
HAL Id: hal-01401905
https://hal.science/hal-01401905v1

Submitted on 26 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scattered packings of cycles
Aistis Atminas, Marcin Kamiński, Jean-Florent Raymond

To cite this version:
Aistis Atminas, Marcin Kamiński, Jean-Florent Raymond. Scattered packings of cycles. Theoretical
Computer Science, 2016, 647, pp.33 - 42. �10.1016/j.tcs.2016.07.021�. �hal-01401905�

https://hal.science/hal-01401905v1
https://hal.archives-ouvertes.fr

Scattered packings of cycles∗

Aistis Atminas1, Marcin Kamiński2, and Jean-Florent Raymond2,3

1DIMAP and Mathematics Institute, University of Warwick, Coventry, UK.
2Institute of Informatics, University of Warsaw, Poland.

3LIRMM, University of Montpellier, France.

Abstract

We consider the problem Scattered Cycles which, given a graph G and
two positive integers r and `, asks whether G contains a collection of r
cycles that are pairwise at distance at least `. This problem generalizes
the problem Disjoint Cycles which corresponds to the case ` = 1. We
prove that when parameterized by r, `, and the maximum degree ∆,
the problem Scattered Cycles admits a kernel on 24`2∆`r log(8`2∆`r)
vertices. We also provide a (16`2∆`)-kernel for the case r = 2 and a
(148∆r log r)-kernel for the case ` = 1. Our proofs rely on two simple
reduction rules and a careful analysis.

Keywords: cycle packing, kernelization, multivariate algorithms, in-
duced structures.

1 Introduction

We consider the problem of deciding if a graph contains a collection of cycles
that are pairwise far apart. More precisely, given a graph G and two positive
integers r and `, we have to decide if there are at least r cycles in G such that
the distance between any two of them is at least `. By distance between two
subgraphs H,H ′ of a graph G we mean the minimum number of edges in a
path from a vertex of H to a vertex of H ′ in G. This problem, that we call
Scattered Cycles, is a generalization of the well-known Disjoint Cycles
problem, which corresponds to ` = 1. It is also related to the Induced Minor
problem1 when ` = 2 in the sense that a graph contains r cycles which are
pairwise at distance at least 2 if and only if this graph contains r ·K3 as induced

∗This work was partially supported by the Warsaw Center of Mathematics and Com-
puter Science (Aistis Atminas and Jean-Florent Raymond) and the (Polish) National Sci-
ence Centre under grants PRELUDIUM 2013/11/N/ST6/02706 (Jean-Florent Raymond) and
SONATA 2012/07/D/ST6/02432 (Marcin Kamiński). Emails: a.atminas@warwick.ac.uk,
mjk@mimuw.edu.pl, and jean-florent.raymond@mimuw.edu.pl.

1Given two graphs H (guest) and G (host), the Induced Minor problem asks whether H
can be obtained from an induced subgraph of G by contracting edges.

1

minor. Hence, any result about the computational complexity of Scattered
Cycles gives information on the complexity of Induced Minor. Lastly, it can
be seen as an extension of the problems Independent Set and Scattered
Set, which instead of cycles, ask for vertices which are far apart.

It is worth noting that besides the connections to other problems mentioned
above, this problem has several features which make its study interesting. The
first one is that neither positive instances, nor negative ones are minor-closed
classes. Therefore the tools from Graph Minors (in particular the Graph Minor
Theorem [11]) do not directly provide complexity results for this problem.

Also, Scattered Cycles seems unlikely to be expressible in terms of the
usual containment relations on graphs. As pointed out above, the cases ` = 1
and ` = 2 correspond to checking if the graph contains r ·K3 as minor or induced
minor, respectively. However for ` > 2, none of the common containment rela-
tions conveys the restriction that cycles have to be at distance at least `. Again,
the techniques related to the minor relation cannot be applied immediately.

Lastly, the special case ` = 2 and r = 2 corresponds to a question of [4] (also
raised in [9, 2]) about the complexity of checking whether a graph contains two
mutually induced cycles (equivalently, two triangles as induced minor).

Our goal in this paper is to investigate the kernelizability of Scattered
Cycles under various parameterizations. Table 1 summarizes known results
and the ones that we obtained on the parameterized complexity of the problem
with respect to various combinations of parameters, among the number of cycles,
the minimum distance required between two cycles and the maximum degree of
the graph. A parameterized problem is said to be paraNP-hard if it is NP-hard
for some fixed value of the parameter. Unless otherwise specified, we will use
all along the paper r, ` and ∆ to denote, respectively, the number of cycles,
the minimum distance allowed between two cycles and the maximum degree
of the input graph. As the problem is unlikely to have a polynomial kernel
when parameterized by any of these parameters taken alone (cf. Table 1) , we
naturally explore its kernelizability with several parameters. The first column
of the table counts the number of parameters taken into account in a given row,
and “par” in the second column indicates that the corresponding value is taken
as parameter.

Our results are the following.

Theorem 1. The problem Scattered Cycles admits a kernel on 24`2∆`r log(8`2∆`r)
vertices when parameterized by `, r, and ∆. Moreover this kernel can be com-
puted from an n-vertex graph in O(n`) steps.

As mentioned above, a trivial consequence of Theorem 1 is that the problem
of checking if a graph G contains r·K3 as induced minor admits a O(∆2r log(∆2r))-
kernel when parameterized by r and ∆.

Theorem 2. The problem Scattered Cycles restricted to r = 2 admits a
kernel on 16`2∆` vertices when parameterized by ` and ∆. Furthermore this
kernel can be computed from an n-vertex graph in O(n`) steps.

