε) such
that γm(t) ∨ εm(t) ≤ eλ(γ,ε) exp(−(λ(γ, ε) − ε)t). For any α ∈ (0,1), we have

dF∩G (μt ,π) ≤ dF∩G
(
μt,�
(
μαt , (1 − α)t

))+ dF∩G
(
�
(
μαt , (1 − α)t

)
, π
)

≤ C′
(1−α)t (γm(αt) ∨ εm(αt)) + M3e−v(1−α)t(4.6)

≤ M4er(1−α)teλ(γ,ε)e−(λ(γ,ε)−ε)αt + M3e−v(1−α)t .

Optimizing (4.6) by taking α = (r + v)(r + v + λ(γ, ε) − ε)−1, we get

dF∩G (μt ,π) ≤ M5 exp
(
− v(λ(γ, ε) − ε)

r + v + λ(γ, ε) − ε
t

)
,

with M5 = M4eλ(γ,ε) + M3, which depends on ε only through M3.
Lastly, assume Assumption 2.1(iii). Denote by K the set of probability measures

ν such that

ν(W) < M = sup
n≥0

E
[
W(yn)

]
.

Let ε > 0 and K = {x ∈ R
D : W(x) ≤ M/ε}. For every ν ∈ K, using Markov’s

inequality, it is clear that

ν
(
KC)≤ ε

M
ν(W) ≤ ε.

Then K is a relatively compact set (by Prokhorov’s theorem). The measure π is an
attractor in the sense of [4], which means that limdG (�(ν, t),π) = 0 uniformly
in ν ∈ K. Then, since for any t > 0,μt ∈ K, we can apply [4], Theorem 6.10, to
achieve the proof. �



3036 M. BENAÏM, F. BOUGUET AND B. CLOEZ

PROOF OF THEOREM 2.12. We shall prove the convergence of the sequence
of processes (Y

(t)
s )0≤s≤T , as t → +∞, toward (Xπ

s )0≤s≤T in the Skorokhod space
D([0, T ]), for any T > 0. Then, using [6], Theorem 16.7, this convergence entails
Theorem 2.12, that is, convergence of the sequence (Y (t)) in D([0,∞)).

Let T > 0. The proof of functional convergence classically relies on proving the
convergence of finite-dimensional distributions, on the one hand, and tightness, on
the other hand. First, we prove the former, which is the first part of Theorem 2.12.
We choose to prove the convergence of the finite-dimensional distributions in the
case m = 2. The proof for the general case is similar but with a laborious notation.
Denote by Tu,vg(y) := E[g(Yv) | Yu = y]. With this notation, (4.4) becomes

sup
s≤T

sup
g∈F

(μtTt,t+sg − μtPsg) ≤ C ′
T (γm(t) ∨ εm(t)).

This upper bound does not depend on μt , so, for any probability distribution ν, we
have

sup
s≤T

sup
g∈F

(νTt,t+sg − νPsg) ≤ C ′
T (γm(t) ∨ εm(t)).

This inequality implies that, for any ν,

(4.7) sup
s1≤s2≤T

sup
g∈F

(νTt+s1,t+s2g − νPs2−s1g) ≤ C ′
T (γm(t) ∨ εm(t)),

which converges toward 0 as t → +∞. From now on, we denote, for any function
f , f̂x(y) := f (x, y). If f is a smooth function (say in C ∞

c with enough derivatives
bounded), f̂·(·) ∈ F . On the one hand, for 0, s1 < s2 < T ,

E
[
f
(
Xπ

s1
,Xπ

s2

)]= ∫ Ps2−s1 f̂y(y)π(dy) = πPs2−s1 f̂·(·).
On the other hand, we have

E
[
f
(
Y (t)

s1
, Y (t)

s2

)]= E
[
E
[
f
(
Y (t)

s1
, Y (t)

s2

) | Y (t)
s1

]]= E
[
Tt+s1,t+s2 f̂Yt+s1

(Yt+s1)
]

= T0,t+s1

(
Tt+s1,t+s2 f̂·(·)).

