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Abstract

We present a partitioned algorithm aimed at extending the capabilities of existing solvers for the simu-
lation of coupled advection-di↵usion-reaction systems and incompressible, viscous flow. The space dis-
cretization of the governing equations is based on mixed finite element methods defined on unstructured
meshes, whereas the time integration hinges on an operator splitting strategy that exploits the di↵er-
ences in scales between the reaction, advection, and di↵usion processes, considering the global system
as a number of sequentially linked sets of partial di↵erential, and algebraic equations. The flow solver
presents the advantage that all unknowns in the system (here vorticity, velocity, and pressure) can be
fully decoupled and thus turn the overall scheme very attractive from the computational perspective. The
robustness of the proposed method is illustrated with a series of numerical tests in 2D and 3D, relevant
in the modelling of bacterial bioconvection and Boussinesq systems.

Key words: Advection-reaction-di↵usion, viscous flow in porous media, primal-mixed finite element
methods, coupling algorithms, operator splitting
2000 MSC: 65M60, 35K57, 76S05, 80A32

1. Introduction

Scope. Our interest is in the e�cient solution of advection-di↵usion-reaction (ADR) systems coupled
with the equations governing incompressible viscous flow within porous media (namely the Stokes-Darcy,
or Brinkman equations). A fairly large class of problems in science and engineering assume such a
particular structure, as it is one of the basic forms of representing systems where physical, biological,
and chemical processes exhibit a remarkable interaction. Notable examples are the density fingering of
exothermic fronts in Hele-Shaw cells [18], where hydrodynamic instabilities are strongly influenced by
the chemical reactions taking place at di↵erent spatial and temporal scales; convection-driven Turing
patterns generated using Schnackenberg-Darcy models [25]; reversible reactive flow and viscous fingering
in chromatographic separation [2, 28]; plankton dynamics [24]; forced-convective heat and mass transfer
in fibrous porous materials [7]; or the bioconvection in porous suspensions of oxytactic bacteria [16, 22].
Phenomena of this kind are also relevant in so-called doubly-di↵usive flows [21, 27, 30], where convective
e↵ects are driven by two di↵erent density gradients having diverse rates of di↵usion.

While the specific nature of the physical system of interest will imply diverse forms of coupling mecha-
nisms, our goal is to focusely examine the interaction of the building-block systems through mass transport
and external flow forces. Moreover, depending on the formulation and complexity of the underlying PDE-
based model, the numerical solution of the problem may become a significant computational challenge.
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In particular, ADR equations feature intrinsic di�culties on their own (related to high nonlinearities,
targeting the preservation of physical properties, or sti↵ness of the ODE systems resulting from space
discretization, cf. [26]), which greatly intensify in the presence of coupling with flow equations, them-
selves being populated with complications very well-known to the CFD community (including violation
of local conservativity, accuracy a↵ected by heterogeneous coe�cients, discrete inf-sup conditions, and
many others. See e.g. [12, 15]). The numerical solution of coupled PDEs via operator splitting techniques
has a well-established tradition and many specialized contributions are available (cf. the monograph [17]
and its abundant list of references). A few recent works analyzing schemes for the partitioned coupling of
reaction-di↵usion systems and flow equations include, for instance, Runge-Kutta-DG splitting methods
for miscible displacement in porous media [23] and conservative finite volume-element schemes for the
coupling of flow and transport [9, 32]. A similar structure of the coupled equations is shared by other
classical systems as the Biot equations in poroelasticity, or thermoelasticity-based problems, for which
a much richer, numerically-oriented literature is available (see e.g. [3, 8, 13, 19, 20, 29, 31] and the
references therein).