2

#par r ` ∆ Complexity

0 – – – NP-hard (Corollary 5)

1

par = 1 –

• FPT (minor checking);

• no polynomial kernel unless NP ⊆
coNP/poly [3].

par > 1 – W[1]-hard (Corollary 5)
– par – paraNP-hard (Corollary 5)
– – par paraNP-hard (Corollary 5)

2

par = 1 par
• O(∆r log r)-kernel [7];

• (148∆r log r)-kernel (Corollary 1).

par > 1 par Open
=2 par par (16`2∆`)-kernel (Theorem 2)
– par par para-NP-hard (Corollary 5)

par par – W[1]-hard (Corollary 5)
3 par par par (24`2∆`r log(8`2∆`r))-kernel (Theorem 1)

Table 1: Complexity of Scattered Cycles wrt. various parameterizations.

Theorem 2 gives a partial answer to a question of [4] about the complexity
of checking if graph H contains 2 ·K3 as induced minor.

The problem known as Disjoint Cycles corresponds to Scattered Cy-
cles for ` = 1. The authors of [3] proved that when parameterized by the
number r of cycles only, this problem does not have a polynomial kernel unless
NP ⊆ coNP/poly.

For every graph G, let us denote by Λ(G) the least non-negative integer t such
that G does not contain K1,t as induced subgraph. This parameter refines the
one of maximum degree in the sense that for every graph G we have ∆(G)+1 ≥
Λ(G) (hence {G, Λ(G) ≤ k + 1} ⊇ {G, ∆(G) ≤ k}). An O(Λr log r)-kernel has
been provided for the problem Disjoint Cycles parameterized by the number
r of cycles and Λ in [7, Corollary 2]. Building upon the techniques used to prove
Theorem 1 and ideas from the proof of the aforementioned result, we achieved a
bound of the same order of magnitude, with a simpler proof and explicit (small)
constants.

Theorem 3. The problem Disjoint Cycles admits a kernel on 148Λr log r
vertices when parameterized by Λ and r. This kernel can be computed from an
n-vertex graph in O(n2) steps.

As ∆(G) + 1 ≥ Λ(G) for every graph G, we immediately obtain the follow-
ing corollary.

3

Corollary 1. The problem Disjoint Cycles admits a kernel on 148(∆ + 1)r log r
vertices when parameterized by ∆ and r. This kernel can be computed from an
n-vertex graph in O(n2) steps.

The techniques used to obtain the above result do not translate to cases
` > 1 and therefore cannot be directly used to improve Theorem 1.

Organization of the paper We introduce the reduction rules of our kernel-
ization algorithm in Section 2, where we also consider packings of two distant
cycles and prove Theorem 2. This result is generalized to any number of cycles
(Theorem 1) in Section 3. We investigate the special case ` = 1 in Section 4.
Lastly, Section 5 contains the proofs of the hardness results that appear in
Table 1.

Discussion Using two simple reduction rules, we obtained a polynomial kernel
for the problem Scattered Cycles parameterized by the number of cycles r,
the distance required between any two cycles ` and the maximum degree of
the input graph. It should be noted that taken apart these parameters are
unlikely to give polynomial kernels. Furthermore, our proof is constructive and
the constants are small. The reduction also led to a simplification of the proof
of [7, Corollary 2] that the problem Disjoint Cycles has a O(Λr log r)-kernel,
with in addition the computation of the constants.

A natural question is whether our upper-bound can be improved. As we

presented in the proof Lemma 6, there are reduced graphs of order (r−1)
(
d
2

)`−1

which do not contain r cycles pairwise at distance at least `. This suggests that
other techniques or reduction rules must be used in order to obtain a kernel of

size o(r
(
d
2

)`−1
) for this problem.

2 Reduced graphs

Basic definitions Let G be a graph. The length of a path is the number
of edges it contains. The distance between two vertices u, v ∈ V(G) is the
minimum number of edges in a path from u to v. The girth of a graph G,
denoted by girth(G), is the minimum length of a cycle in G. Two subgraphs
H,H ′ of G are said to be `-distant if they are at distance at least `. The set of
non-negative integers is denoted by N, and for every two i, j ∈ N, we use Ji, jK
as a shorthand for the interval {t ∈ N, i ≤ t ≤ j}.

Let ` ∈ N be a positive integer. An `-packing of r cycles in G is a collection
of r pairwise `-distant cycles of G. These packings generalize vertex-disjoint
packings and induced packings which respectively correspond to the cases ` = 1
and ` = 2. This notion enables us to formally define the problem that we
consider, as follows.

4

Scattered Cycles

Input: a graph G and two integers ` ≥ 1 and r ≥ 2;

Question: Does G have an `-packing of r cycles?

Reduced graphs A subdivision path in a graph G is a subgraph of G that
is a path, and whose internal vertices are of degree two. Let us call an edge e
of a graph `-redundant if it does not belong to a triangle, and if it is an edge
of a subdivision path of length more than `. A graph is said to be `-reduced if
it contains no `-redundant edge, nor a vertex of degree zero or one. In order
to obtain an `-reduced graph from any graph, we consider the two following
reduction rules:

(R1) If the graph G has an `-redundant edge, contract it.

(R2) If the graph G contains a vertex v of degree 0 or 1, delete it.