We have the following triangle inequality:∣∣E[f (Y (t)
s1

, Y (t)
s2

)]−E
[
f
(
Xπ

s1
,Xπ

s2

)]∣∣= ∣∣T0,t+s1

(
Tt+s1,t+s2 f̂·(·))− πPs2−s1 f̂·(·)

∣∣
≤ ∣∣T0,t+s1

(
Tt+s1,t+s2 f̂·(·) − Ps2−s1 f̂·(·))∣∣(4.8)

+ ∣∣T0,t+s1

(
Ps2−s1 f̂·(·))− πPs2−s1 f̂·(·)

∣∣.
First, using (4.7), and if f̂·(·) ∈ F ,

lim
t→∞T0,t+s1

(
Tt+s1,t+s2 f̂·(·) − Ps2−s1 f̂·(·))

= lim
t→∞μt+s1

(
Tt+s1,t+s2 f̂·(·) − Ps2−s1 f̂·(·))= 0.
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Second, Ps2−s1f·(·) ∈ C 0
b and, using Theorem 2.8,

lim
t→∞T0,t+s1

(
Ps2−s1 f̂·(·))− πPs2−s1 f̂·(·) = 0.

From (4.8), it is straightforward that, for a smooth f ,

lim
t→∞
∣∣E[f (Y (t)

s1
, Y (t)

s2

)]−E
[
f
(
Xπ

s1
,Xπ

s2

)]∣∣= 0,

and applying Lemma A.1 achieves the proof of finite dimensional convergence for
m = 2.

To prove tightness, which is the second part of Theorem 2.12, we need the
following lemma, whose proof is postponed to the Appendix.

LEMMA 4.2 (Martingale properties). Let f be a continuous and bounded
function. The process (M̂

f
n )n≥0, defined for every n ≥ 0 by

M̂f
n = f (yn) − f (y0) −

n−1∑
k=0

γk+1Lkf (yk),

is a martingale, with

〈
M̂f 〉

n =
n−1∑
k=0

γk+1�kf (yk).

Moreover, under Assumption 2.11, if d ≥ d2 then for every N ≥ 0, there exist a
constant M7 > 0 (depending on N and y0) such that

E

[
sup
n≤N

χd1(yn)
]
≤ M7.

Now, define

M(t,i)
s = M̂

ϕi

m(t+s) − M̂
ϕi

m(t),

A(t,i)
s = ϕi(Yt ) +

∫ τm(t+s)

τm(t)

Lm(u)ϕi(Yu) du = ϕi(ym(t))

+
m(t+s)−1∑
k=m(t)

γk+1Lkϕi(yk)

and

Y (t,i)
s = ϕi

(
Y (t)

s

)
.

With this notation and Lemma 4.2 we have

Y (t,i)
s = A(t,i)

s + M(t,i)
s
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and (M
(t,i)
s )s≥0 is a martingale with quadratic variation〈

M(t,i)〉
s =
∫ τm(t+s)

τm(t)

�m(u)ϕi(Yu) du,

where �n is as in Assumption 2.11. From the convergence of finite-dimensional
distributions, for every s ∈ [0, T ], the sequence (Y

(t)
s )t≥0 is tight. It is then enough,

from the Aldous–Rebolledo criterion (see Theorems 2.2.2 and 2.3.2 in [27]) and
Lemma 4.2 to show that: for every S ≥ 0, ε, η > 0, there exists a δ > 0 and t0 > 0
with the property that whatever the family of stopping times (σ (t))t≥0, with σ (t) ≤
S, for every i ∈ {1, . . .D},
(4.9) sup

t≥t0

sup
θ≤δ

P
(∣∣〈M(t,i)〉

σ (t) − 〈M(t,i)〉
σ (t)+θ

∣∣≥ η
)≤ ε

and

(4.10) sup
t≥t0

sup
θ≤δ

P
(∣∣A(t,i)

σ (t) − A
(t,i)

σ (t)+θ

∣∣≥ η
)≤ ε.

We have, using Assumption 2.11,

A
(t,i)

σ (t)+θ
− A

(t,i)

σ (t) =
∫ τ

m(t+σ(t)+θ)

τ
m(t+σ(t))

Lm(u)ϕi(Yu) du ≤
∫ τ

m(t+σ(t)+θ)

τ
m(t+σ(t))

M6χd2(Yu) du

≤ M6|τm(t+σ (t)+θ) − τm(t+σ (t))| sup
r≤T

χd2(Yr).