Other contributions closely related to the present work include the discussion on nonlinear stability
of doubly-di↵usive interactions in Brinkman flows exposed in [1], whereas numerical simulations in the
two-dimensional case were performed in [10]. Here we explore very similar scenarios, but allowing the
di↵usive terms to depend nonlinearly on the species concentrations, we consider the three-dimensional
case as well, and we write the Brinkman equations in terms of vorticity, velocity, and pressure of the in-
compressible fluid. We stress that the mathematical properties of such a formulation have been addressed
only recently in [4], where also an explicit finite element method was introduced for its numerical approx-
imation. The present work essentially complements [1, 4] in the sense that we define a family of four basic
coupling methods to numerically solve the governing equations. The precise form of the schemes will vary
depending on whether the Brinkman problem admits a pure vorticity formulation (as the one proposed
in [6]), and on two main sequential substructuring techniques to decouple the advection-di↵usion from
the reaction steps in the ADR system. Insight on the properties of each coupling strategy will be sought
via a theoretical a priori stability analysis of the separate blocks, whereas the discretization will then
follow the natural formulation adopted by the particular splitting of the problem. For instance, one
of the resulting methods consists of Raviart-Thomas approximation of velocity, the discrete vorticity is
constructed with Nédélec elements, pressure is approximated with piecewise constant elements, and the
species’ concentrations with piecewise linear and continuous Lagrange elements. A thorough comparison
between the splitting methods will be given in terms of computational burden, experimental accuracy,
and behaviour of the nonlinear solvers.

Outline. We have structured the contents of this paper in the following way. In Section 2 we summarize
the main ingredients of the model problem and introduce its weak formulation. Section 3 considers
the finite element discretization and describes the decoupling mechanisms applied to the fully nonlinear
problem, focusing on the flow-ADR interaction, whereas two examples of splitting techniques for the
ADR blocks are discussed in Section 4. Numerical simulations are shown and extensively discussed in
Section 5, and we close with a few final remarks collected in Section 6.

2. Problem formulation

2.1. The governing equations

The coupled system of interest takes place in a bounded domain ⌦ ⇢ Rd, d = 2, 3 with Lipschitz
boundary. It can be derived from basic principles of mass, momentum, and energy conservation, and
its final form is written in terms of the fluid velocity u = (u1, . . . , ud

)T , the rescaled vorticity ! (vector
(!1,!2,!3)T if d = 3, or scalar ! if d = 2), the pressure p, and a vector c = (c1, . . . , cm)T of volumetric
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fraction or total dissolved concentration of m distinct substances: For a.e. (x, t) 2 ⌦
T

:= ⌦⇥ [0, T ],

@
t

c+ (u ·r)c� div(D(c)rc) = G(c),

�u+
p
µ curl! +rp = ⇢F (c),

! =
p
µ curlu,

divu = 0,

(2.1)

where ⇢, µ are the fluid density and viscosity, respectively �(x) is the inverse permeability tensor, F
represents the force exerted by the species on the fluid motion, encoding also external forces, D is a
(generally nonlinear) cross-di↵usion matrix, andG contains the reaction kinetics (representing production
and degradation) of the species.

Model (2.1) assumes that changes in the chemical concentrations do not influence thermophysical
properties of the fluid such as viscosity or density, but rather they are nonlinearly coupled by the source
term on the momentum equation. Conversely, we suppose that the viscous flow a↵ects the species
dynamics by means of advection only. The model also considers that the interaction of the species takes
place in a porous medium composed of a bed of light fixed particles. Equations (2.1) are complemented
with the following standard boundary and initial data:

(cuT �D(c)rc)n = 0, u · n = u
@

, ! ⇥ n = !

@

(x, t) 2 @⌦⇥ [0, T ],

c = c0 (x, t) 2 ⌦⇥ {0}, (2.2)

stating that no flux occurs across the boundary (the species cannot leave the medium), and that a slip
velocity together with a compatible vorticity trace are imposed along the domain boundary. These will
be assumed homogeneous in the rest of the presentation.

2.2. Weak form under two di↵erent Brinkman formulations

We proceed to derive a weak formulation for (2.1). First, let us introduce the trial spaces where
the weak solutions will live, and whose natural regularity is indicated by the formulation below: c 2
L2(0, T ;S), @

t

c 2 L2(0, T ;S0), u 2 L2(0, T ;V), ! 2 L1(0, T ;W), and p 2 L2(⌦ ⇥ [0, T ]); with S :=
H1(⌦), V := H(div;⌦), W := H(curl;⌦) and Q := L2

0(⌦) = {q 2 L2(⌦) :
R
⌦
q = 0}.