It is clear that after an application of (R2) neither the set of cycles nor the
distances between them are changed. It is also easy to see that the contraction
of an edge operation in (R1) establishes a natural 1-1 correspondence between
the set of cycles in the graph before and the set of cycles after an application
of (R1). Moreover, one can also check that this correspondence preserves the
property of being `-distant, i.e. the two cycles are `-distant after an application
of (R1) if and only if the corresponding cycles before the application of (R1)
were `-distant. Hence for any positive integer r, these reduction rules do not
change the property of containing an `-packing of r cycles and also note that
every graph can be reduced by a finite number of applications of (R1) and (R2).
Algorithm 1 is a linear-time implementation of the reduction. Let us describe it.

Intuitively, the set S can be seen as a set of marked vertices, while the
vertices of V \ S are not marked. The algorithm starts from a graph where all
vertices are unmarked (i.e. S = ∅) and considers unmarked vertices while some
exist in the graph. The vertices of degree 3 that we may encounter are marked;
those of degree zero are deleted (i.e. we apply (R2)). If a vertex u of degree
two is incident with an `-redundant edge, then we contract this (that is rule
(R1)) and keep the obtained vertex unmarked. That way we make sure that
further contractions will be applied if the resulting subdivision path still has
length more than `. Lastly, we delete every vertex v of degree one (rule (R2)).
Observe that when the neighbor u of v has degree less than four, the deletion of
v might create a long subdivided path, or a vertex of degree one. By unmarking
u we ensure that these cases will be considered in a later step.

Lemma 1. Algorithm 1 runs in O(n`) time and outputs an `-reduced graph.

5

Input: a graph G and an integer `
Output: an `-reduced graph
V := V (G)
S := ∅
while S 6= V do

pick v ∈ V \S
if deg(v) ≥ 3 then S := S ∪ {v}
else if deg(v) = 2 then

if for some u ∈ N(v), N(u) ∩N(v) = ∅ and {u, v} belongs to a
subdivision path of length more than ` then

contract edge {u, v} and keep the resulting vertex in V \S
else S = S ∪ {v}

else if deg(v) = 1 then
if the only u ∈ N(v) is such that u ∈ S and deg(u) ≤ 3 then

delete v and delete u from S
else V = V \{v}

else delete v (which in this case is isolated)

Algorithm 1: Reduction algorithm.

Proof. Every step in the while loop is performed in constant time, except check-
ing if an edge belong to a subdivision path of length more than `, which takes
time O(`). It is easy to check that each iteration of the while loop decreases
the quantity 2|V | − |S| by 1 or 2, and since 2|V | − |S| ≥ |V | ≥ 0, the algorithm
will perform the loop at most 2|V (G)| times. This means that the algorithm is
linear. Also notice, that the set S does not contain any vertex of degree 1 nor
any redundant edges. Hence the resulting graph is `-reduced as required.

Remark 1. Reducing a graph does not increase its maximum degree.

We now prove a generic lemma that will be used in the subsequent proofs.

Lemma 2. Let G be an `-reduced graph, let r ∈ N, let C be a cycle of G of
length g = girth(G). Let h =

⌊
g
4

⌋
. For i ∈ J0, `K , we denote by Ni the set of

vertices at distance i from C. We also set R = V(G) \ (V(C) ∪
⋃`−1

i=1 Ni). Then
we have:

(i) if G has no `-packing of r cycles, then G[R] has no `-packing of r − 1
cycles;

(ii) ∀i ∈ J1, h− 1K, every vertex of Ni has exactly one neighbor in Ni−1;

(iii) ∀i ∈ J1, h− 1K, Ni is independent;

(iv) ∀i ∈ J1, h− 2K, |Ni+1| ≥ |Ni|;

(v) ∀i ∈ J1, h− 1− `K, |Ni+`| ≥ 2|Ni|;

6

(vi) if g ≥ 6 then |V(G)| ≥ g · 2b
g
4`c−1.

Proof. Item (i) follows from the fact that every `-packing of r−1 cycles in G[R]
is `-distant from C, whereas we assume that G has no `-packing of r cycles.

Proof of Item (ii). By definition of Ni, for every integer i such that 1 ≤ i <
h − 1, every vertex v ∈ Ni has a neighbour in Ni−1. Let us show that v has
exactly one neighbour in Ni−1. For this, we suppose for contradiction that v
has two neighbours u,w ∈ Ni−1 with u 6= w. Then, there are two distinct paths
of length i from v to the cycle C. If these paths have a vertex in common, then
walking from v along the first path until we reach the first vertex belonging to
the second path and taking the second path back to v would form a cycle of
length at most 2i ≤ 2(h−1) < g, a contradiction. On the other hand, if the two
paths are vertex disjoint, consider their endpoints, say x and y which belong to
the cycle C. In this case, the two paths together with the shortest path in C
between x and y, which has length at most

⌊
g
2

⌋
, would create a cycle of length

2i+
⌊
g
2

⌋
≤ 2(h−1) +

⌊
g
2

⌋
< g, a contradiction. Thus we have proved that every

vertex in Ni has exactly one neighbour in Ni−1.
Proof of Item (iii). The argument is very similar to the one used in the

proof of Item (ii): if there is an edge {u, v} for some u, v ∈ Ni, then the paths
respectively connecting u and v to C either intersect, what yields a cycle of
length at most 1 + 2(h − 1) < g, or they are vertex-disjoint, in which case we
can build as above a cycle of length at most 1+2i+

⌊
g
2

⌋
≤ 1+2(h−1)+

⌊
g
2

⌋
< g.

Proof of Item (iv). As G is `-reduced, every vertex of Ni has degree at least
two. Together with Item (ii) and Item (iii), this implies that every vertex of Ni

has a neighbor in Ni+1. According to Item (ii), every distinct vertices u, v ∈ Ni,
have disjoint neighborhoods in Ni+1. Hence |Ni+1| ≥ |Ni|.