From the definition of τn,

|τm(t+σ (t)+θ) − τm(t+σ (t))| ≤ θ + γm(t)+1,

and then, using Lemma 4.2 and Markov’s inequality,

P
(∣∣A(t,i)

σ (t) − A
(t,i)

σ (t)+θ

∣∣≥ η
)≤ M6(θ + γm(t0)+1)

η
E

[
sup
s≤T

χd2(Yr)
]

≤ M6M7
(δ + γm(t0)+1)

η
.

Proving inequality (4.9) is done in a similar way and achieves the proof. �

APPENDIX

A.1. General appendix.

LEMMA A.1 (Weak convergence and dF ). Assume that F is a star domain
with respect to 0 (i.e., if f ∈ F then λf ∈ F for λ ∈ [0,1]). Let (μn),μ be prob-
ability measures. If limn→∞ dF (μn,μ) = 0 and, for every g ∈ C ∞

c , there exists
λ > 0 such that λg ∈ F , then (μn) converges weakly toward μ. If F ⊆ C 1

b , then
dF metrizes the weak convergence.
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PROOF. Let f ∈ C 0
b , g ∈ C ∞

c . Note that fg ∈ C 0
c and, using Weierstrass’

theorem, it is well known that, for all ε > 0, there exists ϕ ∈ C ∞
c such that

‖fg − ϕ‖∞ ≤ ε. By hypothesis, and since F is a star domain, there exists λ > 0
such that λg,λϕ ∈ F . Then∣∣μn(fg)−μ(fg)

∣∣≤ ∣∣μn(fg)−μn(ϕ)
∣∣+ 1

λ

∣∣μn(λϕ)−μ(λϕ)
∣∣+ ∣∣μ(fg)−μ(ϕ)

∣∣;
thus, lim supn→∞ |μn(fg) − μ(fg)| ≤ 2ε. Now,∣∣μn(f ) − μ(f )

∣∣≤ ∣∣μn(f − fg) − μ(f − fg)
∣∣+ ∣∣μn(fg) − μ(fg)

∣∣
≤ ‖f ‖∞

∣∣μn(1 − g) − μ(1 − g)
∣∣+ ∣∣μn(fg) − μ(fg)

∣∣
≤ ‖f ‖∞

λ

∣∣μn(λg) − μ(λg)
∣∣+ ∣∣μn(fg) − μ(fg)

∣∣
so that lim supn→∞ |μn(f ) − μ(f )| ≤ 2ε, for any ε > 0, which concludes the
proof.

Now, assuming F ⊆ C 1
b , use [10], Theorem 5.6. Then convergence with respect

to dF is equivalent to weak convergence. Indeed, dC 1
b

is the well-known Fortet–
Mourier distance, which metrizes the weak topology. It is also the Wasserstein
distance Wδ , with respect to the distance δ such that

∀x, y ∈ R
D, δ(x, y) = sup

f ∈C 1
b

∣∣f (x) − f (y)
∣∣= |x − y| ∧ 2.

See also [38], Theorem 4.4.2. �

PROOF OF LEMMA 4.2. Let Fn = σ(y0, . . . , yn) be the natural filtration.
Classically, we have

E
[
M̂

f
n+1 | Fn

]= E

[
f (yn+1) − f (y0) −

n∑
k=0

γk+1Lkf (yk)
∣∣∣Fn

]

= f (yn) + γn+1Lnf (yn) − f (y0) −
n∑

k=0

γk+1Lkf (yk)

= M̂f
n .

Moreover,

E
[(

M̂
f
n+1

)2 | Fn

]= E

[
f (yn+1)

2 + f (y0)
2 +
(

n∑
k=0

γk+1Lkf (yk)

)2 ∣∣∣Fn

]

−E

[
2f (yn+1)

(
f (y0) +

n∑
k=0

γk+1Lkf (yk)

) ∣∣∣Fn

]
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+E

[
2f (y0)

(
n∑

k=0

γk+1Lkf (yk)

) ∣∣∣Fn

]

= f (yn)
2 + γn+1Lnf

2(yn) + f (y0)
2 +
(

n∑
k=0

γk+1Lkf (yk)

)2

− 2
(
f (yn) + γn+1Lnf (yn)

)(
f (y0) +

n∑
k=0

γk+1Lkf (yk)

)

+ 2f (y0)

(
n∑

k=0

γk+1Lkf (yk)

)
.

