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Abstract: In this work, we consider an inhomogeneous (discrete time) Markov
chain and are interested in its long time behavior. We provide sufficient conditions
to ensure that some of its asymptotic properties can be related to the ones of a
homogeneous (continuous time) Markov process. Renowned examples such as a
bandit algorithms, weighted random walks or decreasing step Euler schemes are
included in our framework. Our results are related to functional limit theorems,
but the approach differs from the standard "Tightness/Identification" argument;
our method is unified and based on the notion of pseudotrajectories on the space of
probability measures.
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Ergodicity of inhomogeneous Markov chains through asymptotic pseudotrajectories

1 Introduction

In this paper, we consider an inhomogeneous Markov chain (yn)n≥0 on RD, and a non-increasing sequence
(γn)n≥1 converging to 0, such that

∑∞
n=1 γn = +∞. For any smooth function f , we set

Lnf(y) :=
E [f(yn+1)− f(yn)|yn = y]

γn+1
. (1.1)

We shall establish general asymptotic results when Ln converges, in some sense explained below, toward
some infinitesimal generator L. We prove that, under reasonable hypotheses, one can deduce properties
(trajectories, ergodicity, etc) of (yn)n≥1 from the ones of a process generated by L.

This work is mainly motivated by the study of the rescaling of stochastic approximation algorithms
(see e.g. [Ben99, LP13]). Classically, such rescaled algorithms converge to Normal distributions (or linear
diffusion processes); see e.g. [Duf96, KY03, For15]. This central limit theorem is usually proved with the
help of "Tightness/Identification" methods. With the same structure of proof, Lamberton and Pagès get a
different limit in [LP08]; namely, they provide a convergence to the stationary measure of a non-diffusive
Markov process. Closely related, the decreasing step Euler scheme (as developed in [LP02, Lem05])
behaves in the same way.

In contrast to this classical approach, we rely on the notion of asymptotic pseudotrajectories intro-
duced in [BH96]. Therefore, we focus on the asymptotic behavior of Ln using Taylor expansions to deduce
immediately the form of a limit generator L. A natural way to understand the asymptotic behavior of
(yn)n≥0 is to consider it as an approximation of a Markov process generated by L. Then, provided that
the limit Markov process is ergodic and that we can estimate its speed of convergence toward the station-
ary measure, it is natural to deduce convergence and explicit speeds of convergence of (yn)n≥0 toward
equilibrium. Our point of view can be related to the Trotter-Kato theorem (see e.g. [Kal02]). The proof
of our main theorem, Theorem 2.6 below, is related to Lindeberg’s proof of the central limit theorem;
namely it is based on a telescopic sum and a Taylor expansion.

With the help of Theorem 2.6, the study of the long time behavior of (yn)n≥0 reduces to the one of a
homogeneous-time Markov process. Their convergence has been widely studied in the litterature, and we
can differentiate several approaches. For instance, there are so-called "Meyn-and-Tweedie" methods (or
Foster-Lyapunov criteria, see [MT93, HM11, HMS11, CH15]) which provide qualitative convergence under
mild conditions; we can follow this approach to provide qualitative properties for our inhomogeneous
Markov chain. However, the speed is usually not explicit or very poor. Another approach consists
in the use of ad hoc coupling methods (see e.g. [Lin92, Ebe11, Bou15]) either for a diffusion or a
piecewise deterministic Markov process (PDMP). Those methods usually prove themselves to be efficient
for providing explicit speeds of convergence, but rely on extremely particular strategies. Among other
approaches, let us also mention functional inequalities or spectral gap methods (see e.g. [Bak94, ABC+00,
Clo12, Mon14]).

In this article, we develop a unified approach to study the long time behavior of inhomogeneous Markov
chains, which may also provide speeds of convergence or functional convergence. To our knowledge, this
method is original, and Theorems 2.6 and 2.8 have the advantage of being self-contained. The main goal
of our illustrations, in Section 3, is to provide a simple framework to understand our approach. For these
examples, proofs seem more simple and intuitive, and we are able to recover classical results as well as
slight improvements.

This paper is organized as follows. In Section 2, we state the framework and the main assumptions
that will be used throughout the paper. We recall the notion of asymptotic pseudotrajectory, and present
our main result, Theorem 2.6, which describes the asymptotic behavior of a Markov chain. We also
provide two consequences, Theorems 2.8 and 2.12, precising the geometric ergodicity of the chain or its
functional convergence. In Section 3, we illustrate our results by showing how some renowned examples,
including weighted random walks, bandit algorithms or decreasing step Euler schemes, can be easily
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studied with this unified approach. In Section 4 and 5, we provide the proofs of our main theorems and
of the technical parts left aside while dealing with the illustrations.

2 Main results

2.1 Framework

We shall use the following notation in the sequel:

• CN
b is the set of CN (RD) functions such that

∑N
j=0 ‖f (j)‖∞ < +∞, for N ∈ N := {0, 1, 2, . . . }.

• CN
c is the set of CN (RD) functions with compact support, for N ∈ N ∪ {+∞}.

• C 0
0 = {f ∈ C 0(RD) : lim‖x‖→∞ f(x) = 0}.

• L (X) is the law of a random variable X and Supp(L (X)) its support.

• x ∧ y := min(x, y) and x ∨ y := max(x, y) for any x, y ∈ R.

• f (j) is the differential of order j of a function f ∈ C j(RD), and

‖f (j)‖∞ = sup
|α|=j

sup
x∈RD

|Dαf(x)|.

• χd(x) :=
∑d
k=0 ‖x‖k for x ∈ RD.

Let us recall some basics about Markov processes. Given a homogeneous Markov process (Xt)t≥0

with càdlàg trajectories a.s., we define its Markov semigroup (Pt)t≥0 by

Ptf(x) = E[f(Xt) | X0 = x].

It is said to be Feller if, for all f ∈ C 0
0 , Ptf ∈ C 0

0 and limt→0 ‖Ptf − f‖∞ = 0. We can define its
generator L acting on functions f satisfying limt→0 ‖t−1(Ptf − f)−Lf‖∞ = 0. The set of such functions
is denoted by D(L), and is dense in C 0

0 ; see for instance [EK86]. The semigroup property of (Pt) ensures
the existence of a semiflow

Φ(ν, t) := νPt, (2.1)

defined for any probability measure ν and t ≥ 0; namely, for all s, t > 0, Φ(ν, t+ s) = Φ(Φ(ν, t), s).

Let (yn)n≥0 be a (inhomogeneous) Markov chain and let (Ln)n≥0 be a sequence of operators satisfying,
for f ∈ C 0

b ,

Lnf(yn) :=
E [f(yn+1)− f(yn)|yn]

γn+1
,

where (γn)n≥1 is a decreasing sequence converging to 0, such that
∑∞
n=1 γn = +∞. Note that the sequence

(Ln) exists thanks to Doob’s lemma. Let (τn) be the sequence defined by τ0 := 0 and τn :=
∑n
k=1 γk,

and let m(t) := sup{n ≥ 0 : t ≥ τn} be the unique integer such that τm(t) ≤ t < τm(t)+1. We denote by
(Yt) the process defined by Yt := yn when t ∈ [τn, τn+1) and we set

µt := L (Yt). (2.2)

Following [BH96, Ben99], we say that (µt)t≥0 is an asymptotic pseudotrajectory of Φ (with respect
to a distance d over probability distributions) if, for any T > 0,

lim
t→∞

sup
0≤s≤T

d(µt+s,Φ(µt, s)) = 0. (2.3)
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Likewise, we say that (µt)t≥0 is a λ-pseudotrajectory of Φ (with respect to d) if there exists λ > 0 such
that, for all T > 0,

lim sup
t→+∞

1

t
log

(
sup

0≤s≤T
d(µt+s,Φ(µt, s))

)
≤ −λ. (2.4)

This definition of λ-pseudotrajectories is the same as in [Ben99], up to the sign of λ.

In the sequel, we discuss asymptotic pseudotrajectories with distances of the form

dF (µ, ν) := sup
f∈F
|µ(f)− ν(f)| = sup

f∈F

∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ ,
for a certain class of functions F . In particular, this includes total variation, Fortet-Mourier and Wasser-
stein distances. In general, dF is a pseudodistance. Nevertheless, it is a distance whenever F contains
an algebra of bounded continuous functions that separates points (see [EK86, Theorem 4.5.(a), Chap-
ter 3]). In all the cases considered here, F contains the algebra C∞c and then convergence in dF entails
convergence in distribution (see Lemma 5.1, whose proof is classical and is given in the appendix for the
sake of completeness).

2.2 Assumptions and main theorem

In the sequel, let d1, N1, N2 be non-negative integers, parameters of the model. We will assume, without
loss of generality, that N1 ≤ N2. Some key methods of how to check every assumption are provided in
Section 3.

The first assumption we need is crucial. It defines the asymptotic homogeneous Markov process ruling
the asymptotic behavior of (yn).

Assumption 2.1 (Convergence of generators). There exists a non-increasing sequence (εn)n≥1 converg-
ing to 0 and a constant M1 (depending on L (y0)) such that, for all f ∈ D(L) ∩ CN1

b and n ∈ N?, and
for any y ∈ Supp(L (yn))

|Lf(y)− Lnf(y)| ≤M1χd1(y)

N1∑
j=0

‖f (j)‖∞εn.

The following assumption is quite technical, but turns out to be true for most of the limit semigroups
we deal with. Indeed, this is shown for large classes of PDMPs in Proposition 3.6 and for some diffusion
processes in Lemma 3.12.

Assumption 2.2 (Regularity of the limit semigroup). For all T > 0, there exists a constant CT such
that, for every t ≤ T, j ≤ N1 and f ∈ CN2

b ,

Ptf ∈ CN1

b , |(Ptf)(j)(y)| ≤ CT
N2∑
i=0

‖f (i)‖∞.

The next assumption is a standard condition of uniform boundedness of the moments of the Markov
chain. We also provide a very similar Lyapunov criterion to check this condition.

Assumption 2.3 (Uniform boundedness of moments). Assume that there exists an integer d ≥ d1 such
that one of the following statements holds:
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i) There exists a constant M2 (depending on L (y0)) such that

sup
n≥0

E[χd(yn)] ≤M2.

ii) There exists V : RD → R+ such that, for all n ≥ 0, E[V (yn)] < +∞. Moreover, there exist
n0 ∈ N?, a, α, β > 0, such that V (y) ≥ χd(y) when |y| > a, such that, for n ≥ n0, and for any
y ∈ Supp(L (yn))

LnV (y) ≤ −αV (y) + β.

In this assumption, the function V is a so-called Lyapunov function. The integer d can be thought of
as d = d1 (which is sufficient for Theorem 2.6 to hold). However, in the setting of Assumption 2.11, it
might be necessary to consider d > d1. Of course, if Assumption 2.3 holds for d′ > d, then it holds for d.
Note that we usually can take V (y) = eθy, so that we can choose d as large as needed.

Remark 2.4 (ii) ⇒ i)). Computing E[χd(yn)] to check Assumption 2.3.i) can be involved, so we rather
check a Lyapunov criterion. It is classic that ii) entails i). Indeed, denoting by n1 := n0 ∨min{n ∈ N? :
γn < α−1} and vn := E[V (yn)], it is clear that

vn+1 ≤ vn + γn+1(β − αvn).

From this inequality, it is easy to deduce that, for n ≥ n1, vn+1 ≤ βα−1 ∨ vn and then by induction
vn ≤ βα−1 ∨ vn1

, which entails i). Then,

E[χd(yn)] = P(|yn| ≤ a)E[χd(yn)||yn| ≤ a] + P(|yn| > a)E[χd(yn)||yn| > a]

≤ χd(a) +
β

α
∨
(

sup
k≤n1

vk

)
.

♦

Note that, with a classical approach, Assumption 2.3 would provide tightness and Assumption 2.1
would be used to identify the limit.

The previous three assumptions are crucial to provide a result on asymptotic pseudotrajectories
(Theorem 2.6), but are not enough to quantify speeds of convergence. As it can be observed in the proof
of Theorem 2.6, such speed relies deeply on the asymptotic behavior of γm(t) and εm(t). To this end, we
follow the guidelines of [Ben99] to provide a condition in order to ensure such an exponential decay. For
any non-increasing sequences (γn), (εn) converging to 0, define

λ(γ, ε) = − lim sup
n→∞

log(γn ∨ εn)∑n
k=1 γk

,

where γ and ε respectively stand for the sequences (γn)n≥0 and (εn)n≥0.

Remark 2.5 (Computation of λ(γ, ε)). With the notation of [Ben99, Proposition 8.3], we have λ(γ, γ) =
−l(γ). It is easy to check that, if εn ≤ γn for n large, λ(γ, ε) = λ(γ, γ) and, if εn = γβn with β ≤ 1,
λ(γ, ε) = βλ(γ, γ). We can mimic [Ben99, Remark 8.4] to provide sufficient conditions for λ(γ, ε) to be
positive. Indeed, if γn = f(n), εn = g(n) with f, g two positive functions decreasing toward 0 such that∫ +∞

1
f(s)ds = +∞, then

λ(γ, ε) = − lim sup
x→∞

log (f(x) ∨ g(x))∫ x
1
f(s)ds

.