The ADR equations are multiplied by s 2 S0 and integrated by parts over the spatial domain, the
momentum equation for the flow is tested against v 2 V0 and integrated over ⌦, the constitutive relation
is tested against ✓ 2 W0, and the mass conservation law is multiplied by q 2 Q. In turn, the boundary
conditions (2.2) suggest the following definition of the test spaces

S0 = {s 2 S : s = 0 on @⌦}, V0 = {v 2 V : v · n = 0 on @⌦},
W0 = {✓ 2 W : ✓ ⇥ n = 0 on @⌦},

which leads to the problem: For t 2 (0, T ], find (c(t),u(t),!(t), p(t)) 2 S⇥V ⇥W ⇥Q such that
Z

⌦

[@
t

c(t) + (u(t) ·r)c] · s+

Z

⌦

D(c(t))rc(t) : rs =

Z

⌦

G(c(t)) · s 8s 2 S0,
Z

⌦

�u(t) · v +
p
µ

Z

⌦

curl!(t) · v �
Z

⌦

p(t) div v =

Z

⌦

⇢F (c(t)) · v 8✓ 2 W0,

p
µ

Z

⌦

u(t) · curl✓ �
Z

⌦

!(t) · ✓ = 0 8v 2 V0,

�
Z

⌦

q divu(t) = 0 8q 2 Q.

(2.3)

Setting � = (c,u,!, p)T , the matrix form of (2.3) can be recast as follows
0

BB@

Ac 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

CCA �̇(t) +

0

BB@

D � G C 0 0
�F Au B1 �B2

0 B⇤
1 �A! 0

0 �B⇤
2 0 0

1

CCA�(t) = 0, (2.4)
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where dashed lines separate sub-blocks associated to the ADR and Brinkman systems, and the linear and
nonlinear operators defining the matrix system are given by

[Ac(c), s] :=

Z

⌦

c · s, [C(c);u, s] :=
Z

⌦

(u ·r)c · s, [D(c), s] :=

Z

⌦

D(c)rc : rs,

[G(c), s] :=
Z

⌦

G(c) · s, [F(c),v] :=

Z

⌦

⇢F (c) · v, [Au(u),v] :=

Z

⌦

�u · v,

[B1(!),v] :=

Z

⌦

p
µ curl! · v, [B2(p),v] :=

Z

⌦

p div v, [A!(!),✓] :=

Z

⌦

! · ✓.

Here the di↵usion, reaction, and forcing terms are assumed smooth enough: D is positive, coercive, and
continuous; G is continuous, uniformly bounded, and positivity preserving; and F is linear in c. More
precise conditions on the coe�cients will be specified later on. Classical derivations of a priori stability
bounds will require an additional regularity for the velocity u 2 L2(0, T ;V)\L1(0, T ;L1(⌦)d) (see e.g.
[11, 14] for flow-transport coupling in the context of miscible displacement in porous media).

Alternatively from (2.3), we can picture a formulation where adequate manipulations of the Brinkman
equations allow a decoupling between the velocity, vorticity, and pressure blocks, under the assumption
of uniformly bounded permeability and homogeneous boundary conditions for velocity and vorticity (see
[6]). In that case, (2.4) is reformulated as

0

BB@

Ac 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

CCA �̇(t) +

0

BBB@

D � G C 0 0

�F1 Au 0 0

�F2 0 � bA! 0

�F3 0 0 bA
p

1

CCCA
�(t) = 0, (2.5)

where the modified blocks read

[ bA!(!),✓] :=

Z

⌦

�! · ✓ +

Z

⌦

µ curl! · curl✓, [F2(c),✓] :=

Z

⌦

p
µ⇢F (c) · curl✓,

[ bA
p

(p, q)] :=

Z

⌦

rp ·rq, [F3(c), q] :=

Z

⌦

⇢F (c) ·rq,

[F1(c),v] :=

Z

⌦

�
⇢F (c)�p

µ curl !̃ �rp̃
� · v,

and where ·̃ denotes an uncoupled quantity. Another crucial di↵erence with respect to (2.3), is that the
pressure requires higher regularity (now Q = H1(⌦) \ L2

0(⌦)), and that the velocity is only needed in
L2(0, T ;L2(⌦)) \ L1(0, T ;L1(⌦)d). Both Brinkman formulations lead to symmetric systems, which is
a property that may be exploited by specialized preconditioners and iterative solvers.