Henceforth,

E
[(

M̂
f
n+1

)2 | Fn

]= γn+1Lnf
2(yn) + 2γn+1Lnf (yn)

(
n−1∑
k=0

γk+1Lkf (yk)

)

+ (γn+1Lnf (yn)
)2 − 2f (yn)γn+1Lnf (yn)

− 2γn+1Lnf (yn)

(
f (y0) +

n∑
k=0

γk+1Lkf (yk)

)

+ 2f (y0)γn+1Lnf (yn) + (mf
n

)2
= (M̂f

n

)2 + γn+1Lnf
2(yn) − (γn+1Lnf (yn)

)2
− 2f (yn)γn+1Lnf (yn)

= (M̂f
n

)2 + γn+1�nf.

Now, on the first hand, using Assumption 2.11,

E
[〈
M̂χd2
〉
N

]= E

[
N−1∑
k=0

γk+1�k+1χd2(yk)

]
≤ M6

N−1∑
k=0

γk+1E
[
χd(yk)

]

≤ M2M6

N−1∑
k=0

γk+1,

and then Doob’s inequality gives

E

[(
sup
n≤N

M̂
χd2
n

)2]1/2 ≤ 2E
[〈
M̂χd2
〉
N

]1/2 ≤ C,

for some constant C which only depends on N . On the other hand, from
Lemma 4.2 and Assumption 2.11,

sup
n≤N

χd2(yn) ≤ χd2(y0) + M6

N−1∑
k=0

γk+1 sup
n≤k

χd2(yn) + sup
n≤N

M̂
χd2
n .
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Using the triangle inequality, we then have

E

[(
sup
n≤N

χd2(yn)
)2]1/2

≤ E
[(

χd2(y0)
)2]1/2

+ M6

N−1∑
k=0

γk+1E
[(

sup
n≤k

χd2(yn)
)2]1/2 +E

[(
sup
n≤N

M̂
χd2
n

)2]1/2
.

Then, using (discrete) Grönwall’s lemma as well as Cauchy–Schwarz’s inequality
completes the proof. �

A.2. Appendix for the penalized bandit algorithm.

PROOF OF PROPOSITION 3.6. The unique solution of the ordinary differential
equation y′(t) = a − by(t) with initial condition x is given by

�(x, t) =
⎧⎨⎩
(
x − a

b

)
e−bt + a

b
if b > 0,

x + at if b = 0.

First, assume that b > 0 and let t ∈ [0, T ]. We have, for x > 0,

Ptf (x) = Ex

[
f (Xt)

]
= f
(
�(x, t)

)
Px(T > t) +Ex

[
f (Xt) | T ≤ t

]
Px(T ≤ t)

= f
(
�(x, t)

)
exp
(
−
∫ t

0

(
c + d�(x, s)

)
ds

)
(A.1)

+
∫ t

0
Pt−uf

(
�(x,u) + 1

)(
c + d�(x,u)

)
× exp

(
−
∫ u

0

(
c + d�(x, s)

)
ds

)
du.

At this stage, the smoothness of the right-hand side of (A.1) with respect to x is
not clear. Let 0 < ε < min(a/b,1/2). If 0 ≤ x ≤ a/b − ε, use the substitution

v = �(x,u), u = ϕ(x, v) = 1

b
log
(

x − a
b

v − a
b

)
,

to get

Ptf (x) = f
(
�(x, t)

)
exp
(
−
∫ t

0

(
c + d�(x, s)

)
ds

)

+
∫ �(x,t)

x
Pt−ϕ(x,v)f (v + 1) exp

(
−
∫ ϕ(x,v)

0

(
c + d�(x, s)

)
ds

)
× c + dv

a − bv
dv.
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Note that �(x, t) ≤ �(a/b − ε, t) < a/b, so that a − bv �= 0. Since s �→ Psf (x),
� , ϕ and f are smooth, x �→ Ptf (x) ∈ C N([o, a/b − ε]). The reasoning holds
with the same substitution for x ≥ a/b + ε, so that Ptf ∈ C N(R+ \ {a/b}). Now,
if x > a/b − ε, for any u > 0,

�(x,u) + 1 ≥ a/b + 1 − ε ≥ a/b + ε,

so x �→ Pt−uf (�(x,u) + 1) is smooth. Thus, the right-hand side of (A.1) is
smooth as well and Ptf ∈ C N(R+).