Typically, if

γn ∼
A

na log(n)b
, εn ∼

B

nc log(n)d

for A,B, a, b, c, d ≥ 0, then
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• λ(γ, ε) = 0 for a < 1.

• λ(γ, ε) = (c ∧ 1)A−1 for a = 1 and b = 0.

• λ(γ, ε) = +∞ for a = 1 and 0 < b ≤ 1.

♦

Now, let us provide the main results of this paper.

Theorem 2.6 (Asymptotic pseudotrajectories). Let (yn)n≥0 be an inhomogeneous Markov chain and let
Φ and µ be defined as in (2.1) and (2.2). If Assumptions 2.1, 2.2, 2.3 hold, then (µt)t≥0 is an asymptotic
pseudotrajectory of Φ with respect to dF , where

F =

f ∈ D(L) ∩ CN2

b : Lf ∈ D(L), ‖Lf‖∞ + ‖LLf‖∞ +

N2∑
j=0

‖f (j)‖∞ ≤ 1

 .

Moreover, if λ(γ, ε) > 0, then (µt)t≥0 is a λ(γ, ε)-pseudotrajectory of Φ with respect to dF .

2.3 Consequences

Theorem 2.6 relates the asymptotic behavior of the Markov chain (yn) to the one of the Markov process
generated by L. However, to deduce convergence or speeds of convergence of the Markov chain, we need
another assumption:

Assumption 2.7 (Ergodicity). Assume that there exist a probability distribution π, constants v,M3 > 0
(M3 depending on L (y0)), and a class of functions G such that one of the following conditions holds:

i) G ⊆ F and, for any probability measure ν, for all t > 0,

dG (Φ(ν, t), π) ≤ dG (ν, π)M3e−vt.

ii) There exists r,M4 > 0 such that, for all s, t > 0

dG (Φ(µs, t), π) ≤M3e−vt,

and, for all T > 0, with CT defined in Assumption 2.2,

TCT ≤M4erT .

iii) There exist functions ψ : R+ → R+ and W ∈ C 0 such that

lim
t→∞

ψ(t) = 0, lim
‖x‖→∞

W (x) = +∞, sup
n≥0

E[W (yn)] <∞,

and, for any probability measure ν, for all t ≥ 0,

dG (Φ(ν, t), π) ≤ ν(W )ψ(t).

Since standard proofs of geometric ergodicity rely on the use of Grönwall’s Lemma, Assumption 2.7.i)
and ii) are quite classic. In particular, using Foster-Lyapunov methods entails such inequalities (see e.g.
[MT93, HM11]). However, in a weaker setting (sub-geometric ergodicity for instance) Assumption 2.7.iii)
might still hold; see for example [JR02, Theorem 3.6], [DFG09, Theorem 3.2z] or [Hai10, Theorem 4.1].
Note that, if W = χd, then supn≥0 E[W (yn)] < ∞ automatically from Assumption 2.3. Note that, in
classical settings where TCT ≤M4erT , we have i)⇒ ii)⇒ iii).

6
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Theorem 2.8 (Speed of convergence toward equilibrium). Assume that Assumptions 2.1, 2.2, 2.3 hold
and let F be as in Theorem 2.6.

i) If Assumption 2.7.i) holds and λ(γ, ε) > 0 then, for any u < λ(γ, ε) ∧ v, there exists a constant M5

such that, for all t > t0 := (v − u)−1 log(1 ∧M3),

dG (µt, π) ≤ (M5 + dG (µ0, π)) e−ut.

ii) If Assumption 2.7.ii) holds and λ(γ, ε) > 0 then, for any u < vλ(γ, ε)(r+ v+ λ(γ, ε))−1, there exists
a constant M5 such that, for all t > 0,

dF∩G (µt, π) ≤M5e−ut.

iii) If Assumption 2.7.iii) holds and convergence in dG implies weak convergence, then µt converges
weakly toward π when t→∞.

The first part of this theorem is similar to [Ben99, Lemma 8.7] but provides sharp bounds for the
constants. In particular, M5 and t0 do not depend on µ0 (in Theorem 2.8.i) only), see the proof for an
explicit expression of M5). The second part, however, does not require G to be a subset of F , which can
be rather involved to check, given the expression of F given in Theorem 2.6. The third part is a direct
consequence of [Ben99, Theorem 6.10]; we did not meet this case in our main examples, but we discuss
the convergence toward sub-geometrically ergodic limit processes in Remark 3.14.

Remark 2.9 (Rate of convergence in the initial scale). Theorem 2.8.i) and ii) provide a bound of the
form

dH (L(Yt), π) ≤ Ce−ut,

for some H , C, u and all t ≥ 0. This easily entails, for another constant C and all n ≥ 0,

dH (L(yn), π) ≤ Ce−uτn .

Let us detail this bound for three examples where ε ≤ γ:

• if γn = An−1/2, then dH (L(yn), π) ≤ Ce−2Au
√
n.

• if γn = An−1, then dH (L(yn), π) ≤ Cn−Au.

• if γn = A(n log(n))−1, then dH (L(yn), π) ≤ C log(n)−Au.

In a nutshell, if γn is large, the speed of convergence is good but λ(γ, γ) is small. In particular, even
if γn = n−1/2 provides the better speed, Theorem 2.8 does not apply. Remark that the parameter u is
more important at the discrete time scale than it is at the continuous time scale. ♦

Remark 2.10 (Convergence of unbounded functionals). Theorem 2.8 provides convergence in distribu-
tion of (µt) toward π, i.e. for every f ∈ C 0

b (RD),

lim
t→∞

µt(f) = π(f).

Nonetheless, Assumption 2.3 enables us to extend this convergence to unbounded functionals f . Recall
that, if a sequence (Xn)n≥0 converges weakly to X and

M := E[V (X)] + sup
n≥0

E[V (Xn)] < +∞

7
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for some positive function V , then E[f(Xn)] converges to E[f(X)] for every function |f | < V θ, with
θ < 1. Indeed, let (κm)m≥0 be a sequence of C∞c functions such that ∀x ∈ RD, limm→∞ κm(x) = 1 and
0 ≤ κm ≤ 1. We have, for m ∈ N,

|E [f(Xn)− f(X)] | ≤ |E [(1− κm(Xn))f(Xn)] |+ |E [(1− κm(X))f(X)] |
+ |E [f(Xn)κm(Xn)− f(X)κm(X)] |

≤ E[|f(Xn)| 1θ ]θE[(1− κm(Xn))
1

1−θ ]1−θ

+ E[|f(X)| 1θ ]θE[(1− κm(X))
1

1−θ ]1−θ

+ |E [f(Xn)κm(Xn)− f(X)κm(X)] |

≤MθE[(1− κm(Xn))
1

1−θ ]1−θ +MθE[(1− κm(X))
1

1−θ ]1−θ

+ |E [f(Xn)κm(Xn)− f(X)κm(X)] |,

so that, for all m ∈ N,

lim sup
n→∞

E [f(Xn)− f(X)] ≤ 2MθE[(1− κm(X))
1

1−θ ]1−θ.

Using the dominated convergence theorem, limn→∞ E [f(Xn)− f(X)] = 0 since the right-hand side
converges to 0. Note that the condition |f | ≤ V θ can be slightly weakened using the generalized Hölder’s
inequality on Orlicz spaces (see e.g. [CGLP12]). Although, note that E[V (Xn)] may not converge to
E[V (X)]. ♦

The following assumption is purely technical but is easy to verify in all of our examples, and will be
used to prove functional convergence.

Assumption 2.11 (Control of the variance). Define the following operator:

Γnf = Lnf2 − γn+1(Lnf)2 − 2fLnf.

Assume that there exists d2 ∈ N and M6 > 0 such that, if ϕi is the projection on the ith coordinate,

Lnϕi(y) ≤M6χd2(y), Γnϕi(y) ≤M6χd2(y),

and
Lnχd2(y) ≤M6χd2(y), Γnχd2(y) ≤M6χd(y),

where d is defined in Assumption 2.3.

Theorem 2.12 (Functional convergence). Assume that Assumptions 2.1, 2.2, 2.3, 2.7 hold and let π be
as in Assumption 2.7. Let Y (t)

s := Yt+s and Xπ be the process generated by L such that L (Xπ
0 ) = π.

Then, for any m ∈ N?, let 0 < s1 < · · · < sm,

(Y (t)
s1 , . . . , Y

(t)
sm )

L−→ (Xπ
s1 , . . . , X

π
sm).

Moreover, if Assumption 2.11 holds, then the sequence of processes (Y
(t)
s )s≥0 converges in distribution,

as t→ +∞, toward (Xπ
s )s≥0 in the Skorokhod space.

For reminders about the Skorokhod space, the reader may consult [JM86, Bil99, JS03]. Note that
the operator Γn we introduced in Assumption 2.11 is very similar to the carré du champ operator in the
continuous-time case, up to a term γn+1(Lnf)2 vanishing as n→ +∞ (see e.g. [Bak94, ABC+00, JS03]).
Moreover, if we denote by (Kn) the transition kernels of the Markov chain (yn), then it is clear that

∀n ∈ N, γn+1Γnf = Knf
2 − (Knf)2.

8
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3 Illustrations

3.1 Weighted Random Walks

In this section, we apply Theorems 2.6 and 2.8 to weighted random walks (WRWs) on RD. Let (ωn) be
a positive sequence, and γn := ωn(

∑n
k=1 ωk)−1. Then, set

xn :=

∑n
k=1 ωkEk∑n
k=1 ωk

, xn+1 := xn + γn+1 (En+1 − xn) .

Here, xn is the weighted mean of E1, . . . , En, where (En) is a sequence of centered independent random
variables. Under standard assumptions on the moments of En, the strong law of large numbers holds and
(xn) converges to 0 a.s. Thus, it is natural to apply the general setting of Section 2 to yn := xnγ

−1/2
n

and to define µt as in (2.2). As we shall see, computations lead to the convergence of Ln, as defined in
(1.1), toward

Lf(y) := −ylf ′(y) +
σ2

2
f ′′(y),

where l and σ are defined below. Hence, the properly normalized process asymptotically behaves like
the Ornstein-Uhlenbeck process; see Figure 3.1. This process is the solution of the following stochastic
differential equation (SDE):

dXt = −lXtdt+ σdWt,

see [Bak94] for instance. In the sequel, define F as in Theorem 2.6 with N2 = 3, and ϕi the projection
on the ith coordinate.

Proposition 3.1 (Results for the WRW). Assume that

E

[
D∑
i=1

ϕi(En+1)2

]
= σ2, sup

n≥1
γ2
nω

4
nE[‖En‖4] < +∞, sup

n
γn

n∑
i=1

ω2
i < +∞,

and that there exist l > 0 and β > 1 such that√
γn
γn+1

− 1−√γnγn+1 = −γnl +O(γβn). (3.1)

Then (µt) is an asymptotic pseudotrajectory of Φ, with respect to dF .

Moreover, if λ(γ, γ(β−1)∧ 1
2 ) > 0 then, for any u < lλ(γ, γ(β−1)∧ 1

2 )(l + λ(γ, γ(β−1)∧ 1
2 ))−1, there exists

a constant C such that, for all t > 0,
dF (µt, π) ≤ Ce−ut, (3.2)

where π is the Gaussian distribution N
(
0, σ2/(2l)

)
.

Moreover, the sequence of processes (Y
(t)
s )s≥0 converges in distribution, as t→ +∞, toward (Xπ

s )s≥0

in the Skorokhod space.

It is possible to recover the functional convergence using classical results: for instance, one can apply
[KY03, Theorem 2.1, Chapter 10] with a slightly stronger assumption on (γn). Yet, to our knowledge,
the rate of convergence (3.2) is original.

Remark 3.2 (Powers of n). Typically, if γn ∼ An−α, then we can easily check that

• if α = 1, then (3.1) holds with l = 1− 1
2A and β = 2.

• if 0 < α < 1, then (3.1) holds with l = 1 and β = 1+α
α > 2.

9
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Figure 3.1: Trajectory of the interpolated process for the normalized mean of the WRW with ωn = 1
and L (En) = (δ−1 + δ1)/2.

Observe that, if ωn = na for any a > −1, then γn ∼ 1+a
n and (3.1) holds with l = 1+2a

2+2a and β = 2. ♦

We will see during the proof that checking Assumptions 2.1, 2.2, 2.3 and 2.7 is quite direct.

Proof of Proposition 3.1: For the sake of simplicity, we do the computations for D = 1. We have

yn+1 =

√
γn
γn+1

yn +
√
γn+1(En+1 −

√
γnyn),

so

Lnf(y) = γ−1
n+1E[f(yn+1)− f(yn)|yn = y] = γ−1

n+1E[f(y + In(y))− f(y)],

with In(y) :=
(√

γn
γn+1

− 1−√γnγn+1

)
y+
√
γn+1En+1. Simple Taylor expansions provide the following

equalities (where O is the Landau notation, deterministic and uniform over y and f , and β := β ∧ 3
2 ):

In(y) =
(
−γnl +O(γβn)

)
y +
√
γn+1En+1,

I2
n(y) = γn+1E

2
n+1 + χ2(y)(1 + En+1)O

(
γβn+1

)
,

I3
n(y) = χ3(y)(1 + En+1 + E2

n+1 + E3
n+1)O

(
γβn+1

)
.