Proof of Item (v). Let us now show that the cardinality of the Ni’s is
increasing as follows: for every i ∈ J1, h− `− 1K , |Ni+`| ≥ 2|Ni|. For every v ∈
Ni, let Sv ⊆ Ni+` be the subset of vertices at distance ` from v in G

[⋃i+`
p=i Np

]
.

By the structural description above if follows that every two distinct u, v ∈ Ni

yields two disjoint non-empty sets Su and Sv. Also, by definition of the Ni’s,
every vertex of Ni+` belongs to Su, for some u ∈ Ni. Therefore {Su, u ∈ Ni}
is a partition of Ni+` into |Ni| subsets. If |Ni+`| < 2 |Ni|, then there is a vertex
u ∈ Ni such that Su contains only one vertex, that we call v. Let w be the
(unique) neighbor of u in Ni−1. Then every interior vertex of the unique path
linking w to v has degree two, and this path has length ` + 1. This contradicts
the fact that G is reduced, and thus |Ni+`| ≥ 2|Ni|.

Proof of Item (vi). As a consequence of Item (v), for every i ∈ J1, h− 1K ,
we have |Ni| ≥ |N1| · 2b(i−1)/`c. Since every subdivision path of C has length
at most ` (as G is `-reduced), |N1| ≥

⌈
g
`

⌉
, hence for every i ∈ J1, h− 1K ,

|Ni| ≥
⌈
g
`

⌉
· 2b(i−1)/`c ≥ g

` · 2
b(i−1)/`c. We are now able to give a lower bound on

7

the number of vertices of G:

|V(G)| ≥
h−1∑
i=0

|Ni| ≥ g +

h−1∑
i=1

g

`
· 2b(i−1)/`c

≥ g + g

bh−2
` c∑

i=0

2i = g · 2b
h−2
` c+1 ≥ g · 2b

g
4`c−1.

Lemma 3. If T is a tree with s ≥ 2 leaves and no `-redundant edge, then
|V(T)| ≤ 2`s− 3` + 1.

Proof. Let T be a tree as in the statement of the lemma and let T ′ be the tree
obtained from T by dissolving every vertex of degree 2 (contracting an edge
containing a vertex of degree 2 until no vertices of degree 2 are left). We denote
by s ≥ 2 the number of leaves in T ′ (which remains the same as in T) and by t
the number of internal vertices of T ′. Since T ′ is a tree, we have:

|E(T ′)| = |V(T ′)| − 1 = s + t− 1.

This together with handshaking lemma and observation that every internal ver-
tex has degree at least 3 imply:

2(s + t− 1) = 2|E(T ′)| =
∑

v∈V(T ′)

deg(v) ≥ s + 3t.

Subtracting 2t from both sides we get the following bound on the number of
vertices of T ′:

2s− 2 ≥ s + t = |V(T ′)|.

Now, observe that since T does not contain an `-redundant edge, it has at most
(`− 1)|E(T ′)| vertices of degree two, and hence

|V(T)| ≤ |V(T ′)|+ (`− 1)|E(T ′)| = `|V(T ′)| − ` + 1 ≤ 2`s− 3` + 1.

Corollary 2. If F is a forest with s ≥ 2 leaves or isolated vertices and without
`-redundant edges, then |V(F)| ≤ 2`s− 3` + 1.

Proof. First observe that if F has no connected component of order at least 3,
then we have |V (F)| = s ≤ 2ls − 3l + 1. The latter inequality holds for all
s ≥ 2 and l ≥ 1 and one can verify it by observing that it is equivalent to
0 ≤ 2(l− 1)(s− 2) + (l− 1) + (s− 2). On the other hand, if F has a connected
component of order at least 3, we can add edges between internal vertices of
different connected components of order at least 3 in order to obtain a forest
with the same vertex set and the same number of isolated vertices and leaves

8

and containing exactly one tree T on at least 3 vertices. If s1 is the number
of leaves in T , then by Lemma 3 we have |V (T)| ≤ 2`s1 − 3` + 1. The rest of
the forest (consisting of components of order 1 and 2) contains s− s1 vertices.
Hence |V (F)| ≤ 2`s1 − 3` + 1 + s− s1 ≤ 2`s− 3` + 1.

Lemma 4. If G is an `-reduced graph not containing two `-distant cycles, then
|V(G)| < 2`girth(G) ∆(G)`.

Proof. Observe that as G is `-reduced, it contains two `-distant cycles as soon
as it has more than one connected components. Therefore we shall now assume
that G is connected. Let C be a cycle in G of length g = girth(G). We define
Ni for every i ∈ J0, `K and R as in Lemma 2 and we set ∆ = ∆(G). According
to Item (i) of Lemma 2, R induces a forest in G. Also notice that every leaf or
isolated vertex of G[R] belongs to N`, otherwise it would have degree at most
one in G, which would contradict the fact that G is `-reduced. Besides, if G[R]
has a subdivision path of length more than `, at least one of its internal vertices
must belong to N` (and have neighbors in N`−1), otherwise it would contradict
the fact that G is `-reduced. Let us consider the graph R+ constructed from
G[R] by adding a neighbor of degree one to each vertex of N` which has degree
two in G[R]. Now R+ is a forest which has at most |N`| leaves or isolated vertices
and has no `-redundant edge: by Corollary 2 we have |V(R+)| ≤ 2`|N`|−3`+1.