Now, let us show that the semigroup generated by L has bounded derivatives.
Note that it is possible to mimic this proof for the example of the WRW treated
in Section 3.1 when the derivatives of Ptf are not explicit. Let Anf = f (n),
J f (x) = f (x + 1) − f (x) and ψn(s) = Pt−sAnPsf for 0 ≤ n ≤ N . So, ψ ′

n(s) =
Pt−s(AnL−LAn)Psf . It is clear that An+1 =A1An, that AnJ = JAn and that

Lg(x) = (a − bx)A1g(x) + (c + dx)J g(x).

It is straightforward by induction that

AnLg = LAng − nbAng + ndJAn−1g,

so the following inequality holds:

(AnL−LAn)g ≤ −nbAng + 2|d|n‖An−1g‖∞.

Hence,

ψ ′
n(s) ≤ −nbψn(s) + 2|d|n‖An−1Psf ‖∞.

In particular, ψ ′
1(s) ≤ −bψ1(s) + 2d‖f ‖∞, so, by Grönwall’s inequality,

ψ1(s) ≤
(
ψ1(0) − 2|d|

b
‖f ‖∞

)
e−bs + 2|d|

b
‖f ‖∞ ≤ ∥∥f ′∥∥∞ + 2d

b
‖f ‖∞.

Let us show by induction that

(A.2) ψn(s) ≤
n∑

k=0

(
2|d|
b

)n−k∥∥f (k)
∥∥∞.

If (A.2) is true for some n ≥ 1 (we denote by Kn its right-hand side), then
for all t < T , ψn(t) ≤ Kn and, since AnPt (−f ) = −AnPtf , |ψn(t)| ≤ Kn,
so ‖AnPsf ‖∞ ≤ Kn. Then we deduce that ψ ′

n+1(s) ≤ −(n + 1)bψn+1(s) +
2(n + 1) dKn. Use Grönwall’s inequality once more to have ψn+1(s) ≤ Kn+1
and achieve the proof by induction. In particular, taking s = t in (A.2) provides
AnPtf ≤ Kn and, since AnPt (−f ) = −AnPtf , AnPtf ≤ Kn. As a conclusion,
for n ∈ {0, . . . ,N}, ∥∥(Ptf )(n)

∥∥∞ ≤
n∑

k=0

(
2|d|
b

)n−k∥∥f (k)
∥∥∞,

which concludes the proof when b > 0.
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The case b = 0 is dealt with in a similar way. We use the substitution ϕ(x, v) =
(v − x)/a in (A.1), which is enough to prove smoothness [this time, �(x, ·) is
a diffeomorphism for any x ≥ 0[, and it is easy to mimic the proof to obtain the
following estimates, for s ≤ t :

∣∣ψn(s)
∣∣≤ n∑

k=0

n!
k!
(
2|d|T )n−k∥∥f (k)

∥∥∞.
�

PROOF OF LEMMA 3.8. First, we shall prove that Assumption 2.1 holds; let

y ∈ Supp
(
L
(
y(l,δ)
n

))= [0, δ
√

n].
Note that Ĩ 0

n (y), I 0
n (y) ≤ 1 and Ĩ 1

n (y), I 1
n (y) ≤ 0, so if y

(l,δ)
n ≤ δγ −1

n+1 − 1, then

y
(l,δ)
n+1 ≤ δγ −1

n+1. For f ∈ F ,∣∣L(l,δ)
n f (y) −Lnf (y)