2.3. A general operator splitting

Using the matrix systems (2.4) and (2.5), one can readily state a general splitting of the coupled
ADR-Brinkman problem in the form

H0�̇+H1�+H2� = 0,

where the operators H
i

, i = 0, 1, 2 are formally defined by

H0 =

0

B@
Ac 0 · · ·
0 0 · · ·
...

...
. . .

1

CA , H1 =

0

B@
D � G + C 0 · · ·

0 0 · · ·
...

...
. . .

1

CA , H2 =

0

BB@

0 0 0 0
�F Au B1 �B2

0 B⇤
1 �A! 0

0 �B⇤
2 0 0

1

CCA ,

4



Partitioned advection-di↵usion-reaction and Brinkman systems Lenarda, Paggi & Ruiz-Baier

if using (2.4), or assuming the modified form

H2 =

0

BBB@

0 0 0 0

�F1 Au 0 0

�F2 0 � bA! 0

�F3 0 0 bA
p

1

CCCA
,

if using (2.5). Then, the solution of the ADR system can be characterized by H0�̇+H1� = 0, and that
of the Brinkman blocks by H2� = 0.

In turn, and as will be specified later in Section 4, the solution of the ADR system can be split
again into a pure advection-di↵usion and a pure reaction step, H0�̇+H11� = 0 and H0�̇+H12� = 0,
respectively, where

H11 =

0

B@
D + C 0 · · ·

0 0 · · ·
...

...
. . .

1

CA , H12 =

0

B@
�G 0 · · ·
0 0 · · ·
...

...
. . .

1

CA .

3. A family of segregated finite element methods

3.1. Meshes and finite dimensional spaces

Let T
h

denote a simplicial decomposition of the spatial domain ⌦ into elements K of maximum size
h. For a fixed h > 0 we introduce finite dimensional subspaces for the k�th order approximation of the
unknowns: S

h

⇢ S, V
h

⇢ V, W
h

⇢ W, and Q
h

⇢ Q. The concentration and vorticity finite element
spaces assume the form

S
h

= {s
h

2 S : s
h

|
K

2 [P
k+1]

m(K), 8K 2 T
h

}, W
h

= {✓
h

2 W : ✓
h

|
K

2 ND
k+1(K), 8K 2 T

h

},
while, depending on whether the formulation (2.4) or (2.5) are used, the finite element spaces for the
velocity and pressure unknowns are defined as:

V
h

= {v
h

2 V : v
h

|
K

2 RT
k

(K), 8K 2 T
h

}, Q
h

= {q
h

2 L2(⌦) : q
h

|
K

2 P
k

(K), 8K 2 T
h

},
or

V
h

= {v
h

2 V : v
h

|
K

2 [P
k

(K)]d, 8K 2 T
h

}, Q
h

= {q
h

2 H1(⌦) : q
h

|
K

2 P
k+1(K), 8K 2 T

h

},
respectively. Here RT

k

stands for the local Raviart-Thomas elements of order k (H(div;⌦)-conforming),
ND

k

is the local Nédélec element of degree k (H(curl;⌦)-conforming), and P
k

is the local space of
Lagrange finite elements of order k. Spaces S

h

and W
h

are equipped with the following norms as in [6]:

ks
h

k2H1(⌦) := ks
h

k2L2(⌦) + krs

h

k2L2(⌦), 8s
h

2 S
h

,

|||✓
h

|||21,µ := k✓
h

k2L2(⌦) + µk curl✓
h

k2L2(⌦), 8✓
h

2 W
h

.