In the setting of Remark 3.2, note that β = 3
2 . Now, Taylor formula provides a random variable ξyn such

that

f(y + In(y))− f(y) = In(y)f ′(y) +
I2
n(y)

2
f ′′(y) +

I3
n(y)

6
f (3)(ξyn).

10
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Then, it follows that

Lnf(y) = γ−1
n+1E

[
In(y)f ′(y) +

I2
n(y)

2
f ′′(y) +

I3
n(y)

6
f (3)(ξyn)

∣∣∣∣ yn = y

]
= γ−1

n+1

[(
−γnl +O(γ3/2

n )
)
y +
√
γn+1E[En+1]

]
f ′(y)

+
1

2γn+1

[
γn+1E[E2

n+1 + χ2(y)O
(
γβn+1

)]
f ′′(y)

+ γ−1
n+1χ3(y)E[1 + En+1 + E2

n+1 + E3
n+1]‖f (3)‖∞O

(
γβn+1

)
= −ylf ′(y) + χ1(y)‖f ′‖∞O

(
γβ−1
n

)
+
σ2

2
f ′′(y) + χ2(y)‖f ′′‖∞O

(
γβ−1
n

)
+ χ3(y)‖f (3)‖∞O

(
γβ−1
n

)
. (3.3)

From (3.3), we can conclude that

|Lnf(y)− Lf(y)| = χ3(y)(‖f ′‖∞ + ‖f ′′‖∞ + ‖f (3)‖∞)O(γβ−1
n ).

As a consequence, the WRW satisfies Assumptions 2.1 with d1 = 3, N1 = 3 and εn = γβ−1
n . Note that

(see Remark 2.5) λ(γ, ε) = β − 1 if γn = n−1.

Now, let us show that Ptf admits bounded derivatives for f ∈ F . Here, the expressions of the
semigroup and its derivatives are explicit and the computations are simple (see [Bak94, ABC+00]).
Indeed, Ptf(x) = E[f(xe−lt +

√
1− e−2ltG)] and (Ptf)(j)(y) = e−jltPtf (j)(y), where L (G) = N (0, 1).

Then, it is clear that
‖(Ptf)(j)‖∞ = e−jlt‖Ptf (j)‖∞ ≤ ‖f (j)‖∞.

Hence Assumption 2.2 holds with N2 = 3 and CT = 1. Without loss of generality (in order to use
Theorem 2.12 later) we set d = 4.

Now, we check that the moments of order 4 of yn are uniformly bounded. Applying Cauchy-Schwarz’s
inequality:

E

∥∥∥∥∥
n∑
i=1

ωiEi

∥∥∥∥∥
4
 = E

 n∑
i=1

ω4
i ‖Ei‖4 + 6

∑
i<j

ω2
i ‖E2

i ‖ω2
j ‖Ej‖2

 ≤ C ( n∑
i=1

ω2
i

)2

,

for some explicit constant C. Then, since

E[‖yn‖4] = γ2
nE

∥∥∥∥∥
n∑
i=1

ωiEi

∥∥∥∥∥
4
 ≤ C sup

n≥1

(
γn

n∑
i=1

ω2
i

)2

,

the sequence (yn)n≥0 satisfies Assumption 2.3.

It is classic, using coupling methods with the same Brownian motion for instance, that, for any
probability measure ν,

dG (Φ(ν, t), π) ≤ dG (ν, π)e−lt,

where π = N
(
0, σ2/(2l)ID

)
and dG is the Wasserstein distance (G is the set of 1-Lipschitz functions,

see [Che04]). We have, for s, t > 0,

dG (Φ(µs, t), π) ≤ dG (µs, π)e−lt ≤ (M2 + π(χ1))e−lt.

In other words, Assumption 2.7.ii) holds for the WRW model withM3 = M2 +π(χ1),M4 = 1, v = l, r = 0
and F ⊆ G .

Finally, it is easy to check Assumption 2.11 in the case of the WRW, with d2 = 2, and then Γnχ2 ≤
M6χ4 (that is why we set d = 4 above).

Then, Theorems 2.6, 2.8 and 2.12 achieve the proof of Proposition 3.1.
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Remark 3.3 (Building a limit process with jumps). In this paper, we mainly provide examples of
Markov chains converging (in the sense of Theorem 2.6) toward diffusion processes (see Section 3.1) or
jump processes (see Section 3.2). However, it is not hard to adapt the previous model to obtain an
exemple converging toward a diffusion process with jumps (see Figure 3.2): this illustrates how every
component (drift, jump and noise) appears in the limit generator. The intuition is that the jump terms
appear when larger and larger jumps of the Markov chain occur with smaller and smaller probability.
For an example when D = 1, take

ωn := 1, En :=

{
Fn if Un ≥

√
γn

γ
−1/2
n Gn if Un <

√
γn

, yn :=
1
√
γn

n∑
k=1

Ek,

where (Fn)n≥1, (Gn)n≥1 and (Un)n≥1 are three sequences of i.i.d. random variables, such that E[F1] =
0,E[F 2

1 ] = σ2,L (G1) = Q, L (U1) is the uniform distribution on [0, 1]. In this case, γn = 1/n and it is
easy to show that Ln as defined in (1.1) converges toward the following infinitesimal generator:

Lf(y) := −1

2
yf ′(y) +

σ2

2
f ′′(y) +

∫
R

[f(y + z)− f(y)]Q(dz),

so that Assumption 2.1 holds with d1 = 3, N1 = 3, εn = n−1/2.

Figure 3.2: Trajectory of the interpolated process for the toy model of Remark 3.3 with
L (Fn) = L (Gn) = (δ−1 + δ1)/2.

♦

3.2 Penalized Bandit Algorithm

In this section, we slightly generalize the penalized bandit algorithm (PBA) model introduced by Lamber-
ton and Pagès, and we recover [LP08, Theorem 4]. Such algorithms aim at optimizing the gain in a game
with two choices, A and B, with respective unknown gain probabilities pA and pB . Originally, A and B
are the two arms of a slot machine, or bandit. Throughout this section, we assume 0 ≤ pB < pA ≤ 1.

12
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Let s : [0, 1] → [0, 1] be a function, which can be understood as a player’s strategy, such that
s(0) = 0, s(1) = 1. Let xn ∈ [0, 1] be a measure of her trust level in A at time n. She chooses A with
probability s(xn) independently from the past, and updates xn as follows:

xn+1 Choice Result
xn + γn+1(1− xn) A Gain
xn − γn+1xn B Gain
xn + γ2

n+1(1− xn) B Loss
xn − γ2

n+1xn A Loss

Then (xn) satisfies the following Stochastic Approximation algorithm:

xn+1 := xn + γn+1 (Xn+1 − xn) + γ2
n+1

(
X̃n+1 − xn

)
,

where

(Xn+1, X̃n+1) :=


(1, xn) with probability p1(xn)
(0, xn) with probability p0(xn)
(xn, 1) with probability p̃1(xn)
(xn, 0) with probability p̃0(xn)

, (3.4)

with

p1(x) = s(x)pA, p0(x) = (1− s(x))pB , p̃1(x) = (1− s(x))(1− pB), p̃0(x) = s(x)(1− pA). (3.5)

Note that the PBA of [LP08] is recovered by setting s(x) = x in (3.5).

From now on, we consider the algorithm (3.4) where p1, p0, p̃1, p̃0 are non-necessarily given by (3.5),
but are general non-negative functions whose sum is 1. Let F be as in Theorem 2.6 with N2 = 2, and
yn := γ−1

n (1− xn) the rescaled algorithm. Let Ln be defined as in (1.1),

Lf(y) := [p̃0(1)− yp1(1)]f ′(y)− yp′0(1)[f(y + 1)− f(y)], (3.6)

and π the invariant distribution for L (which exists and is unique, see Remark 3.7).

Under the assumptions of Proposition 3.4, it is straightforward to mimic the results [LP08] and
ensure that our generalized algorithm (xn)n≥0 satisfies the ODE Lemma (see e.g. [KY03, Theorem 2.1,
Chapter 5]), and converges toward 1 almost surely.

Proposition 3.4 (Results for the PBA). Assume that γn = n−1/2, that p1, p̃1, p̃0 ∈ C1
b , p0 ∈ C2

b , and
that

p0(1) = p̃1(1) = 0, p′0(1) ≤ 0, p1(1) + p′0(1) > 0, p̃1(0) > 0.

If, for 0 < x < 1, (1 − x)p1(x) > xp0(x), then (µt) is an asymptotic pseudotrajectory of Φ, with respect
to dF .

Moreover, (µt) converges to π and the sequence of processes (Y
(t)
s )s≥0 converges in distribution, as

t→ +∞, toward (Xπ
s )s≥0 in the Skorokhod space.

The proof is given at the end of the section; before that, let us give some interpretation and heuristic
explanation of the algorithm. The random sequence (yn) satisfies

yn+1 = yn +

(
γn
γn+1

− 1

)
yn − (Xn+1 − xn)− γn+1(X̃n+1 − xn),

thus, defining Ln as in (1.1),

Lnf(y) = γ−1
n+1E [f(yn+1)− f(yn)| yn = y] = γ−1

n+1E [f(y + In(y))− f(y)|yn = y] ,

13
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Figure 3.3: Trajectory of the interpolated process for the rescaled PBA, setting s(x) = x in (3.5).

where

In(y) :=



I1
n(y) :=

(
γn
γn+1

− 1− γn
)
y with probability p1(1− γny)

I0
n(y) := 1 +

(
γn
γn+1

− 1− γn
)
y with probability p0(1− γny)

Ĩ1
n(y) :=

(
γn
γn+1

− 1− γnγn+1

)
y with probability p̃1(1− γny)

Ĩ0
n(y) := γn+1 +

(
γn
γn+1

− 1− γnγn+1

)
y with probability p̃0(1− γny)

. (3.7)

Taylor expansions provide the convergence of Ln toward L. As a consequence, the properly renormalized
interpolated process will asymptotically behave like a PDMP (see Figure 3.3). Classically, one can read
the dynamics of the limit process through its generator (see e.g. [Dav93]): the PDMP generated by (3.6)
has upward jumps of height 1 and follows the flow given by the ODE y′ = p̃0(1) − yp1(1), which means
it converges exponentially fast toward p̃0(1)/p1(1).

Remark 3.5 (Interpretation). Consider the case (3.5). Here Proposition 3.4 states that the rescaled
algorithm (yn) behaves asymptotically like the process generated by

Lf(x) = (1− pA − xpA)f ′(x) + pBs
′(1)x[f(x+ 1)− f(x)].

Intuitively, it is more and more likely to play the arm A (the one with the greatest gain probability). Its
successes and failures appear within the drift term of the limit infinitesimal generator, whereas playing
the arm B with success will provoke a jump. Finally, playing the arm B with failure does not affect
the limit dynamics of the process (as p̃1 does not appear within the limit generator). To carry out the
computations in this section, where we establish the speed of convergence of (Ln) toward L, the main
idea is to condition E[yn+1] given typical events on the one hand, and rare events on the other hand.
Typical events generally construct the drift term of L and rare events are responsible of the jump term
of L (see also Remark 3.3).

Note that one can tune the frequency of jumps with the parameter s′(1). The more concave s is
in a neighborhood of 1, the better the convergence is. In particular, if s′(1) = 0, the limit process is
deterministic. Also, note that choosing a function s non-symmetric with respect to (1/2, 1/2) introduces
an a priori bias; see Figure 3.4.

♦
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0 1

1

0 1

1

0 1

1

Figure 3.4: Various strategies for s(x) = x, s concave, s with a bias

Let us start the analysis of the rescaled PBA with a global result about a large class of PDMPs, whose
proof is postponed to Section 5. This lemma provides the necessary arguments to check Assumtion 2.2.

Proposition 3.6 (Assumption 2.2 for PDMPs). Let X be a PDMP with infinitesimal generator

Lf(x) = (a− bx)f ′(x) + (c+ dx)[f(x+ 1)− f(x)],

such that a, b, c, d ≥ 0. Assume that either b > 0, or b = 0 and a 6= 0. If f ∈ CN
b , then, for all 0 ≤ t ≤ T ,

Ptf ∈ CN
b . Moreover, for all n ≤ N ,

‖(Ptf)(n)‖∞ ≤

{ ∑n
k=0

(
2|d|
b

)n−k
‖f (k)‖∞ if b > 0∑n

k=0
n!
k! (2|d|T )n−k‖f (k)‖∞ if b = 0

.

Note that a very similar result is obtained in [BR15], but for PDMPs with a diffusive component.

Remark 3.7 (The stationary probability distribution). Let (Xt)t≥0 be the PDMP generated by L
defined in Proposition 3.6. By using the same tools as in [LP08, Theorem 6], it is possible to prove
existence and uniqueness of a stationary distribution π on R+. Applying Dynkin’s formula with f(x) = x,
we get

∂tE[Xt] = a+ c− (b− d)E[Xt].