∣∣≤ γ −1
n+1E
[
f
(
y

(l,δ)
n+1

)− f (yn+1) | yn = y(l,δ)
n = y

]
≤

1
y≥δγ −1

n+1−1

γn+1

(
p0(1 − γny)

∣∣f (δγ −1
n+1

)− f
(
y + I 0

n (y)
)∣∣

+ p̃0(1 − γny)
∣∣f (δγ −1

n+1

)− f
(
y + Ĩ 0

n (y)
)∣∣)

≤
‖f ′‖∞1

y≥δγ −1
n+1−1

γn+1

(
p0(1 − γny) + p̃0(1 − γny)

)
≤ y + 1

δ

∥∥f ′∥∥∞1
y≥δγ −1

n+1−1

≤ (y + 1)2

δ2

∥∥f ′∥∥∞γn+1.

Using this inequality and (3.13), we can bound the difference between L(l,δ)
n and

L defined in (3.6):

(A.3)

∣∣L(l,δ)
n f (y) −Lf (y)

∣∣≤ ∣∣L(l,δ)
n f (y) −Lnf (y)

∣∣+ ∣∣Lnf (y) −Lf (y)
∣∣

= χ3(y)
(‖f ‖∞ + ∥∥f ′∥∥∞ + ∥∥f ′′∥∥∞)O(γn).

Note that the notation O depends here on l and δ, but is uniform over y and f .
Assumption 2.2 holds, since it takes into account only the limit process gener-

ated by L, and it is a consequence of Proposition 3.6: for n ≤ 3,

∥∥(Ptf )(n)
∥∥∞ ≤

n∑
k=0

(
2|p′

0(1)|
p1(1)

)n−k∥∥f (k)
∥∥∞.

Now, we shall check a Lyapunov criterion for the chain (y
(l,δ)
n )n≥0, in order to

ensure Assumption 2.3. Taking V (y) = eθy , where (small) θ > 0 will be chosen
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afterwards, we have, for n ≥ l and y ≤ δγ −1
n ,

L(l,δ)
n V (y) ≤ γ −1

n+1E
[
V
((

y + In(y)
)∧ δ

√
n
)− V (y)

]
≤ γ −1

n+1E
[
V
(
y + In(y)

)− V (y)
]

≤ V (y)
√

n + 1
(
E
[
eθIn(y)]− 1

)
.

Let ε > 0; we are going to decompose In(y). The first term is

√
n + 1
(

exp
(√

n + 1 − √
n − 1√

n
θy

)
− 1
)
p1(1 − γny)

≤ √
n + 1
(√

n + 1 − √
n − 1√

n
θy + 1

2

(√
n + 1 − √

n − 1√
n

θy

)2)
× p1(1 − γny)

≤
(
−αnθy + α2

n

2
√

n + 1
θ2y2
)
p1(1 − γny) ≤ θy

(
−αn + α2

n

2
θδ

)
× p1(1 − γny)

≤
(
ε +
(
−1 + θδ

2

))
θy for n large,

where αn = (1 −√
n + 1 +√

n)γnγ
−1
n+1. There exists ξ (δ), such that 1 − δ ≤ ξ (δ) ≤

1 and the second term writes
√

n + 1
(

exp
(
θ +

√
n + 1 − √

n − 1√
n

θy

)
− 1
)
p0(1 − γny)

≤ √
n + 1p0(1 − γny)

(
eθ − 1

)
≤ −√

n + 1γnyp
′
0
(
ξ (δ))(eθ − 1

)≤ (ε − (eθ − 1
)
p′

0(1)
)
y for n large.

The third term is negative, and the fourth term writes

√
n + 1
(

exp
(

θ√
n + 1

+ n − √
n(n + 1)√

n(n + 1)
θy

)
− 1
)
p̃0(1 − γny)

≤ √
n + 1
(

exp
(

θ√
n + 1

)
− 1
)

≤ θ + ε for n large.

Hence, there exists some (deterministic) n0 ≥ l such that, for n ≥ n0,

L(l,δ)
n V (y) ≤ V (y)

[
θ + ε − y

(
p′

0(1)
(
eθ − 1

)− (θ + θδ

2

)
p1(1) + ε(1 + θ)

)]
.