Notice that the vorticity norm is µ�dependent. The norms for the spaces V
h

and Q
h

defined by the first
Brinkman formulation (2.4) are:

kv
h

k2H(div;⌦) := kv
h

k2L2(⌦) + k div v
h

k2
L

2(⌦), 8v
h

2 V
h

,

and the natural L2(⌦)�norm for Q
h

. On the other hand, for the second set of Brinkman equations (2.5)
we consider the usual L2(⌦)� and H1(⌦)�norms for the spaces V

h

and Q
h

, respectively.

The Galerkin method associated to (2.4) or (2.5) is presented in what follows, using a partitioned
solution approach.

5
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3.2. Outer ADR-Brinkman splitting scheme

A straightforward splitting method consists in, starting from the initial concentrations’ distribution,
solving the flow equations and then pass the computed velocity to advect the ADR system. For a
backward Euler time advancing scheme, and focusing on the first Brinkman solver (i.e., using (2.4)), the
following steps are applied at each time step tn+1: and depending on which of the two Brinkman solvers
is considered (i.e., using (2.4) or (2.5)), the following steps are applied at each time step tn+1, the spaces
are chosen accordingly to the distinction made in the previous section.

(B1): Given c

n

h

, find (un+1
h

,!n+1
h

, pn+1
h

) 2 V
h

⇥W
h

⇥Q
h

such that:

Z

⌦

�un+1
h

· v
h

+
p
µ

Z

⌦

curl!n+1
h

· v
h

�
Z

⌦

pn+1
h

div v
h

=

Z

⌦

⇢F (cn
h

) · v
h

8v
h

2 V
h,0

p
µ

Z

⌦

u

n+1
h

· curl✓
h

�
Z

⌦

!

n+1
h

· ✓
h

= 0 8✓
h

2 W
h,0

�
Z

⌦

q
h

divun+1
h

= 0 q
h

2 Q
h,0,

(3.1)

or

(B2): Given c

n

h

– First solve the pure vorticity problem: Find !

n+1
h

2 W
h

such that:

Z

⌦

�!n+1
h

· ✓
h

+ µ

Z

⌦

curl!n+1
h

· ✓
h

=
p
µ

Z

⌦

⇢F (cn
h

) · curl✓
h

, 8✓
h

2 W
h,0

– Then, solve the pure pressure problem:
Z

⌦

rpn+1
h

·rq
h

=

Z

⌦

⇢F (cn
h

) ·rq
h

8Q
h

– Finally recover the velocity vector un+1
h

2 V
h

as:

u

n+1
h

= ��1
�
⇢F (cn

h

)�p
µ curl!n+1

h

�rpn+1
h

�
.

(ADR): Given u

n+1
h

solution of the Brinkman problem through (B1) or (B2), solve the ADR problem: find

c

n+1
h

2 S
h

such that:

Z

⌦

c

n+1
h

� c

n

h

�t
· s

h

+

Z

⌦

(un+1
h

·r)cn+1
h

· s
h

+

Z

⌦

D(cn+1
h

)rc

n+1
h

: rs

h

=

Z

⌦

G(cn+1
h

) · s
h

8s
h

2 S0,h.

(3.2)

The two solution strategies adopting either (B1) or (B2) lead to outer schemes for the Brinkman-ADR
problem of the type (B1-ADR) or (B2-ADR). We stress that, for the latter scheme, if lowest order
elements are employed (that is, k = 0) then an intermediate step is required to ensure that the discrete
advective term is well-defined. A projection of un+1

h

onto RT
k

would typically su�ce. The inner solvers
for the ADR equations will be made precise in the sequel.

Under suitable hypotheses one can derive the unique solvability of each discrete problem (B1),(B2)
and (ADR). While the flow problem is linear, the set of nonlinear ADR equations uses a nested Newton-
Raphson iterative scheme to find an approximation of cn+1

h

at each time step.