If one uses the same technique with f(x) = xn, it is possible to deduce the nth moment of the invariant
measure π, and Dynkin’s formula applied to f(x) = exp(λx) provides exponential moments of π (see
[BMP+15, Remark 2.2] for the detail).

In the setting of (3.6), one can use the reasoning above to show that, by denoting bymn =
∫∞

0
xnπ(dx)

for n ≥ 0,

mn =
−p′0(1)

n(p1(1) + p′0(1))

n−2∑
k=1

(
n

k − 1

)
mk +

2p̃0(1) + (n− 1)p′0(1)

2(p1(1) + p′0(1))
mn−1,

with the convention
∑i
k=i+1 = 0. ♦

Proof of Proposition 3.4: First, let us specify the announced convergence of Ln toward L; recall that
γn = n−1/2 and χd(y) =

∑d
k=0 |y|k, so that In(y) in (3.7) rewrites

In(y) =



√
n+1−

√
n−1√

n
y with probability p1(1− γny)

1 +
√
n+1−

√
n−1√

n
y with probability p0(1− γny)

√
n−
√
n+1√

n+1
y with probability p̃1(1− γny)

1√
n+1

+
√
n−
√
n+1√

n+1
y with probability p̃0(1− γny)

,
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and the infinitesimal generator rewrites

Lnf(y) =
p1(1− γny)

γn+1

[
f
(
y + I1

n(y)
)
− f(y)

]
+
p0(1− γny)

γn+1

[
f
(
y + I0

n(y)
)
− f(y)

]
+
p̃1(1− γny)

γn+1

[
f
(
y + Ĩ1

n(y)
)
− f(y)

]
+
p̃0(1− γny)

γn+1

[
f
(
y + Ĩ0

n(y)
)
− f(y)

]
. (3.8)

In the sequel, the Landau notation O will be deterministic and uniform over both y and f .

First, we consider the first term of (3.8) and observe that

p1(1− γny) = p1(1) + yO(γn),

and that
I1
n(y) =

(
γn
γn+1

− 1− γn
)
y =

(
1

2n
+ o(n−1)− 1√

n

)
y = −yγn(1 +O(γn)),

so that I1
n(y)2 = y2O(γ2

n). Since γn ∼ γn+1, and since the Taylor formula gives a random variable ξyn
such that

f
(
y + I1

n(y)
)
− f(y) = I1

n(y)f ′(y) +
I1
n(y)2

2
f ′′(ξyn),

we have
γ−1
n+1

[
f
(
y + I1

n(y)
)
− f(y)

]
= −yf ′(y) + χ2(y)(‖f ′‖∞ + ‖f ′′‖∞)O(γn).

Then, easy computations show that

p1(1− γny)

γn+1

[
f
(
y + I1

n(y)
)
− f(y)

]
= −p1(1)yf ′(y) + χ3(y)(‖f ′‖∞ + ‖f ′′‖∞)O(γn). (3.9)

The third term in (3.8) is expanded similarly and writes

p̃1(1− γny)

γn+1

[
f
(
y + Ĩ1

n(y)
)
− f(y)

]
= χ3(y)(‖f ′‖∞ + ‖f ′′‖∞)O(γn), (3.10)

while the fourth term becomes

p̃0(1− γny)

γn+1

[
f
(
y + Ĩ0

n(y)
)
− f(y)

]
= p̃0(1)f ′(y) + χ3(y)(‖f ′‖∞ + ‖f ′′‖∞)O(γn). (3.11)

Note the slight difference with the expansion of the second term, since we have, on the one hand,

p0(1− γny)

γn+1
= − γn

γn+1
yp′0(1) +

γ2
n

γn+1
y2p′′(ξyn) = −yp′0(1) + χ2(y)O(γn),

where ξyn is a random variable, while, on the other hand,

f(y + I0
n(y))− f(y) = f(y + 1)− f(y) + χ1(y)‖f ′‖∞O(γn).

Then,

p0(1− γny)

γn+1

[
f
(
y + I0

n(y)
)
− f(y)

]
=

− yp′0(1)[f(y + 1)− f(y)] + χ3(y)(‖f‖∞ + ‖f ′‖∞)O(γn). (3.12)

Finally, combining (3.9), (3.10), (3.11) and (3.12), we obtain the following speed of convergence for the
infinitesimal generators:

|Lnf(y)− Lf(y)| = χ3(y)(‖f‖∞ + ‖f ′‖∞ + ‖f ′′‖∞)O(γn), (3.13)

establishing that the rescaled PBA satisfies Assumption 2.1 with d1 = 3, N1 = 2 and εn = γn. Assump-
tion 2.2 follows from Proposition 3.6 with N2 = 2.
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In order to apply Theorem 2.6, it would remain to check Assumption 2.3, that is to prove that the
moments of order 3 of (yn) are uniformly bounded. This happens to be very difficult and we do not even
know whether it is true. As an illustration of this difficulty, the reader may refer to [GPS15, Remark 4.4],
where uniform bounds for the first moment are provided using rather technical lemmas, and only for an
overpenalized version of the algorithm.

In order to overcome this technical difficulty, we introduce a truncated Markov chain coupled with
(yn), which does satisfy a Lyapunov criterion. For l ∈ N? and δ ∈ (0, 1], we define (y

(l,δ)
n )n≥0 as follows:

y(l,δ)
n :=

{
yn for n ≤ l(
y

(l,δ)
n−1 + In−1(y

(l,δ)
n−1)

)
∧ δγ−1

n for n > l
.

In the sequel, we denote with an exposant (l, δ) the equivalents of Ln, Yt, µt for (y
(l,δ)
n )n≥0. We prove that

(L(l,δ)
n )n≥0 satisfies our main assumptions, and consequently (µ

(l,δ)
t )t≥0 is an asymptotic pseudotrajectory

of Φ (at least for δ small enough and l large enough), which is the result of the combination of Lemma 3.8
and Theorem 2.6.

Lemma 3.8 (Behavior of (µ
(l,δ)
t )t≥0). For δ small enough and l large enough, the inhomogeneous Markov

chain (y
(l,δ)
n )n≥0 satisfies Assumptions 2.1, 2.2, 2.3 and 2.11.

Now, we shall prove that (µt)t≥0 is an asymptotic pseudotrajectory of Φ as well. Indeed, let ε > 0
and l be large enough such that P(∀n ≥ l, γnyn ≤ δ) ≥ 1− ε (it is possible since γnyn = 1− xn converges
to 0 in probability). Then, for T > 0, f ∈ F , s ∈ [0, T ]

|µt+s(f)− Φ(µt, s)(f)| ≤
∣∣∣µt+s(f)− µ(l,δ)

t+s (f)
∣∣∣+
∣∣∣Φ(µ

(l,δ)
t , s)(f)− Φ(µt, s)(f)

∣∣∣
+
∣∣∣µ(l,δ)
t+s (f)− Φ(µ

(l,δ)
t , s)(f)

∣∣∣
≤ (2‖f‖∞ + 2‖f‖∞)(1− P(∀n ≥ l, γnyn ≤ δ))

+
∣∣∣µ(l,δ)
t+s (f)− Φ(µ

(l,δ)
t , s)(f)

∣∣∣
≤ 4ε+

∣∣∣µ(l,δ)
t+s (f)− Φ(µ

(l,δ)
t , s)(f)

∣∣∣ ,
since ‖f‖∞ ≤ 1. Taking the suprema over [0, T ] and F yields

lim sup
t→∞

sup
s∈[0,T ]

dF (µt+s,Φ(µt, s)) ≤ 4ε+ lim sup
t→∞

sup
s∈[0,T ]

dF (µ
(l,δ)
t+s ,Φ(µ

(l,δ)
t , s)). (3.14)

Using Lemma 3.8, Theorem 2.6 holds for (µ
(l,δ)
t )t≥0 and (3.14) rewrites

lim sup
t→∞

sup
s∈[0,T ]

dF (µt+s,Φ(µt, s)) ≤ 4ε,

so that (µt)t≥0 is an asymptotic pseudotrajectory of Φ.

Finally, for t > 0, T > 0, f ∈ C 0
b , s ∈ [0, T ], set νt := L ((Y

(t)
s )0≤T ) and ν := L ((Xπ

s )0≤T ). We have

|νt(f)− ν(f)| ≤
∣∣∣νt(f)− ν(l,δ)

t (f)
∣∣∣+
∣∣∣ν(l,δ)
t (f)− ν(f)

∣∣∣
≤ 2‖f‖∞(1− P(∀n ≥ l, γnyn ≤ δ)) +

∣∣∣ν(l,δ)
t (f)− ν(f)

∣∣∣
≤ 2ε+

∣∣∣ν(l,δ)
t (f)− ν(f)

∣∣∣ . (3.15)

Since (y
(l,δ)
n )n≥0 satisfies Assumption 2.11, we can apply Theorem 2.12 so that the right-hand side of

(3.15) converges to 0, which concludes the proof.
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Remark 3.9 (Rate of convergence toward the stationary measure). For such PDMPs, exponential
convergence in Wasserstein distance has already been obtained (see [BMP+15, Proposition 2.1] or [GPS15,
Theorem 3.4]). However, we are not in the setting of Theorem 2.8, since γn = n−1/2. Thus, λ(γ, ε) = 0,
and there is no exponential convergence. This highlights the fact that the rescaled algorithm converges
too slowly toward the limit PDMP. ♦

Remark 3.10 (The overpenalized bandit algorithm). Even though we do not consider the overpenalized
bandit algorithm introduced in [GPS15], the tools are the same. The behavior of this algorithm is the
same as the PBA’s, except from a possible (random) penalization of an arm in case of a success; it writes

xn+1 = xn + γn+1 (Xn+1 − xn) + γ2
n+1

(
X̃n+1 − xn

)
,

where

(Xn+1, X̃n+1) =



(1, xn) with probability pAxnσ
(0, xn) with probability pB(1− xn)σ
(1, 0) with probability pAxn(1− σ)
(0, 1) with probability pB(1− xn)(1− σ)
(xn, 1) with probability (1− pB)(1− xn)
(xn, 0) with probability (1− pA)xn

.

Setting yn = γ−1
n (1− xn), and following our previous computations, it is easy to show that the rescaled

overpenalized algorithm converges, in the sense of Assumption 2.1, toward

Lf(y) = [1− σpA − pAy]f ′(y) + pBy[f(y + 1)− f(y)].

♦

3.3 Decreasing Step Euler Scheme

In this section, we turn to the study of the so-called decreasing step Euler scheme (DSES). This classical
stochastic procedure is designed to approximate the stationary measure of a diffusion process of the form

Xx
t = x+

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs (3.16)

with a discrete Markov chain

yn+1 := yn + γn+1b(yn) +
√
γn+1σ(yn)En+1, (3.17)

for any non-increasing sequence (γn)n≥1 converging toward 0 such that
∑∞
n=1 γn = +∞ and (En) a

suitable sequence of random variables. In the sequel, we shall recover the convergence of the DSES
toward the diffusion process at equilibrium, as defined by (3.16). If γn = γ in (3.17), this model would
be a constant step Euler scheme as studied by [Tal84, TT90], which approaches the diffusion process at
time t when γ tends to 0. By letting t → +∞ in (3.16), it converges to the equilibrium of the diffusion
process. We can concatenate those steps by choosing γn vanishing but such that

∑
n γn diverges. The

DSES has already been studied in the literature, see for instance [LP02, Lem05].

It is simple, following the computations of Sections 3.1 and 3.2, to check that Ln converges (in the
sense of Assumption 2.1) toward

Lf(y) := b(y)f ′(y) +
σ2(y)

2
f ′′(y).

In the sequel, define F as in Theorem 2.6 with N2 = 3.

18



Michel Benaïm, Florian Bouguet, Bertrand Cloez

Proposition 3.11 (Results for the DSES). Assume that (En) is a sequence of sub-gaussian random
variables (i.e. there exists κ > 0 such that ∀θ ∈ R,E[exp(θE1)] ≤ exp(κθ2/2)), and E[E1] = 0 and
E[E2

1 ] = 1. Moreover, assume that b, σ ∈ C∞ whose derivatives of any order are bounded, and that σ is
bounded. Eventually, assume that there exist constants 0 < b1 ≤ b2 and 0 < σ1 such that, for |y| > A,

− b2y2 ≤ b(y)y ≤ −b1y2, σ1 ≤ σ(y). (3.18)

If γn = 1/n, then (µt) is a 1
2 -pseudotrajectory of Φ, with respect to dF .

Moreover, there exists a probability distribution π and C, u > 0 such that, for all t > 0,

dF (µt, π) ≤ Ce−ut.

Furthermore, the sequence of processes (Y
(t)
s )s≥0 converges in distribution, as t → +∞, toward

(Xπ
s )s≥0 in the Skorokhod space.

Note that one could choose a more general (γn), provided that λ(γ, γ) > 0. In contrast to classical
results, Proposition 3.11 provides functional convergence. Moreover, we obtain a rate of convergence in
a more general setting than [Lem05, Theorem IV.1], see also [LP02]. Indeed, let us detail the difference
between those settings with the example of the Kolmogorov-Langevin equation:

dXt = ∇V (Xt)dt+ σdBt.