The cycle C has g vertices each of degree at most ∆ and with two neighbors
in C, therefore |N1| ≤ g(∆ − 2) and by a similar argument we obtain |Ni| ≤
g(∆−2)(∆−1)i−1 for every i ∈ J2, `K. We are now able to give an upper-bound
on the order of G:

|V(G)| = |V(C)|+
`−1∑
i=1

|Ni|+ |R|

≤ |V(C)|+ g((∆− 1)`−1 − 1) + |V(R+)|
≤ g(∆− 1)`−1 + 2`g(∆− 2)(∆− 1)`−1 − 3` + 1

≤ 2`g∆` − g(∆− 1)`−1 − 2`

< 2`g∆`.

Now we show that reduced graphs without two `-distant cycles must have
small girth.

Lemma 5. If G is an `-reduced graph not containing two `-distant cycles, then
girth(G) ≤ 8`− 4.

Proof. Let us assume by contradiction that G has girth g > 8` − 4. We use
the same notation for C,R and Ni (for every i ∈ J0, `K) as in Lemma 2. As in
Lemma 4, R induces a forest, all the leaves and isolated vertices of which lie
in N`. But since N` is independent and each v ∈ N` has exactly one neighbor
in N`−1 (by Item (ii) and Item (iii) of Lemma 2, as ` <

⌊
g
4

⌋
) we deduce that

9

G[R] contains only components of order at least 3. Moreover, if we pick any
leaf v ∈ N`, there is in G[R] a vertex of degree at least 3 which is at distance at
most `− 1 from v, otherwise we would either find a vertex u ∈ R \N` of degree
one in G, or an `-redundant edge, thus contradicting the fact that G is reduced.

Having learned the structure of the graph, we are ready to derive a contra-
diction on the value of the girth as follows. Pick an arbitrary component in
G[R] and a path P of maximal length in it. Let v and t be the two endpoints
of the path. Let u be a vertex of degree at least three of minimal distance
from v. Observe that such a vertex is unique and belongs to P . According to
the previous paragraph, u is at distance a most `− 1 from the leaf v. Let v′ be
a vertex of maximal distance reachable from u in G[R \ (P \ {u})], i.e. let v′

be in the same connected component of G[R \ (P \ {u})] as u with the longest
possible distance from u. Observe that v′ is a leaf and that that the distance
between t and v′ in G[R] is at most |P | (by maximality of P). Therefore, v and
v′ are at distance at most 2(`− 1) in G[R]. Let Q be the unique path linking v
to v′ in the forest G[R]. Let Pv (resp. Pv′) be a shortest path from v (resp. v′)
to C and let w (resp. w′) be the endpoint of Pv (resp. Pv′) in C. Note that since
v, v′ ∈ N`, both of these paths have length `. Let Q′ be the shortest subpath of
C linking w to w′ and observe that Q′ has length at most

⌊
g
2

⌋
. The subgraph

G[V(Q) ∪V(Pv) ∪V(Pv′) ∪V(Q′)] clearly contains a cycle. This subgraph has
at most 2(`− 1) + 2` + g

2 edges hence g ≤ 8`− 4, a contradiction.

Combining Lemma 4 and Lemma 5, we obtain the following result.

Corollary 3. If G is an `-reduced graph not containing two `-distant cycles,
then |V(G)| < 2`(8`− 4) ∆(G)`.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Consider the following procedure. Given a graph G, and
two integers r and `, we apply Algorithm 1 and obtain a graph G′. If |V(G′)| ≥
2`(8` − 4) ∆(G)`, then we output the graph K3 + K3, otherwise we output
G′. The call to the reduction algorithm runs in O(|V(G)| `)-time, as explained
in Lemma 1. Moreover, observe that either the procedure outputs the `-reduced
input graph, or K3 +K3 in which case, the input graph is known to contain two
`-distant cycles, by Corollary 3. According to Remark 1, the maximum degree of
an `-reduced graph is never more than the one of the original graph. Therefore
the output instance is equivalent to the input with regard to the considered prob-
lem. At last, the output graph has order upper-bounded by 2`(8` − 4) ∆(G)`.
This proves the existence of a (16`2∆`)-kernel for this problem.

3 Dealing with more cycles

In this part, we focus on the structure of graphs not containing an `-packing of
r cycles, for some fixed positive integers r and `. Using the ideas of the above
section, we show that the problem Scattered Cycles parameterized by ∆, r,
and ` admits a O(`2∆`r log(`2∆`r))-kernel.

10

Definition 1. For positive integers ` ≥ 1, r ≥ 1, d we denote by h`
r(d) the least

integer such that every `-reduced graph G of degree at most d and with more
than h`

r(d) vertices has an `-packing of r cycles. When such a number does not
exist, we set h`

r(d) =∞.

We showed in the previous section that h`
2(d) ≤ 2`(8` − 4)d` and it is easy

to see that h`
1(d) = 1. In this section we will show that for every ` ≥ 2, r ≥ 2,

d ≥ 1 we have h`
r(d) ≤ 24`2d`r log(8`2d`r). Let us first give a lower bound

on h`
r(d).

Lemma 6. For every ` ≥ 1, r ≥ 2, d ≥ 2, h`
r(d) ≥ (r − 1)

⌊
d
2

⌋`−1
.