6
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3.3. A priori estimates for the energy of the system

Let us recall the discrete Gronwall inequality

Lemma 3.1. If �0  g0 and

�
n

 g0 +
n�1X

k=0

p
k

+
n�1X

k=0

q
k

�
k

, 8n � 1,

then

�
n


 
g0 +

n�1X

k=0

p
k

!
exp

 
n�1X

k=0

q
k

!
, 8n � 1.

The stability of the outer splitting method described in Section 3.2 is established by the following a priori
bound, written in terms of the system’s discrete energy norm

k�n

h

k2 := kun

h

k2H(div;⌦) + |||!n

h

|||21,µ + kpn
h

k2
L

2(⌦) + kcn
h

k2L2(⌦), 8n � 0.

Before stating the main result in this Section, we recall the following auxiliary a priori estimate, to be
exploited in the sequel.

Lemma 3.2. Let cn
h

2 S
h

and assume that F (c) = (↵ · c)g, for constant ↵ 2 Rm and g = �e3. Then,
the solution (un

h

,!n

h

, pn
h

) 2 V
h

⇥W
h

⇥ Q
h

of (3.1) exists and is unique. Moreover, there exists C > 0
independent of µ such that:

kp
h

k
L

2(⌦)  Ck⇢F (cn
h

)kL2(⌦) = C⇢k↵kkcn
h

kL2(⌦).

The proof of this result can be found in [5] and it is a consequence of the inf-sup condition satisfied by
the bilinear form defined by [B2(p),v].

Theorem 3.3. Let �n

h

= (cn
h

,un

h

,!n

h

, pn
h

), 8n = 0, . . . , N
T

be the solution of the outer splitting defined by
(3.1)-(3.2) in (B1-ADR). Suppose that F (c) = (↵ · c)g, for constant ↵ 2 Rm and g = �e3, and assume
that there exists Dmin > 0 such that s

T (D(s)s) � Dminksk2 for all s. Then, there exist a constant
C(�, ⇢,↵) > 0 and positive non-decreasing functions C0(tn+1), C1(tn+1), such that, for each time step
tn:

k�n+1
h

k2 + 2�tD2
min

nX

k=0

krc

k+1
h

k2L2(⌦) C0(t
n+1)kc0

h

k2L2(⌦) + C1(t
n+1)

nX

k=0

kG(ck+1
h

)k2L2(⌦)

+ C(�, ⇢,↵)kcn
h

k2L2(⌦).

In particular, if kG(c)kL2(⌦)  G for a given G � 0, then, at each timestep the energy norm admits the
following bound

k�n

h

k2  k�0
h

k2
NTX

k=0

Ck(�, ⇢,↵)C0(t
NT�k) +G2

NTX

k=0

Ck(�, ⇢,↵)(N
T

� k)C1(t
NT�k) + CNT (�, ⇢,↵)k�0

h

k2

Proof. Using integration by parts we observe that the convective term in (3.2) can be rewritten in the
skew-symmetric form:

Z

⌦

(un+1
h

·r)cn+1
h

· s
h

=
1

2

Z

⌦

(un+1
h

·r)cn+1
h

· s
h

� 1

2

Z

⌦

(un+1
h

·r)s
h

· cn+1
h

.

Next, testing equation (3.2) with s

h

= c

n+1
h

2 S
h

and using Young’s inequality we have:

1

2
kcn+1

h

k2L2(⌦) +�tDminkrc

n+1
h

k2L2(⌦)

7
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 1

2
kcn

h

k2L2(⌦) +
�t

2
kG(cn+1

h

)k2L2(⌦) +
�t

2
kcn+1

h

k2L2(⌦),

and summing up for k = 0, . . . , n� 1 implies that

1

2
kcn

h

k2L2(⌦) +�tDmin

n�1X

k=0

krc

k+1
h

k2L2(⌦)

 1

2
kc0

h

k2L2(⌦) +
�t

2

n�1X

k=0

kG(ck+1
h

)k2L2(⌦) +
�t

2

n�1X

k=0

kck+1
h

k2L2(⌦).