A rate of convergence may be obtained in [Lem05] only for V uniformly convex; although, we only need
V to be convex outside some compact set. Let us recall that the uniform convexity is a strong assumption
ensuring log-Sobolev inequality, Wassertsein contraction. . . See for instance [Bak94, ABC+00].

Proof of Proposition 3.11: Recalling (yn) in (3.17) and Ln in (1.1), we have

Ln(y) = γ−1
n+1E

[
f(y + γn+1b(y) +

√
γn+1σ(y)En+1)− f(y)|yn = y

]
.

Easy computations show that Assumption 2.1 holds with εn =
√
γn, N1 = 3, d1 = 3.

We aim at proving Assumption 2.2, i.e. for f ∈ F , j ≤ 3 and t ≤ T , that (Ptf)(j) exists and

‖(Ptf)(j)‖∞ ≤ CT
3∑
k=0

‖f (k)‖∞.

It is straightforward for j = 0, but computations are more involved for j ≥ 1. Let us denote by (Xx
t )t≥0

the solution of (3.16) starting at x. Since b and σ are smooth with bounded derivatives, it is standard
that x 7→ Xx

t is C 4 (see for instance [Kun84, Chapter II, Theorem 3.3]). Moreover, ∂xXx
t satisfies the

following SDE:

∂xX
x
t = 1 +

∫ t

0

b′(Xx
s )∂xX

x
s ds+

∫ t

0

σ′(Xx
s )∂xX

x
s dWs.

For our purpose, we need the following lemma, which provides a constant for Assumption 2.2 of the form
CT = C1eC2T . Even though we do not explicit the constants for the second and third derivatives in its
proof, it is still possible; the main result of the lemma being that we can check Assumption 2.7.ii).

Lemma 3.12 (Estimates for the derivatives of the diffusion). Under the assumptions of Proposition 3.11,
for p ≥ 2 and t ≤ T ,

E[|∂xXx
t |p] ≤ exp

((
p‖b′‖∞ +

p(p− 1)

2
‖σ′‖2∞

)
T

)
,

and
E[|∂xXx

t |] ≤ exp

((
‖b′‖∞ +

1

2
‖σ′‖2∞

)
T

)
.
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For any p ∈ N?, there exist positive constants C1, C2 not depending on x, such that

E[|∂2
xX

x
t |p] ≤ C1eC2T , E[|∂3

xX
x
t |p] ≤ C1eC2T .

The proof of the lemma is postponed to Section 5. Using Lemma 3.12, and since f and its derivatives
are bounded, it is clear that x 7→ Ptf(x) is three times differentiable, with

(Ptf)′(x) = E
[
f ′(Xx

t )∂xX
x
t

]
,

(Ptf)′′(x) = E
[
f ′′(Xx

t )(∂xX
x
t )2 + f ′(Xx

t )(∂2
xX

x
t )
]
,

(Ptf)(3)(x) = E
[
f (3)(Xx

t )(∂xX
x
t )3 + 3f ′′(Xx

t )(∂xX
x
t )(∂2

xX
x
t ) + f ′(Xx

t )(∂3
xX

x
t )
]
.

As a consequence, Assumption 2.2 holds, with CT = 3C3
1e3C2T and N2 = 3.

Now, we shall prove that Assumption 2.3.ii) holds with V (y) = exp(θy), for some (small) θ > 0.
Thanks to (3.18), we easily check that, for Ṽ (y) = 1 + y2,

LṼ (y) ≤ −α̃Ṽ (y) + β̃, with α̃ = 2b1, β̃ = (2b1 + S) ∨

(
A sup

[−A,A]

b+
S2

2
+ 2b1(1 +A2)

)
. (3.19)

Then, [Lem05, Proposition III.1] entails Assumption 2.3.ii). Finally, Theorem 2.6 applies and we recover
[KY03, Theorem 2.1, Chapter 10].

Then, Theorem 2.6 provides the asymptotic behavior of the Markov chain (yn)n≥0 (in the sense of
asymptotic pseudotrajectories). If furtherly we want speeds of convergence, we shall use Theorem 2.8
and prove the ergodicity of the limit process; to that end, combine (3.19) with [MT93, Theorem 6.1]
(which provides exponential ergodicity for the diffusion toward some stationary measure π), as well as
Lemma 3.12, to ensure Assumption 2.7.ii) with G = {g ∈ C 0(R) : |g(y)| ≤ 1 + y2} (v and r are not
explicitly given). Note that we used the fact that σ is lower-bounded, which implies that the compact
sets are small sets. Moreover, the choice γn = n−1 implies λ(γ, ε) = 1/2. Then, the assumptions of
Theorem 2.8 are satisfied, with u0 = v(1 + 2v + 2r)−1.

Finally, we can easily check Assumption 2.11 for some d ∈ N, since yn admits uniformly bounded
exponential moments. Then using Theorem 2.12 ends the proof.

3.4 Lazier and Lazier Random Walk

We consider the lazier and lazier random walk (LLRW) (yn)n≥0 defined as follows:

yn+1 :=

{
yn + Zn+1 with probability γn+1

yn with probability 1− γn+1
, (3.20)

where (Zn) is such that L (Zn+1|y0, . . . , yn) = L (Zn+1|yn); we denote the conditional distribution
Q(yn, ·) := L (Zn+1|yn). In the sequel, define F :=

{
f ∈ C 0

b : 7‖f‖∞ ≤ 1
}

and Lf(y) =
∫
R f(y +

z)Q(y, dz)− f(y), which is the generator of a pure-jump Markov process (constant between two jumps).

This example is very simple and could be studied without using our main results; however, we still
develop it in order to check the sharpness of our rates of convergence (see Remak 3.15).

Proposition 3.13 (Results for the LLRW model). The sequence (µt) is an asymptotic pseudotrajectory
of Φ, with respect to dF .
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Moreover, if λ(γ, γ) > 0, then (µt) is a λ(γ, γ)-pseudotrajectory of Φ.

Furthermore, if L satisfies Assumption 2.7.i) for some v > 0 then, for any u < v ∧ λ(γ, γ), there
exists a constant C such that, for all t > 0,

dF (µt, π) ≤ Ce−ut.

Remark that the distance dF in Proposition 3.13 is the total variation distance up to a constant.

Proof of Proposition 3.13: It is easy to check that (1.1) entails

Lnf(y) =

∫
R
f(y + z)Q(y, dz)− f(y) = Lf(y).

It is clear that the LLRW satisfies Assumption 2.1 with d1 = 0, N1 = 0, εn = 0, and Assumption 2.2
with CT = 1, N2 = 0. Since d = d1 = 0, Assumption 2.3 is also clearly satisfied. Eventually, note that
λ(γ, ε) = λ(γ, γ). Then, Theorem 2.6 holds. Finally, if L satisfies Assumption 2.7.i), it is clear that
Theorem 2.8 applies.

The assumption on L satisfying Assumption 2.7.i) (which strongly depends on the choice of Q), can
be checked with the help of a Foster-Lyapunov criterion, see [MT93] for instance.

Remark 3.14 (Constructing limit processes with a slow speed of convergence). The framework of
the LLRW provides a large pool of toy examples. Let R be some Markov transition kernel on R, and
define Q(y,A) = R(y, y + A), for any y ∈ R and A borelian set, where y + A = {z ∈ R : z − y ∈ A}.
Let (yn)n≥0 be the LLRW defined in (3.20). Proposition 3.13 holds, and the limit process generated by
Lf(y) =

∫
R f(y+ z)Q(y, dz)− f(y) is just a Markov chain generated by R indexed by a Poisson process.

Precisely, if Nt is a Poisson process of intensity 1,

Φ(ν, t) = E[νRNt ].

This construction allows us to build a variety of limit processes for the LLRW, with a slow speed of
convergence if needed. Indeed, choose R to be the Markov kernel of a sub-geometrically ergodic Markov
chain converging to a stationary measure π at polynomial speed (for instance the kernels introduced in
[JR02]); the limit process will inherit the slow speed of convergence. More precisely, there exist β ≥ 1, a
class of functions G and a function W such that

dG (νRn, π) ≤ ν(W )

(1 + n)β
.

Then,

dG (Φ(ν, t), π) ≤ E
[

ν(W )

(1 +Nt)β

]
which goes to 0 at polynomial speed. Then, if supn E[W (yn)] < +∞, which could be proven via troncature
arguments as in Section 3.2, we can use Theorem 2.8.iii) to conclude that (yn) converges weakly toward
π.

Note that another example of sub-geometrically ergodic process is provided in [DFG09, Theorem 5.4].
The elliptic diffusions mentionned in this article converge slowly toward equilibrium, and could be ap-
proximated by a Euler scheme as in Section 3.3. In this example again, the use of troncature arguments
to check Assumption 2.3 could be enough for Theorem 2.8.iii) to hold. ♦
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Remark 3.15 (Speed of convergence under Doeblin condition). Assume there exists a measure ψ and
ε > 0 such that for every y and measurable set A, we have∫

1y+z∈AQ(y, dz) ≥ εψ(A).

It is the classical Doeblin condition, which ensures exponential uniform ergodicity in total variation
distance. It is classic to prove that under this condition there exists an invariant distribution π, such
that , for every µ and t ≥ 0

dF (µPt, π) ≤ e−tεdF (µ, π) ≤ e−tε

Indeed, one can couple two trajectories as follows: choose the same jump times and, using the Doeblin
condition, at each jumps, couple them with probability ε. The coupling time then follows an exponential
distribution with parameter ε. Then, the conclusion of Proposition 3.13 holds with v = ε−1.

However, one can use the Doeblin argument directly with the inhomogeneous chain. Let us denote
by (Kn) its sequence of transition kernels. From the Doeblin condition, we have for every µ, ν and n ≥ 0

dF (µKn, νKn) ≤ (1− γn+1ε)dF (µ, ν).

and as π is invariant for Kn (it is straighforward because π is invariant for Q) then

dF (µKn, π) ≤ (1− γn+1ε)dF (µ, π).

A recursion argument then gives

dF (L(yn), π) ≤
n∏
k=0

(1− γk+1ε)dF (L(y0), π).

But,

n∏
k=0

(1− γk+1ε) = exp

(
n∑
k=0

ln(1− γk+1ε)

)
≤ exp

(
n∑
k=0

ln(1− γk+1ε)

)
≤ e−ε

∑n
k=0 γk+1 .

As a conclusion, Proposition 3.13 and the direct approach provide the same rate of convergence for
the LLRW under Doeblin condition. ♦

Remark 3.16 (Non-convergence in total variation). Assume that yn ∈ R+ and Zn = −yn/2. We then
have that

yn =

n∏
i=1

Θ̃iy0, Θ̃i =

{
1 with probability 1− γi
1
2 with probability γi

.

where Θ̃i are independent random variables. Borel-Cantelli’s Lemma entails that (yn)n≥0 converges to 0
almost surely and, here,

Lf(y) = f
(y

2

)
− f(y).

A process with such a generator never hits 0 whenever it starts with a positive value and, then, does not
converge in total variation distance. Nevertheless, it is easy to prove that for any y and t ≥ 0,

dG(δyPt, δ0) ≤ E
[

1

2Nt

]
y ≤ e−t/2y,

where G is any class of functions included in {f ∈ C 1
b : ‖f ′‖∞ ≤ 1}, and (Nt) a Poisson process. In

particular Assumption 2.7.ii) holds and there is convergence of our chain to zero in distribution, as well
as a rate of convergence in the Fortet-Mourier distance. ♦
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4 Proofs of theorems

In the sequel, we consider the following classes of functions:

F1 := {f ∈ D(L) : Lf ∈ D(L), ‖f‖∞ + ‖Lf‖∞ + ‖LLf‖∞ ≤ 1} ,

F2 :=

f ∈ D(L) ∩ CN2

b :

N2∑
j=0

‖f (j)‖∞ ≤ 1

 ,

F := F1 ∩F2.

The class F1 is particularly useful to control Ptf (see Lemma 4.1), and the class F2 enables us to deal
with smooth and bounded functions (for the second part of the proof of Theorem 2.6). Note that an
important feature of F is that Lemma 5.1 holds for F1∩F2, so that F contains C∞c "up to a constant".

Let us begin with preliminary remarks on the properties of the semigroup (Pt).

Lemma 4.1 (Expansion of Ptf). Let f ∈ F1. Then, for all t > 0, Ptf ∈ F1 and

sup
f∈F1

‖Ptf − f − tLf‖∞ ≤
t2

2
.

Proof of Lemma 4.1: It is clear that Ptf ∈ F1, since for all g ∈ D(L), PtLg = LPtg and ‖Ptg‖∞ ≤
‖g‖∞. Now, if f ∈ F1, then

Ptf = f +

∫ t

0

PsLfds = f + tLf +K(f, t),

where K(f, t) = Ptf − f − tLf . Using the mean value inequality, we have, for x ∈ RD,

|K(f, t)(x)| =
∣∣∣∣∫ t

0

PsLf(x)ds− Lf(x)

∣∣∣∣ ≤ ∫ t

0

|PsLf(x)− Lf(x)|ds

≤
∫ t

0

s‖LLf‖∞ds ≤
t2

2
,

which concludes the proof.