Proof. We start with r = 2. If d ∈ {2, 3}, then set G = C3, a cycle on 3 vertices.
For any ` ∈ N, G is `-reduced by definition and clearly does not contain two
`-distant cycles. By definition of h`

2(d), it follows that G must have at most

h`
2(d) vertices and we obtain that h`

2(d) ≥ |V (G)| = 3 > 1 =
⌊
d
2

⌋`−1
holds for

d ∈ {2, 3} and any ` ∈ N. Similarly, taking G = C3, we can settle the lemma for
` = 1 and d ≥ 2. Suppose now d ≥ 4, ` ≥ 2 and let G be an undirected de Bruijn
graph of type (

⌊
d
2

⌋
, ` − 1), which is a regular graph of degree 2

⌊
d
2

⌋
, diameter

`− 1 and order
⌊
d
2

⌋`−1
(cf. [10, Section 2.3.1] for definition and properties). As

the diameter of G is ` − 1, G does not contain two `-distant cycles and since
each of its vertices has degree 2

⌊
d
2

⌋
≥ 4, G must be `-reduced. As before, we

conclude that the graph G must have at most h`
2(d) vertices which establishes

h`
2(d) ≥ |V (G)| =

⌊
d
2

⌋`−1
. Let us now consider the case r > 2. and let Gr be

the disjoint union of r − 1 copies of the graph G. According to the remarks
above, Gr is `-reduced and does not contain an `-packing of r cycles. Hence,

h`
r(d) ≥ |V(Gr)| = (r − 1)

⌊
d
2

⌋`−1
.

For every r, d, ` positive integers, let f `
r (d) = 24`2d`r log(8`2d`r). The fol-

lowing lemma states that every `-reduced graph with degree at most d either
contains an `-packing of r cycles, or has size at most f `

r (d).

Lemma 7. For every positive integers r ≥ 2 and d, we have h`
r(d) ≤ f `

r (d).

Proof. Let r ≥ 2, d, l ∈ N be arbitrary positive integers and consider a graph
G which is `-reduced, with maximum degree at most d and not containing an
`-packing of r cycles. We use the same notation for C,R and Ni (for every
i ∈ J0, `K) as in Lemma 2. Recall that G[R] does not contain an `-packing of
r − 1 cycles (Item (i) of Lemma 2).

Notice that R \ N` does not contain a vertex of degree less than two nor
an edge that is `-redundant in G[R]. In what follows, we will reduce the graph
G[R] to the graph R+. Since R+ is `-reduced graph without an `-packing of
r − 1 cycles, it has bounded order, by induction. From this we will conclude
the bound on |R| and hence the bound on |V(G)|. Now, we need to count the
number of vertices lost in reduction procedure. To make the calculation easier,
we consider the slightly modified reduction routine Algorithm 2.

11

Input: a graph G and the sets N` and R
Output: the graph R+

N := N`

while N contains a vertex v of degree one do
Let P be the longest subdivision path in G[R] whose length is at most
` + 1. Contract all the edges of P and keep the resulting vertex in N.

while N contains a vertex v of degree two do
Let u1, u2 be the two neighbors of v and let P be the maximal
subdivision path going through v, of length at most 2` + 1.

if |E(P)| ≤ ` then remove v from N .
if ` < |E(P)| ≤ 2` then contract a subpath of P with |P | − ` edges
(and including vertex v) into a single vertex and keep the resulting
vertex in R\N .

if |E(P)| = 2` + 1 then let P ′ be a subpath of P of length l + 1
starting at vertex v (and going through either u1 or u2). Contract
all edges of the path P ′ into a single vertex and keep it in N .

while N contains an isolated vertex v do
delete v

Algorithm 2: Reduction of G[R].

Let us briefly describe this routine, which works on the graph G[R]. We
consider a set N ⊆ R with the property that every time we can apply the rule
(R1) or (R2) to G[R], there is a vertex of N where the rule can be applied. We
will make sure that this property is an invariant of the algorithm. Hence, the
graph will be reduced when none of the rules will be applicable to a vertex of N .
As G is `-reduced, N` satisfies the above property as it contains all vertices of
R with a neighbor in V (G) \R. Therefore we start the algorithm with N = N`.
If N contains a vertex v of degree one, (R2) allows us to delete it. To make the
counting easier, we also delete vertices along the maximum subdivision path of
length at most ` starting from v, which is also allowed by (R2). Similarly to
what we do in Algorithm 1, we need to add the neighbor of the last deleted
vertex to N because a reduction might be applicable to it in a later step. If
N has a vertex of degree 2 that is incident with an `-redundant edge, we can
apply (R1) to contract this edge. Again, we contract more edges to make the
calculations easier but we make sure that each edge we contract satisfies the
requirements of (R1). We also add a vertex incident to the lastly contracted
edge to N , for the same reason as previously. Besides, the isolated vertices
belonging to N can be deleted from the graph. After completing these steps,
N contains only vertices where none of our reductions rules can be applied: the
graph is reduced. Let us now count vertices lost during the reduction.

Let d1 be the initial number of vertices of degree one in G[R]. As there are
no vertices of degree one in R\N` we have d1 ≤ |N`|. It is not hard to see
that after each step of the first while loop of Algorithm 2, the quantity |N |+ d1

12

decreases by at least one. Notice also, that after each step of the second or
third while loop the quantity |N | decreases by at least one. To see this for the
case |E(P)| = 2` + 1 in the second while loop, it is enough to note that the
path P ′ must have at least 2 vertices in N as otherwise P ′ is a subdivision path
of length more than ` in G, which is not possible as G is `-reduced. Hence,
all in all, at most |N | + d1 steps are performed in the reduction algorithm.
Now, notice that each step reduces the number of vertices in G[R] by at most
`. Hence, at the end of the algorithm we will have an `-reduced graph R+ such
that |R| − |V(R+)| ≤ `(|N`|+ d) ≤ 2`|N`|.