Then, for ε, δ, θ small enough, there exists α̃ > 0 such that, for n ≥ n0 and for any
M ≥ (θ + ε)α̃−1,

L(l,δ)
n V (y) ≤ V (y)(θ + ε − α̃y) ≤ −(α̃M − θ − ε)V (y) + α̃MV (M).
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Then Assumption 2.3(iii) holds with⎧⎪⎨⎪⎩α =
(
p′

0(1)
(
eθ − 1

)− (θ + θδ

2

)
p1(1) + ε(1 + θ)

)
M − θ − ε,

β = α̃MV (M).

Finally, checking Assumption 2.11 is easy [using (A.3) for instance] with
d2 = 3, which forces us to set d = 6 (since �nχ3 ≤ M6χ6). The chain (y

(l,δ)
n )n≥0

satisfying a Lyapunov criterion with V (y) = eθy , its moments of order 6 are also
uniformly bounded. �

A.3. Appendix for the decreasing step Euler scheme.

PROOF OF LEMMA 3.12. Applying Itô’s formula with x �→ |x|p , we get∣∣∂xX
x
t

∣∣p = 1 +
∫ t

0
p

(
b′(Xx

s

)∣∣∂xX
x
s

∣∣p + p − 1

2

(
σ ′(Xx

s

))2∣∣∂xX
x
s

∣∣p)ds

+
∫ t

0
pσ ′(Xx

s

)∣∣∂xX
x
s

∣∣p dWs(A.4)

≤ 1 + C

∫ t

0

∣∣∂xX
x
s

∣∣p ds +
∫ t

0
pσ ′(Xx

s

)∣∣∂xX
x
s

∣∣p dWs,

where C = p‖b′‖∞ + p(p−1)
2 ‖σ ′‖2∞. Let us show that

∫ t
0 pσ ′(Xx

s )|∂xX
x
s |p dWs

is a martingale. To that end, since |∂xX
x
t |p is nonnegative and (x + y + z)2 ≤

2(x2 + y2 + z2), we use the Burkholder–Davis–Gundy’s inequality so there exists
a constant C′ such that∣∣∂xX

x
t

∣∣p ≤ 1 + C

∫ t

0
sup

u∈[0,s]
∣∣∂xX

x
u

∣∣p ds +
∫ t

0
pσ ′(Xx

s

)∣∣∂xX
x
s

∣∣p dWs,

sup
u∈[0,t]

∣∣∂xX
x
u

∣∣p ≤ 1 + C

∫ t

0
sup

u∈[0,s]
∣∣∂xX

x
u

∣∣p ds

+ sup
u∈[0,t]

∫ u

0
pσ ′(Xx

s

)∣∣∂xX
x
s

∣∣p dWs,

E

[
sup

u∈[0,t]
∣∣∂xX

x
u

∣∣2p
]
≤ 2 + 2C2T

∫ t

0
E

[
sup

u∈[0,s]
∣∣∂xX

x
u

∣∣2p
]
ds

+ 2E
[(

sup
u∈[0,t]

∫ u

0
pσ ′(Xx

s

)∣∣∂xX
x
s

∣∣p dWs

)2]

≤ 2 + 2C2T

∫ t

0
E

[
sup

u∈[0,s]
∣∣∂xX

x
u

∣∣2p
]
ds

+ 2C′
∫ t

0
E
[
σ ′(Xx

s

)2∣∣∂xX
x
s

∣∣2p]
ds
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≤ 2 + 2C2T

∫ t

0
E

[
sup

u∈[0,s]
∣∣∂xX

x
u

∣∣2p
]
ds

+ 2C′∥∥σ ′∥∥2∞ ∫ t

0
E

[
sup

u∈[0,s]
∣∣∂xX

x
u

∣∣2p
]
ds

≤ 2 exp
((

C2T + C′∥∥σ ′∥∥2∞)T )
by Grönwall’s lemma. Hence,

∫ t
0 pσ ′(Xx

s )|∂xX
x
s |p dWs is a martingale and, taking

the expected values in (A.4) and applying Grönwall’s lemma once again, we have

E
[∣∣∂xX

x
t

∣∣p]≤ exp
((

p
∥∥b′∥∥∞ + p(p − 1)

2

∥∥σ ′∥∥2∞)T ).
Using Hölder’s inequality for p = 2 completes the case of the first derivative.