Proof of Theorem 2.6: For every t ≥ 0, set K(f, t) := Ptf − f − tLf and recall that m(t) = sup{n ≥
0 : t ≥ τn}. Then, we have Yτm(t)

= Yt and τm(t) ≤ t < τm(t)+1. Let 0 < s < T . Using the following
telescoping sum, we have

dF (µt+s,Φ(µt, s)) = dF (µτm(t+s)
,Φ(µτm(t)

, s))

≤ dF (Φ(µτm(t)
, τm(t+s) − τm(t)),Φ(µτm(t)

, s))

+ dF (µτm(t+s)
,Φ(µτm(t)

, τm(t+s) − τm(t)))

≤ dF (Φ(µτm(t)
, τm(t+s) − τm(t)),Φ(µτm(t)

, s))

+

m(t+s)−1∑
k=m(t)

dF

Φ

µτk+1
,

m(t+s)∑
j=k+2

γj

 ,Φ

µτk ,m(t+s)∑
j=k+1

γj

 , (4.1)

with the convention
∑i
k=i+1 = 0. Our aim is now to bound each term of this sum. The first one is the

simplest: indeed, we have s ≤ τm(t+s)+1− τm(t), so s− γm(t+s)+1 ≤ τm(t+s)− τm(t) and τm(t+s)− τm(t) ≤
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s+γm(t)+1. Denoting by u = s∧ (τm(t+s)−τm(t)) and h = |τm(t+s)−τm(t)−s| we have, by the semigroup
property,

dF

(
Φ(µt, τm(t+s) − τm(t)),Φ(µt, s)

)
= dF (Φ(Φ(µt, u), h),Φ(µt, u)) .

From Lemma 4.1, we know that for every f ∈ F1 and every probability measure ν,

|Φ(ν, h)(f)− ν(f)| = |ν(Phf − f)| ≤ h+
h2

2
≤ 3

2
h,

for h ≤ 1. It is then straightforward that

dF

(
Φ(µt, τm(t+s) − τm(t)),Φ(µt, s)

)
≤ 3

2
h ≤ 3

2
γm(t)+1. (4.2)

Now, we provide bounds for the generic term of the telescoping sum in (4.1). Let f ∈ F1 and m(t) ≤
k ≤ m(t+ s)− 1. On the one hand, using Lemma 4.1,

Φ

µτk ,m(t+s)∑
j=k+1

γj

 (f) = µτkP∑m(t+s)
j=k+1 γj

(f)

= µτk(Pτm(t+s)−τk+1
f) +

∫ γk+1

0

µτk(LPτm(t+s)−τk+1+uf)du

= µτk(Pτm(t+s)−τk+1
f) + γk+1µτk(LPτm(t+s)−τk+1

f)

+K
(
Pτm(t+s)−τk+1

f, γk+1

)
.

On the other hand,

µτk+1
(f) = µτk(f) + γk+1µτk(Lkf)

so that

Φ

µτk+1
,

m(t+s)∑
j=k+2

γj

 (f) = µτk+1
(Pτm(t+s)−τk+1

f)

= µτk(Pτm(t+s)−τk+1
f) + γk+1µτk(LkPτm(t+s)−τk+1

f).

Henceforth,

Φ

µτk+1
,

m(t+s)∑
j=k+2

γj

 (f)− Φ

µτk ,m(t+s)∑
j=k+1

γj

 (f) ≤ γk+1µτk((Lk − L)Pτm(t+s)−τk+1
f)

+K
(
Pτm(t+s)−τk+1

f, γk+1

)
.

Now, we bound the previous term using Assumption 2.1, Assumption 2.2, and Assumption 2.3. Let
m(t) ≤ k ≤ m(t+ s)− 1. Recall that, since s < T , τm(t+s) − τk+1 ≤ τm(t+s) − τm(t)+1 ≤ (t+ s)− t ≤ T .
Then, for all f ∈ F2,

|µτk((Lk − L)Pτm(t+s)−τk+1
f)| ≤ µτk(|(Lk − L)Pτm(t+s)−τk+1

f |)

≤ µτk

M1χd1

N1∑
j=0

‖(Pτm(t+s)−τk+1
f)(j)‖∞εk

 ≤ µτk
M1(N1 + 1)CTχd

N2∑
j=0

‖f (j)‖∞εk


≤M1(N1 + 1)CTE[χd(yk)]

N2∑
j=0

‖f (j)‖∞εk ≤M1M2(N1 + 1)CT

N2∑
j=0

‖f (j)‖∞εk

≤M1M2(N1 + 1)CT εk.
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Gathering the previous bounds entails

m(t+s)−1∑
k=m(t)

dF

Φ

µτk+1
,

m(t+s)∑
j=k+2

γj

 ,Φ

µτk ,m(t+s)∑
j=k+1

γj


≤
m(t+s)−1∑
k=m(t)

(
M1M2(N1 + 1)CT γk+1εk +

γ2
k+1

2

)

≤ (T + 1)

(
M1M2(N1 + 1)CT +

1

2

)
(γm(t) ∨ εm(t)). (4.3)

Thus, combining (4.1), (4.2) and (4.3) yields

sup
s≤T

dF (µt+s,Φ(µt, s)) ≤ C ′T (γm(t) ∨ εm(t)), (4.4)

with C ′T = 3
2 + (T + 1)

(
M1M2(N1 + 1)CT + 1

2

)
. Then, (µt)t≥0 is an asymptotic pseudotrajectory of Φ

(with respect to dF ).

Now, we turn to the study of the case λ(γ, ε) > 0. For any λ < λ(γ, ε), we have (for n large enough)
γn ∨ εn ≤ exp(−λτn). Then, for any t large enough,

γm(t) ∨ εm(t) ≤ e−λτm(t) ≤ eλ(t−τm(t))e−λt ≤ eλ(γ,ε)e−λt.

Now, plugging this upper bound in (4.4), we get, for λ < λ(γ, ε),

sup
s≤T

dF (µt+s,Φ(µt, s)) ≤ eλ(γ,ε)C ′T e
−λt. (4.5)

Finally, we can deduce that

lim sup
t→+∞

1

t
log

(
sup

0≤s≤T
d(µt+s,Φ(µt, s))

)
≤ −λ

for any λ < λ(γ, ε), which concludes the proof of Theorem 2.6.

Proof of Theorem 2.8: The first part of the proof is an adaptation of [Ben99]. Assume Assump-
tion 2.7.i) and, without loss of generality, assume M3 > 1. If v > λ(γ, ε), fix ε > v − λ(γ, ε), otherwise
let ε > 0, and set u := v − ε, Tε := ε−1 logM3. Since u < λ(γ, ε), and using (4.5), the following sequence
of inequalities holds, for any T ∈ [Tε, 2Tε] and n ∈ N:

dG

(
µ(n+1)T , π

)
≤ dG

(
µ(n+1)T ,Φ(µnT , T )

)
+ dG (Φ(µnT , T ), π)

≤ eλ(γ,ε)C ′T e
−unT +M3dG (µnT , π) e−vT

≤ eλ(γ,ε)C ′T e
−unT + dG (µnT , π) e−uT ,

with C ′T = 3
2 + (T + 1)

(
M1M2(N1 + 1)CT + 1

2

)
. Denoting by δn := dG (µnT , π) and ρ := e−uT , the

previous inequality turns into δn+1 ≤ eλ(γ,ε)C ′T ρ
n + ρδn, from which we derive

δn ≤ nρn−1C ′T e
λ(γ,ε) + ρnδ0.

Hence, for every n ≥ 0 and T ∈ [Tε, 2Tε], we have

dG (µnT , π) ≤ e−(u−ε)nT (M5 + dG (µ0, π)) , M5 = eλ(γ,ε)

(
sup
n≥0

ne−εnT
)(

sup
T∈[Tε,2Tε]

C ′T

)
.

Then, for any t > Tε, let n = btT−1
ε c and T = tn−1. Then, T ∈ [Tε, 2Tε] and the following upper bound

holds:
dG (µt, π) ≤ (M5 + dG (µ0, π)) e−(u−ε)t.
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Now, assume Assumption 2.7.ii). For any (small) ε > 0, there exists eλ(γ,ε) such that γm(t) ∨ εm(t) ≤
eλ(γ,ε) exp(−(λ(γ, ε)− ε)t). For any α ∈ (0, 1), we have

dF∩G (µt, π) ≤ dF∩G (µt,Φ(µαt, (1− α)t)) + dF∩G (Φ(µαt, (1− α)t), π)

≤ C ′(1−α)t(γm(αt) ∨ εm(αt)) +M3e−v(1−α)t

≤M4er(1−α)teλ(γ,ε)e−(λ(γ,ε)−ε)αt +M3e−v(1−α)t. (4.6)

Optimizing (4.6) by taking α = (r + v)(r + v + λ(γ, ε)− ε)−1, we get

dF∩G (µt, π) ≤M5 exp

(
− v(λ(γ, ε)− ε)
r + v + λ(γ, ε)− ε

t

)
,

with M5 = M4eλ(γ,ε) +M3, which depends on ε only through M3.

Lastly, assume Assumption 2.1.iii). Denote by K the set of probability measures ν such that

ν(W ) < M = sup
n≥0

E[W (yn)].

Let ε > 0 and K = {x ∈ RD : W (x) ≤M/ε}. For every ν ∈ K, using Markov’s inequality, it is clear that

ν(KC) ≤ ε

M
ν(W ) ≤ ε.

Then K is a relatively compact set (by Prokhorov’s Theorem). The measure π is an attractor in the
sense of [Ben99], which means that limt→+∞ dG (Φ(ν, t), π) = 0 uniformly in ν ∈ K. Then, since for any
t > 0, µt ∈ K, we can apply [Ben99, Theorem 6.10] to achieve the proof.

Proof of Theorem 2.12: We shall prove the convergence of the sequence of processes (Y
(t)
s )0≤s≤T ,

as t → +∞, toward (Xπ
s )0≤s≤T in the Skorokhod space D([0, T ]), for any T > 0. Then, using [Bil99,

Theorem 16.7], this convergence entails Theorem 2.12, i.e. convergence of the sequence (Y (t)) inD([0,∞)).

Let T > 0. The proof of functional convergence classically relies on proving the convergence of finite-
dimensional distributions, on the one hand, and tightness, on the other hand. First, we prove the former,
which is the first part of Theorem 2.12. We choose to prove the convergence of the finite-dimensional
distributions in the case m = 2. The proof for the general case is similar but with a laborious notation.
Denote by Tu,vg(y) := E[g(Yv)|Yu = y]. With this notation, (4.4) becomes

sup
s≤T

sup
g∈F

(µtTt,t+sg − µtPsg) ≤ C ′T (γm(t) ∨ εm(t)).

This upper bound does not depend on µt, so, for any probability distribution ν, we have

sup
s≤T

sup
g∈F

(νTt,t+sg − νPsg) ≤ C ′T (γm(t) ∨ εm(t)).

This inequality implies that, for any ν,

sup
s1≤s2≤T

sup
g∈F

(νTt+s1,t+s2g − νPs2−s1g) ≤ C ′T (γm(t) ∨ εm(t)), (4.7)

which converges toward 0 as t→ +∞. From now on, we denote, for any function f , f̂x(y) := f(x, y). If
f is a smooth function (say in C∞c with enough derivatives bounded), f̂·(·) ∈ F . On the one hand, for
0, s1 < s2 < T ,

E[f(Xπ
s1 , X

π
s2)] =

∫
Ps2−s1 f̂y(y)π(dy) = πPs2−s1 f̂·(·).
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On the other hand, we have

E[f(Y (t)
s1 , Y

(t)
s2 ] = E

[
E[f(Y (t)

s1 , Y
(t)
s2 |Y

(t)
s1 ]
]

= E
[
Tt+s1,t+s2 f̂Yt+s1 (Yt+s1)

]
= T0,t+s1

(
Tt+s1,t+s2 f̂·(·)

)
.

We have the following triangle inequality:∣∣∣E[f(Y (t)
s1 , Y

(t)
s2 ]− E[f(Xπ

s1 , X
π
s2)]
∣∣∣ =

∣∣∣T0,t+s1

(
Tt+s1,t+s2 f̂·(·)

)
− πPs2−s1 f̂·(·)

∣∣∣
≤
∣∣∣T0,t+s1

(
Tt+s1,t+s2 f̂·(·)− Ps2−s1 f̂·(·)

)∣∣∣
+
∣∣∣T0,t+s1

(
Ps2−s1 f̂·(·)

)
− πPs2−s1 f̂·(·)

∣∣∣ (4.8)

Firstly, using (4.7), and if f̂·(·) ∈ F ,

lim
t→∞

T0,t+s1

(
Tt+s1,t+s2 f̂·(·)− Ps2−s1 f̂·(·)

)
= lim
t→∞

µt+s1

(
Tt+s1,t+s2 f̂·(·)− Ps2−s1 f̂·(·)

)
= 0.