The graph R+ is `-reduced and does not contain an `-packing of r−1 cycles:
by definition of h`

r−1 we have |R+| ≤ h`
r−1(d). Putting these bounds together,

we obtain an inequality:

|V(G)| = |C|+
∑

1≤i<`

|Ni|+ |R|

≤ |C|+
∑

1≤i<`

|Ni|+ 2`|N`|+ |R+|

≤ g +
∑

1≤i<`

g(d− 2)(d− 1)i−1 + 2`g(d− 2)(d− 1)`−1 + h`
r−1(d)

≤ 2`gd` + h`
r−1(d) (1)

Now observe that when g > 4` log(2`d` +h`
r−1(d))+8`, by Item (v) of Lemma 2

we get:

|V(G)| ≥ g2
g
4`−2

> g2log(2`d`+h`
r−1(d))

≥ g(2`d` + h`
r−1(d))

> |V(G)| (using (1))

This contradiction leads to the conclusion that g ≤ 4` log(2`d` + h`
r−1(d)) + 8`

and putting this bound on the girth of G into (1) we get:

|V(G)| ≤ 8`2d` log(8`d` + 4h`
r−1(d)) + h`

r−1(d).

As this holds for every `-reduced graph without r `-distant cycles with degree
bounded by d we obtain:

hr(d) ≤ 8`2d` log(8`d` + 4h`
r−1(d)) + h`

r−1(d). (2)

To finish the proof, we will check by induction on r that hr(d) is at most f `
r (d).

It is true for r = 2 by Corollary 3. Suppose r > 2 and f `
r−1(d) ≥ h`

r−1(d), and

13

let D = 8`2d` for convenience. Then we have the following.

f `
r (d)− h`

r−1(d) ≥ f `
r (d)− f `

r−1(d) (induction hypothesis)

= 3Dr log(Dr)− 3D(r − 1) log(D(r − 1))

≥ D log((Dr)3)

≥ D log(4`2d` + (8`2d`r)(4`2d`r)(8`2d`r))

≥ D log(4`2d` + 96`2d`r log(8`2d`r)) (term by term, r ≥ 3)

= 8`2d` log(8`2d` + 4f `
r (d))

≥ 8`2d` log(8`2d` + 4h`
r(d)) (induction hypothesis)

Together with (2) this implies: f `
r (d) ≥ h`

r−1(d)+8`2d` log(8`2d`+4h`
r(d)) ≥

h`
r(d). Hence we are done.

We are now able to prove Theorem 1.

Proof of Theorem 1. Given a graph G and two integers r and `, we apply Al-
gorithm 2 to obtain in O(|V(G)| `) steps an `-reduced graph G′ with ∆(G) =
∆(G′), as explained in Lemma 1 and Remark 1.

If |V(G′)| ≥ f `
r (∆(G)), then by the virtue of Lemma 7 the graph G′ contains

an `-packing of r cycles, and then so do G. In this case we output the equivalent
instance (r ·K3, `, r) and otherwise we output (G′, `, r). Observe that order of
G′ is bounded by f `

r (∆(G)), a function of its maximum degree, `, and r which
are the parameters of this instance. This proves the existence of a kernel on
f `
r (∆) = 24`2∆`r log(8`2∆`r) vertices for the problem Scattered Cycles

parameterized by ∆, `, and r.

4 The case of Disjoint Cycles

This section is devoted to the proof of Theorem 3, which is similar in flavour
with the proof of [7, Corollary 2]. A feedback-vertex-set (fvs for short) of a graph
G is a set of vertices meeting all the cycles of G. The proofs we will present
here rely on the following results.

Proposition 1 (Erdős-Pósa Theorem [6]). Let f : N≥1 → N be defined by
f(1) = 3 and for every k > 1, f(k) = 4k(log k + log log k + 4) + k − 1.

For every integer k > 1, every graph contains either k disjoint cycles, or a
fvs of at most f(k) vertices.

Remark 2. For every k ≥ 3, we have

f(k) ≤ c · k log k, where c =
17 + 4 log 3 + 4 log log 3

log 3
< 16.4.

Proposition 2 ([1]). There is an algorithm that given an n-vertex graph com-
putes in O(n2)-time a 2-approximation of a minimum fvs.

14

Proof of Theorem 3. Let us describe the steps of a kernelization algorithm for
Disjoint Cycles. We are given a graph G and an integer r. We assume that
r > 1, and Λ(G) > 1, otherwise the problem is trivially solvable in polynomial
time. If r = 2, then we use the algorithm of Theorem 2. Let G′ be the graph
obtained by the application on G of the reduction routine Algorithm 1, for
` = 1. Using the algorithm of Proposition 2, we compute a 2-approximation of
a minimum fvs X of G′. If |X| > 2f(r), by Proposition 1 the graph G′ contains
r disjoint cycles (and so do G): we return the equivalent positive instance
(r ·K3, r). Otherwise, we return (G′, r).

Let us now bound the order of G′ in the latter case. Let N = NG′(X) \X
(the neighbors of X outside X) and let R be the graph obtained from the
forest G′ \X by adding a neighbor of degree one to every vertex of N that has
degree two in G′ \X. Observe that R is a 1-reduced forest with N leaves: by
Corollary 2 we get |V(R)| ≤ 2 |N | − 2. Let Λ = Λ(G). As X is a fvs, for every
vertex u ∈ X the induced subgraph G[N(u) \ X] is a forest. It is well-known
that any forest has an independent set on at least half of its vertices. Therefore,
|G[N(u) \X]| < 2Λ, otherwise G would contain an induced K1,Λ. We can then
deduce that |N | < 2Λ|X|. We are now able to bound the order of G′, also using
the fact that R is a supergraph of G′ \X:

|V(G′)| = |X|+ |V(G′ \X)|
≤ |X|+ |V(R)|
< |X|+ 4Λ |X| − 2

< 9Λf(r) (as Λ > 1)

|V(G′)| < 148Λr log r (using Remark 2)

5 Hardness

This section contains the proofs of the hardness results claimed in Table 1. Let
us first define the problem Independent Set, as most of our proofs relies on
its properties.