Since the following computations are more and more tedious, we choose to
treat only the case of the second derivative. Note that ∂2

xXx
t exists and satisfies the

following SDE:

∂2
xXx

t =
∫ t

0

(
b′(Xx

s

)
∂2
xXx

s + b′′(Xx
s

)(
∂xX

x
s

)2)
ds

+
∫ t

0

(
σ ′(Xx

s

)
∂2
xXx

s + σ ′′(Xx
s

)(
∂xX

x
s

)2)
dWs.

Itô’s formula provides the following inequality:∣∣∂2
xXx

t

∣∣p ≤ C1

∫ t

0

∣∣∂2
xXx

s

∣∣p ds + C2

∫ t

0

∣∣∂2
xXx

s

∣∣p−1∣∣∂xX
x
s

∣∣2 ds

+ C3

∫ t

0

∣∣∂2
xXx

s

∣∣p−2∣∣∂xX
x
s

∣∣4 ds

+
∫ t

0
p
(∣∣∂2

xXx
s

∣∣pσ ′(Xx
s

)
+ ∣∣∂2

xXx
s

∣∣p−1 sgn
(
∂2
xXx

s

)
σ ′′(Xx

s

)∣∣∂xX
x
s

∣∣2)dWs,

with constants Ci depending on p,‖b′‖∞,‖b′′‖∞,‖σ ′‖∞,‖σ ′′‖∞. The last term
proves to be a martingale, with similar arguments as above. We take the expected
values, and apply Hölder’s inequality twice to find, for p > 2,

E
[∣∣∂2

xXx
t

∣∣p]≤ C1

∫ t

0
E
[∣∣∂2

xXx
s

∣∣p]ds + C2

∫ t

0
E
[∣∣∂2

xXx
s

∣∣p−1∣∣∂xX
x
s

∣∣2]ds

+ C3

∫ t

0
E
[∣∣∂2

xXx
s

∣∣p−2∣∣∂xX
x
s

∣∣4]ds

≤ C1

∫ t

0
E
[∣∣∂2

xXx
s

∣∣p]ds + C2

∫ t

0
E
[∣∣∂2

xXx
s

∣∣p]p−1
p E
[∣∣∂xX

x
s

∣∣2p] 1
p ds
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+ C3

∫ t

0
E
[∣∣∂2

xXx
s

∣∣p]p−2
p E
[∣∣∂xX

x
s

∣∣2p] 2
p ds

≤ C3eC4T + C1

∫ t

0
E
[∣∣∂2

xXx
s

∣∣p]ds

+ (C2 + C3)e
C4T
∫ t

0
E
[∣∣∂2

xXx
s

∣∣p]p−1
p ds,

with C4 = 4‖b′‖∞+2(p−1)‖σ ′‖2∞. The case p = 2 is deduced straightforwardly:

E
[∣∣∂2

xXx
t

∣∣2]≤ C3eC4T + C1

∫ t

0
E
[∣∣∂2

xXx
s

∣∣2]ds + C3eC4T
∫ t

0
E
[∣∣∂2

xXx
s

∣∣2] 12 ds.

Regardless, since the unique solution of u = Au + Buα is

u(t) =
((

u(0)1−α + B

A

)
exp
(
A(1 − α)t

)− B

A

) 1
1−α

,

for A,B > 0, α ∈ (0,1), u(0) > 0, we have

E
[∣∣∂2

xXx
t

∣∣2]≤ ((C 1
p

2 e
C4
p

T + C2 + C3

C1
eC4T

)
e

C1
p

T − C2 + C3

C1
eC4T

)p

≤
(
C

1
p

2 e
C4
p

T + C2 + C3

C1
eC4T

)p

eC1T .

The same reasoning for the third derivative achieves the proof. �

REMARK A.2 (Regularity of general diffusion processes). The quality of ap-
proximation of a diffusion process is not completely unrelated to its regularity;
see, for instance, [22], Theorem 1.3. In higher dimension, smoothness is generally
checked under Hörmander conditions (see, e.g., [21, 22]).
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