Secondly, Ps2−s1f·(·) ∈ C 0
b and, using Theorem 2.8,

lim
t→∞

T0,t+s1

(
Ps2−s1 f̂·(·)

)
− πPs2−s1 f̂·(·) = 0.

From (4.8), it is straightforward that, for a smooth f ,

lim
t→∞

∣∣∣E[f(Y (t)
s1 , Y

(t)
s2 ]− E[f(Xπ

s1 , X
π
s2)]
∣∣∣ = 0,

and applying Lemma 5.1 achieves the proof of finite dimensional convergence for m = 2.

To prove tightness, which is the second part of Theorem 2.12, we need the following lemma, whose
proof is postponed to Section 5.

Lemma 4.2 (Martingale properties). Let f be a continuous and bounded function. The process (M̂f
n )n≥0,

defined for every n ≥ 0 by

M̂f
n = f(yn)− f(y0)−

n−1∑
k=0

γk+1Lkf(yk),

is a martingale, with

〈M̂f 〉n =
n−1∑
k=0

γk+1Γkf(yk).

Moreover, under Assumption 2.11, if d ≥ d2 then for every N ≥ 0, there exist a constant M7 > 0
(depending on N and y0) such that

E
[

sup
n≤N

χd1(yn)

]
≤M7.

Now, define

M (t,i)
s = M̂ϕi

m(t+s) − M̂
ϕi
m(t),

A(t,i)
s = ϕi(Yt) +

∫ τm(t+s)

τm(t)

Lm(u)ϕi(Yu)du = ϕi(ym(t)) +

m(t+s)−1∑
k=m(t)

γk+1Lkϕi(yk)

and
Y (t,i)
s = ϕi(Y

(t)
s ).
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With this notation and Lemma 4.2, we have

Y (t,i)
s = A(t,i)

s +M (t,i)
s

and (M
(t,i)
s )s≥0 is a martingale with quadratic variation

〈M (t,i)〉s =

∫ τm(t+s)

τm(t)

Γm(u)ϕi(Yu)du,

where Γn is as in Assumption 2.11. From the convergence of finite-dimensional distributions, for every
s ∈ [0, T ], the sequence (Y

(t)
s )t≥0 is tight. It is then enough, from the Aldous-Rebolledo criterion (see

Theorems 2.2.2 and 2.3.2 in [JM86]) and Lemma 4.2 to show that: for every S ≥ 0, ε, η > 0, there exists
a δ > 0 and t0 > 0 with the property that whatever the family of stopping times (σ(t))t≥0, with σ(t) ≤ S,
for every i ∈ {1, . . . D},

sup
t≥t0

sup
θ≤δ

P
(∣∣∣〈M (t,i)〉σ(t) − 〈M (t,i)〉σ(t)+θ

∣∣∣ ≥ η) ≤ ε (4.9)

and
sup
t≥t0

sup
θ≤δ

P
(∣∣∣A(t,i)

σ(t) −A
(t,i)

σ(t)+θ

∣∣∣ ≥ η) ≤ ε. (4.10)

We have, using Assumption 2.11,

A
(t,i)

σ(t)+θ
−A(t,i)

σ(t) =

∫ τ
m(t+σ(t)+θ)

τ
m(t+σ(t))

Lm(u)ϕi(Yu)du ≤
∫ τ

m(t+σ(t)+θ)

τ
m(t+σ(t))

M6χd2(Yu)du

≤M6|τm(t+σ(t)+θ) − τm(t+σ(t))| sup
r≤T

χd2(Yr).

From the definition of τn,
|τm(t+σ(t)+θ) − τm(t+σ(t))| ≤ θ + γm(t)+1,

and then, using Lemma 4.2 and Markov’s inequality

P
(∣∣∣A(t,i)

σ(t) −A
(t,i)

σ(t)+θ

∣∣∣ ≥ η) ≤ M6(θ + γm(t0)+1)

η
E[sup
s≤T

χd2(Yr)] ≤M6M7

(δ + γm(t0)+1)

η
.

Proving the inequality (4.9) is done in a similar way, and achieves the proof.

5 Appendix

5.1 General appendix

Lemma 5.1 (Weak convergence and dF ). Assume that F is a star domain with respect to 0 (i.e. if
f ∈ F then λf ∈ F for λ ∈ [0, 1]). Let (µn), µ be probability measures. If limn→∞ dF (µn, µ) = 0 and,
for every g ∈ C∞c , there exists λ > 0 such that λg ∈ F , then (µn) converges weakly toward µ. If F ⊆ C 1

b ,
then dF metrizes the weak convergence.

Proof: Let f ∈ C 0
b , g ∈ C∞c . Note that fg ∈ C 0

c and, using Weierstrass’ Theorem, it is well known
that, for all ε > 0, there exists ϕ ∈ C∞c such that ‖fg − ϕ‖∞ ≤ ε. By hypothesis, and since F is a star
domain, there exists λ > 0 such that λg, λϕ ∈ F . Then,

|µn(fg)− µ(fg)| ≤ |µn(fg)− µn(ϕ)|+ 1

λ
|µn(λϕ)− µ(λϕ)|+ |µ(fg)− µ(ϕ)| ,
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thus lim supn→∞ |µn(fg)− µ(fg)| ≤ 2ε. Now,

|µn(f)− µ(f)| ≤ |µn(f − fg)− µ(f − fg)|+ |µn(fg)− µ(fg)|
≤ ‖f‖∞ |µn(1− g)− µ(1− g)|+ |µn(fg)− µ(fg)|

≤ ‖f‖∞
λ
|µn(λg)− µ(λg)|+ |µn(fg)− µ(fg)|

so that lim supn→∞ |µn(f)− µ(f)| ≤ 2ε, for any ε > 0, which concludes the proof.

Now, assuming F ⊆ C 1
b , use [Che04, Theorem 5.6]. Then, convergence with respect to dF is equiv-

alent to weak convergence. Indeed, dC 1
b
is the well-known Fortet-Mourier distance, which metrizes the

weak topology. It is also the Wasserstein distance Wδ, with respect to the distance δ such that

∀x, y ∈ RD, δ(x, y) = sup
f∈C 1

b

|f(x)− f(y)| = |x− y| ∧ 2.

See also [RKSF13, Theorem 4.4.2.].

Proof of Lemma 4.2: Let Fn = σ(y0, . . . , yn) be the natural filtration. Classically, we have

E[M̂f
n+1 | Fn] = E[f(yn+1)− f(y0)−

n∑
k=0

γk+1Lkf(yk) | Fn]

= f(yn) + γn+1Lnf(yn)− f(y0)−
n∑
k=0

γk+1Lkf(yk)

= M̂f
n .

Moreover,

E[(M̂f
n+1)2 | Fn] = E

f(yn+1)2 + f(y0)2 +

(
n∑
k=0

γk+1Lkf(yk)

)2
∣∣∣∣∣∣ Fn


− E

[
2f(yn+1)

(
f(y0) +

n∑
k=0

γk+1Lkf(yk)

) ∣∣∣∣∣ Fn

]

+ E

[
2f(y0)

(
n∑
k=0

γk+1Lkf(yk)

) ∣∣∣∣∣ Fn

]

= f(yn)2 + γn+1Lnf2(yn) + f(y0)2 +

(
n∑
k=0

γk+1Lkf(yk)

)2

− 2(f(yn) + γn+1Lnf(yn))

(
f(y0) +

n∑
k=0

γk+1Lkf(yk)

)

+ 2f(y0)

(
n∑
k=0

γk+1Lkf(yk)

)
.
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Henceforth,

E[(M̂f
n+1)2 | Fn] = γn+1Lnf2(yn) + 2γn+1Lnf(yn)

(
n−1∑
k=0

γk+1Lkf(yk)

)
+ (γn+1Lnf(yn))2

− 2f(yn)γn+1Lnf(yn)− 2γn+1Lnf(yn)

(
f(y0) +

n∑
k=0

γk+1Lkf(yk)

)
+ 2f(y0)γn+1Lnf(yn) + (mf

n)2

= (M̂f
n )2 + γn+1Lnf2(yn)− (γn+1Lnf(yn))2 − 2f(yn)γn+1Lnf(yn)

= (M̂f
n )2 + γn+1Γnf.

Now, on the first hand, using Assumption 2.11,

E
[
〈M̂χd2 〉N

]
= E

[
N−1∑
k=0

γk+1Γk+1χd2(yk)

]
≤M6

N−1∑
k=0

γk+1E [χd(yk)] ≤M2M6

N−1∑
k=0

γk+1,

and then Doob’s inequality gives

E

[(
sup
n≤N

M̂
χd2
n

)2
]1/2

≤ 2E
[
〈M̂χd2 〉N

]1/2
≤ C,

for some constant C, only depending on N . On the other hand, from Lemma 4.2 and Assumption 2.11,

sup
n≤N

χd2(yn) ≤ χd2(y0) +M6

N−1∑
k=0

γk+1 sup
n≤k

χd2(yn) + sup
n≤N

M̂
χd2
n .

Using the triangle inequality, we then have

E

[(
sup
n≤N

χd2(yn)

)2
]1/2

≤ E
[
(χd2(y0))

2
]1/2

+M6

N−1∑
k=0

γk+1E

[(
sup
n≤k

χd2(yn)

)2
]1/2

+ E

[(
sup
n≤N

M̂
χd2
n

)2
]1/2

.

Then, using (discrete) Grönwall’s Lemma as well as Cauchy-Schwarz’s inequality ends the proof.

5.2 Appendix for the penalized bandit algorithm

Proof of Proposition 3.6: The unique solution of the ordinary differential equation y′(t) = a− by(t)
with initial condition x is given by

Ψ(x, t) =

{ (
x− a

b

)
e−bt + a

b if b > 0
x+ at if b = 0

.

Firstly, assume that b > 0 and let t ∈ [0, T ]. We have, for x > 0

Ptf(x) = Ex [f(Xt)] = f (Ψ(x, t))Px (T > t) + Ex [f(Xt)|T ≤ t]Px (T ≤ t)

= f (Ψ(x, t)) exp

(
−
∫ t

0

(c+ dΨ(x, s))ds

)
+

∫ t

0

Pt−uf(Ψ(x, u) + 1)(c+ dΨ(x, u)) exp

(
−
∫ u

0

(c+ dΨ(x, s))ds

)
du. (5.1)
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At this stage, the smoothness of the right-hand side of (5.1) with respect to x is not clear. Let 0 < ε <
min(a/b, 1/2). If 0 ≤ x ≤ a/b− ε, use the substitution

v = Ψ(x, u), u = ϕ(x, v) =
1

b
log

(
x− a

b

v − a
b

)
,

to get

Ptf(x) = f (Ψ(x, t)) exp

(
−
∫ t

0

(c+ dΨ(x, s))ds

)
+

∫ Ψ(x,t)

x

Pt−ϕ(x,v)f(v + 1) exp

(
−
∫ ϕ(x,v)

0

(c+ dΨ(x, s))ds

)
c+ dv

a− bv
dv.

Note that Ψ(x, t) ≤ Ψ(a/b− ε, t) < a/b, so that a− bv 6= 0. Since s 7→ Psf(x), Ψ, ϕ and f are smooth,
x 7→ Ptf(x) ∈ CN ([o, a/b− ε]). The reasoning holds with the same substitution for x ≥ a/b+ ε, so that
Ptf ∈ CN (R+\{a/b}). Now, if x > a/b− ε, for any u > 0,

Ψ(x, u) + 1 ≥ a/b+ 1− ε ≥ a/b+ ε,

so x 7→ Pt−uf(Ψ(x, u) + 1) is smooth. Thus the right-hand side of (5.1) is smooth as well and Ptf ∈
CN (R+).

Now, let us show that the semigroup generated by L has bounded derivatives. Note that it is possible
to mimic this proof for the example of the WRW treated in Section 3.1 when the derivatives of Ptf are
not explicit. Let Anf = f (n), J f(x) = f(x + 1) − f(x) and ψn(s) = Pt−sAnPsf for 0 ≤ n ≤ N . So,
ψ′n(s) = Pt−s(AnL − LAn)Psf . It is clear that An+1 = A1An, that AnJ = JAn and that

Lg(x) = (a− bx)A1g(x) + (c+ dx)J g(x).

It is straightforward by induction that

AnLg = LAng − nbAng + ndJAn−1g,

so the following inequality holds:

(AnL − LAn) g ≤ −nbAng + 2|d|n‖An−1g‖∞.

Hence,
ψ′n(s) ≤ −nbψn(s) + 2|d|n‖An−1Psf‖∞.

In particular, ψ′1(s) ≤ −bψ1(s) + 2d‖f‖∞, so, by Grönwall’s inequality,

ψ1(s) ≤
(
ψ1(0)− 2|d|

b
‖f‖∞

)
e−bs +

2|d|
b
‖f‖∞ ≤ ‖f ′‖∞ +

2d

b
‖f‖∞.