Independent Set

Input: a graph G and an integer r ≥ 2;

Question: Does G have a collection of r pairwise non-adjacent vertices?

The known facts that we will use about independent set are the following.

Proposition 3. Independent Set is (i) NP-hard, even when restricted to
graphs of maximum degree 3 [8]; and (ii) W[1]-hard when parameterized by r [5].

15

Lemma 8. For every instance (G, r) of Independent Set and for every
` ∈ N, ` ≥ 2 we can construct in O(`|E(G)|) steps an instance (G′, `, r) of
Scattered Cycles with |V(G′)| = O(`|E(G)|) and ∆(G′) = ∆(G) + 2 such
that (G, r) is a positive instance iff (G′, `, r) is a positive instance.

Proof. Let G′ be the graph obtained from G by subdividing every edge ` − 2
times and for every vertex v of the original graph adding the two vertices v′

and v′′ and the three edges {{v, v′}, {v′, v′′}, {v′′, v}} (calling Cv the obtained
triangle). This construction requires to add ` new vertices for each edge of
G and a constant number of new vertices for each vertex of G, hence it can
be performed in O(`|E(G)|) steps. Observe that |V(G′)| = 3|V(G)| + (` −
2)|E(G)| = O(`|E(G)|) and ∆(G′) = ∆ + 2. Let us show that for every r ∈ N,
G has an independent set of size r iff G′ has an `-packing of r cycles.

Direction “⇒”. Let {v1, . . . , vr} be an independent set of size r in G. Then
{Cv1 , . . . , Cvr} is an `-packing of r cycles. Indeed, by definition of G′ for every
i ∈ J1, rK, the graph Cvi is a triangle. Besides, for every i, j ∈ J1, rK, i 6= j, the
vertices vi and vj are at distance 2 in G, hence Cvi and Cvj are at distance at
least 2`− 4 ≥ `.

Direction “⇐”. Let S = {S1, . . . , Sr} be an `-packing of r cycles in G′.
Observe that there is no cycle in G′ no vertex of which belongs to the original
graph G. Therefore for every i ∈ J1, rK the subgraph Si contains a vertex vi
which belong to G. Moreover, for every i, j ∈ J1, rK, i 6= j, the vertices vi and vj
are at distance at least ` in G′ (as S is a `-packing), thus they are at distance

at least 2 if ` = 2 and
⌈

`
`−2

⌉
≥ 2 otherwise in G. Consequently {v1, . . . , vr} is

an independent set of size r in G.

Corollary 4. For every ` ≥ 2, if there is an algorithm solving the problem
Scattered Cycles in f`(r,∆, n) steps (where n is the order of the input graph
and ∆ its maximum degree) for some function f` : N3 → N, then there is an
algorithm solving Independent Set in at most (f`(r,∆ + 2, nO(1)) + nO(1))
steps.

Corollary 5. Scattered Cycles is (a) NP-hard when restricted to ` = 2
and ∆ = 5; and (b) W[1]-hard when parameterized by r and `.

Proof. Item (a). Let ` = 2. The reduction of Lemma 8 produces in polynomial
time an instance of the problem Scattered Cycles restricted to graphs of
maximum degree 5 from an instance of Independent Set restricted to graphs
of maximum degree 3. Using item (i) of Proposition 3 it follows that Scattered
Cycles is NP-hard even when ∆ = 5 and ` = 2.

Item (b) is a consequence of Lemma 8 and of item (ii) of Proposition 3.

References

[1] Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation
algorithm for the undirected feedback vertex set problem. SIAM Journal
on Discrete Mathematics, 12(3):289–297, 1999.

16

[2] Rémy Belmonte. Algorithmic and Combinatorial Aspects of Containment
Relations in Graphs. PhD thesis, University of Bergen, 2013.

[3] Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds
for disjoint cycles and disjoint paths. Theoretical Computer Science,
412(35):4570 – 4578, 2011.

[4] Maria Chudnovsky, Paul Seymour, and Nicolas Trotignon. Detecting an
induced net subdivision. Journal of Combinatorial Theory, Series B,
103(5):630 – 641, 2013.

[5] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity.
Springer-Verlag, 1999. 530 pp.

[6] Paul Erdős and Louis Pósa. On the maximal number of disjoint circuits of
a graph. Publicationes Mathematicae, 9:3–12, 1962.

[7] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip,
and Saket Saurabh. Hitting forbidden minors: Approximation and Kernel-
ization. SIAM Journal on Discrete Mathematics, 30(1):383–410, 2016.

[8] Michael R. Garey and David S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New
York, NY, USA, 1990.

[9] Petr A. Golovach, Marcin Kamiński, Daniël Paulusma, and Dimitrios M.
Thilikos. Induced packing of odd cycles in a planar graph. Theoretical
Computer Science, 420:28–35, 2012.

[10] Mirka Miller and Jozef Siráň. Moore graphs and beyond: A survey of the
degree/diameter problem. Electronic Journal of Combinatorics, 20(2):2005,
2013.

[11] Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner’s con-
jecture. Journal of Combinatorial Theory, Series B, 92(2):325 – 357, 2004.

17

	Introduction
	Reduced graphs
	Dealing with more cycles
	The case of Disjoint Cycles
	Hardness