Let us show by induction that

ψn(s) ≤
n∑
k=0

(
2|d|
b

)n−k
‖f (k)‖∞. (5.2)

If (5.2) is true for some n ≥ 1 (we denote by Kn its right-hand side), then for all t < T , ψn(t) ≤ Kn

and, since AnPt(−f) = −AnPtf , |ψn(t)| ≤ Kn, so ‖AnPsf‖∞ ≤ Kn. Then, we deduce that ψ′n+1(s) ≤
−(n + 1)bψn+1(s) + 2(n + 1)dKn. Use Grönwall’s inequality once more to have ψn+1(s) ≤ Kn+1 and
achieve the proof by induction. In particular, taking s = t in (5.2) provides AnPtf ≤ Kn and, since
AnPt(−f) = −AnPtf , AnPtf ≤ Kn. As a conclusion, for n ∈ {0, . . . , N},

‖(Ptf)(n)‖∞ ≤
n∑
k=0

(
2|d|
b

)n−k
‖f (k)‖∞,
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which concludes the proof when b > 0.

The case b = 0 is dealt with in a similar way. We use the substitution ϕ(x, v) = (v − x)/a in (5.1),
which is enough to prove smoothness (this time, Ψ(x, ·) is a diffeomorphism for any x ≥ 0), and it is easy
to mimic the proof to obtain the following estimates, for s ≤ t,

|ψn(s)| ≤
n∑
k=0

n!

k!
(2|d|T )n−k‖f (k)‖∞.

Proof of Lemma 3.8: First, we shall prove that Assumption 2.1 holds; let

y ∈ Supp(L (y(l,δ)
n )) = [0, δ

√
n].

Note that Ĩ0
n(y), I0

n(y) ≤ 1 and Ĩ1
n(y), I1

n(y) ≤ 0, so if y(l,δ)
n ≤ δγ−1

n+1 − 1, then y(l,δ)
n+1 ≤ δγ

−1
n+1. For f ∈ F ,

|L(l,δ)
n f(y)− Lnf(y)| ≤ γ−1

n+1E
[
f(y

(l,δ)
n+1)− f(yn+1)

∣∣∣ yn = y(l,δ)
n = y

]
≤
1y≥δγ−1

n+1−1

γn+1

(
p0(1− γny)

∣∣f(δγ−1
n+1)− f(y + I0

n(y))
∣∣

+ p̃0(1− γny)
∣∣∣f(δγ−1

n+1)− f(y + Ĩ0
n(y))

∣∣∣ )
≤
‖f ′‖∞1y≥δγ−1

n+1−1

γn+1
(p0(1− γny) + p̃0(1− γny)) ≤ y + 1

δ
‖f ′‖∞1y≥δγ−1

n+1−1

≤ (y + 1)2

δ2
‖f ′‖∞γn+1.

Using this inequality with (3.13), we can explicit the convergence of L(l,δ)
n toward L defined in (3.6):

|L(l,δ)
n f(y)− Lf(y)| ≤ |L(l,δ)

n f(y)− Lnf(y)|+ |Lnf(y)− Lf(y)|
= χ3(y)(‖f‖∞ + ‖f ′‖∞ + ‖f ′′‖∞)O(γn). (5.3)

Note that the notation O depends here on l and δ, but is uniform over y and f .

Assumption 2.2 holds, since it takes into account only the limit process generated by L, and it is a
consequence of Proposition 3.6: for n ≤ 3,

‖(Ptf)(n)‖∞ ≤
n∑
k=0

(
2|p′0(1)|
p1(1)

)n−k
‖f (k)‖∞.

Now, we shall check a Lyapunov criterion for the chain (y
(l,δ)
n )n≥0, in order to ensure Assumption 2.3.

Taking V (y) = eθy, where (small) θ > 0 will be chosen afterwards, we have, for n ≥ l and y ≤ δγ−1
n ,

L(l,δ)
n V (y) ≤ γ−1

n+1E
[
V ((y + In(y)) ∧ δ

√
n)− V (y)

]
≤ γ−1

n+1E [V (y + In(y))− V (y)]

≤ V (y)
√
n+ 1

(
E[eθIn(y)]− 1

)
.
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Let ε > 0; we are going to decompose In(y). The first term is

√
n+ 1

(
exp

(√
n+ 1−

√
n− 1√

n
θy

)
− 1

)
p1(1− γny)

≤
√
n+ 1

(√
n+ 1−

√
n− 1√

n
θy +

1

2

(√
n+ 1−

√
n− 1√

n
θy

)2
)
p1(1− γny)

≤
(
−αnθy +

α2
n

2
√
n+ 1

θ2y2

)
p1(1− γny) ≤ θy

(
−αn +

α2
n

2
θδ

)
p1(1− γny)

≤
(
ε+

(
−1 +

θδ

2

))
θy for n large.

where αn =
(
1−
√
n+ 1 +

√
n
)
γnγ

−1
n+1. There exists ξ(δ), such that 1 − δ ≤ ξ(δ) ≤ 1 and the second

term writes:
√
n+ 1

(
exp

(
θ +

√
n+ 1−

√
n− 1√

n
θy

)
− 1

)
p0(1− γny) ≤

√
n+ 1p0(1− γny)(eθ − 1)

≤ −
√
n+ 1γnyp

′
0(ξ(δ))(eθ − 1) ≤

(
ε− (eθ − 1)p′0(1)

)
y for n large.

The third term is negative, and the fourth term writes:

√
n+ 1

(
exp

(
θ√
n+ 1

+
n−

√
n(n+ 1)√

n(n+ 1)
θy

)
− 1

)
p̃0(1− γny)

≤
√
n+ 1

(
exp

(
θ√
n+ 1

)
− 1

)
≤ θ + ε for n large.

Hence, there exists some (deterministic) n0 ≥ l such that, for n ≥ n0,

L(l,δ)
n V (y) ≤ V (y)

[
θ + ε− y

(
p′0(1)(eθ − 1)−

(
θ +

θδ

2

)
p1(1) + ε(1 + θ)

)]
.

Then, for ε, δ, θ small enough, there exists α̃ > 0 such that, for n ≥ n0 and for any M ≥ (̃θ + ε)α−1,

L(l,δ)
n V (y) ≤ V (y)(θ + ε− α̃y) ≤ −(α̃M − θ − ε)V (y) + α̃MV (M).

Then, Assumption 2.3.iii holds with

α =

(
p′0(1)(eθ − 1)−

(
θ +

θδ

2

)
p1(1) + ε(1 + θ)

)
M − θ − ε, β = α̃MV (M).

Finally, checking Assumption 2.11 is easy (using (5.3) for instance) with d2 = 3, which forces us to
set d = 6 (since Γnχ3 ≤ M6χ6). The chain (y

(l,δ)
n )n≥0 satisfying a Lyapunov criterion with V (y) = eθy,

its moments of order 6 are also uniformly bounded.

5.3 Appendix for the decreasing step Euler scheme

Proof of Lemma 3.12: Applying Itô’s formula with x 7→ |x|p, we get

|∂xXx
t |p = 1 +

∫ t

0

p

(
b′(Xx

s )|∂xXx
s |p +

p− 1

2
(σ′(Xx

s ))2|∂xXx
s |p
)
ds

+

∫ t

0

pσ′(Xx
s )|∂xXx

s |pdWs

≤ 1 + C

∫ t

0

|∂xXx
s |pds+

∫ t

0

pσ′(Xx
s )|∂xXx

s |pdWs, (5.4)
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where C = p‖b′‖∞+ p(p−1)
2 ‖σ′‖2∞. Let us show that

∫ t
0
pσ′(Xx

s )|∂xXx
s |pdWs is a martingale. To that end,

since |∂xXx
t |p is non-negative and (x+ y+ z)2 ≤ 2(x2 + y2 + z2), we use the Burkholder–Davis–Gundy’s

inequality so there exists a constant C ′ such that,

|∂xXx
t |p ≤ 1 + C

∫ t

0

sup
u∈[0,s]

|∂xXx
u |pds+

∫ t

0

pσ′(Xx
s )|∂xXx

s |pdWs

sup
u∈[0,t]

|∂xXx
u |p ≤ 1 + C

∫ t

0

sup
u∈[0,s]

|∂xXx
u |pds+ sup

u∈[0,t]

∫ u

0

pσ′(Xx
s )|∂xXx

s |pdWs

E

[
sup
u∈[0,t]

|∂xXx
u |2p

]
≤ 2 + 2C2T

∫ t

0

E

[
sup
u∈[0,s]

|∂xXx
u |2p

]
ds

+ 2E

( sup
u∈[0,t]

∫ u

0

pσ′(Xx
s )|∂xXx

s |pdWs

)2


≤ 2 + 2C2T

∫ t

0

E

[
sup
u∈[0,s]

|∂xXx
u |2p

]
ds+ 2C ′

∫ t

0

E[σ′(Xx
s )2|∂xXx

s |2p]ds

≤ 2 + 2C2T

∫ t

0

E

[
sup
u∈[0,s]

|∂xXx
u |2p

]
ds

+ 2C ′‖σ′‖2∞
∫ t

0

E

[
sup
u∈[0,s]

|∂xXx
u |2p

]
ds

≤ 2 exp
(
(C2T + C ′‖σ′‖2∞)T

)
by Grönwall’s Lemma.

Hence,
∫ t

0
pσ′(Xx

s )|∂xXx
s |pdWs is a martingale and, taking the expected values in (5.4) and applying

Grönwall’s lemma once again, we have

E[|∂xXx
t |p] ≤ exp

((
p‖b′‖∞ +

p(p− 1)

2
‖σ′‖2∞

)
T

)
.

Using Hölder’s inequality for p = 2 completes the case of the first derivative.

Since the following computations are more and more tedious, we choose to treat only the case of the
second derivative. Note that ∂2

xX
x
t exists and satisfies the following SDE:

∂2
xX

x
t =

∫ t

0

(
b′(Xx

s )∂2
xX

x
s + b′′(Xx

s )(∂xX
x
s )2
)
ds

+

∫ t

0

(
σ′(Xx

s )∂2
xX

x
s + σ′′(Xx

s )(∂xX
x
s )2
)
dWs.

Itô’s formula provides us the following inequation:

|∂2
xX

x
t |p ≤ C1

∫ t

0

|∂2
xX

x
s |pds+ C2

∫ t

0

|∂2
xX

x
s |p−1|∂xXx

s |2ds+ C3

∫ t

0

|∂2
xX

x
s |p−2|∂xXx

s |4ds

+

∫ t

0

p

(
|∂2
xX

x
s |pσ′(Xx

s ) + |∂2
xX

x
s |p−1sgn(∂2

xX
x
s )σ′′(Xx

s )|∂xXx
s |2
)
dWs,

with constants Ci depending on p, ‖b′‖∞, ‖b′′‖∞, ‖σ′‖∞, ‖σ′′‖∞. The last term proves to be a martingale,
with similar arguments as above. We take the expected values, and apply Hölder’s inequality twice to
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find, for p > 2,

E
[
|∂2
xX

x
t |p
]
≤ C1

∫ t

0

E
[
|∂2
xX

x
s |p
]
ds+ C2

∫ t

0

E
[
|∂2
xX

x
s |p−1|∂xXx

s |2
]
ds

+ C3

∫ t

0

E
[
|∂2
xX

x
s |p−2|∂xXx

s |4
]
ds

≤ C1

∫ t

0

E
[
|∂2
xX

x
s |p
]
ds+ C2

∫ t

0

E
[
|∂2
xX

x
s |p
] p−1

p E
[
|∂xXx

s |2p
] 1
p

ds

+ C3

∫ t

0

E
[
|∂2
xX

x
s |p
] p−2

p E
[
|∂xXx

s |2p
] 2
p

ds

≤ C3eC4T + C1

∫ t

0

E
[
|∂2
xX

x
s |p
]
ds+ (C2 + C3)eC4T

∫ t

0

E
[
|∂2
xX

x
s |p
] p−1

p

ds,

with C4 = 4‖b′‖∞ + 2(p− 1)‖σ′‖2∞. The case p = 2 is deduced straightforwardly:

E
[
|∂2
xX

x
t |2
]
≤ C3eC4T + C1

∫ t

0

E
[
|∂2
xX

x
s |2
]
ds+ C3eC4T

∫ t

0

E
[
|∂2
xX

x
s |2
] 1

2

ds.

Regardless, since the unique solution of u = Au+Buα is

u(t) =

((
u(0)1−α +

B

A

)
exp(A(1− α)t)− B

A

) 1
1−α

,

for A,B > 0, α ∈ (0, 1), u(0) > 0, we have

E
[
|∂2
xX

x
t |2
]
≤
((

C
1
p

2 e
C4
p T +

C2 + C3

C1
eC4T

)
e
C1
p T − C2 + C3

C1
eC4T

)p
≤
(
C

1
p

2 e
C4
p T +

C2 + C3

C1
eC4T

)p
eC1T .

The same reasoning for the third derivative achieves the proof.

Remark 5.2 (Regularity of general diffusion processes). The quality of approximation of a diffusion
process is not completely unrelated to its regularity, see for instance [HHJ15, Theorem 1.3]. In higher
dimension, smoothness is generally checked under Hörmander conditions (see e.g. [Hai11, HHJ15]). ♦
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