(3.3)

Applying Lemma 3.1 we can then write:

kcn
h

k2L2(⌦)  exp (tn)

(
kc0

h

k2L2(⌦) +�t
n�1X

k=0

kG(ck+1
h

)k2L2(⌦)

)
, 8n � 1.

Using this for n+1, and substituting back in the last term of (3.3), after collecting terms we obtain that
there are two functions C0(tn+1), C1(tn+1) > 0 such that the following estimate holds:

kcn+1
h

k2L2(⌦) + 2�tDmin

nX

k=0

krc

k+1
h

k2L2(⌦)  C0(t
n+1)kc0

h

k2L2(⌦) + C1(t
n+1)

nX

k=0

kG(ck+1
h

)k2L2(⌦). (3.4)

On the other hand, regarding the Brinkman problem, we proceed to test (3.1) against

v

h

= u

n+1
h

+ c1
p
µ curl!n+1

h

2 V0,h, ✓

h

= �!

n+1
h

2 W0,h, q
h

= �pn+1
h

� c2 divu
n+1
h

2 Q
h

,

where c1 and c2 are positive constants to be determined. Summing up in (3.1) we have:

�kun+1
h

k2L2(⌦) +

Z

⌦

�c1
p
µun+1

h

· curl!n+1
h

+

Z

⌦

p
µ curl!n+1

h

· un+1
h

+ c1µk curl!n+1
h

k2L2(⌦)

�
Z

⌦

pn+1
h

divun+1
h

�
Z

⌦

pn+1
h

c1
p
µ div curl!n+1

h

�
Z

⌦

p
µun+1

h

· curl!n+1
h

+ k!n+1
h

k2L2(⌦) +

Z

⌦

pn+1
h

divun+1
h

+ c2k divun+1
h

k2L2(⌦)

=

Z

⌦

⇢F (cn
h

) · un+1
h

+

Z

⌦

c1
p
µ⇢F (cn

h

) · curl!n+1
h

,

and then applying Young’s inequality gives:

c1
p
µ

Z

⌦

�un+1
h

· curl!n+1
h

� ��min

2
kun+1

h

k2L2(⌦) �
c21�

2
max

2�min
µk curl!n+1

h

k2L2(⌦),

Z

⌦

⇢F (cn+1
h

) · un+1
h

 �min

4
kun+1

h

k2L2(⌦) +
⇢2

�min
k↵k2kcn

h

k2L2(⌦),

Z

⌦

c1
p
µ⇢F (cn

h

) · curl!n+1
h

 c21µ

2
k curl!n+1

h

k2L2(⌦) +
⇢2

2
k↵k2kcn

h

k2L2(⌦).

Because div curl is the zero operator, we have that F (cn
h

) = (↵ · cn
h

)g, and collecting terms we obtain:

�min

4
kun+1

h

k2L2(⌦) + c2k divun+1
h

k2L2(⌦) + c1

⇢
1� c1

2

✓
�2
max

�min
+ 1

◆�
µk curl!n+1

h

k2L2(⌦) + k!n+1
h

k2L2(⌦)

 ⇢2k↵k2
✓

1

�min
+

1

2

◆
kcn

h

k2L2(⌦).
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Notice that the term involving the norm of pressure has disappeared. Taking c1 = �

min

(�2

max

+�

min

) , c2 = �

min

4

we obtain that there exists a constant eC(�, ⇢,↵) > 0 such that:

kun+1
h

k2L2(⌦) + k divun+1
h

k2
L

2(⌦) + k!n+1
h

k2L2(⌦) + µk curl!n+1
h

k2L2(⌦)  eC(�, ⇢,↵)kcn
h

k2L2(⌦).

The next step consists in recovering an estimate for the norm of the solution of the Brinkman problem
involving the pressure norm. This is done via Lemma 3.2, from which we obtain that there is a constant
C(�, ⇢,↵) > 0 such that:

kun

h

k2H(div;⌦) + |||!n

h

|||21,µ + kpn
h

k2
L

2(⌦)  C(�, ⇢,↵)kcn
h

k2L2(⌦). (3.5)

Combining estimates (3.4) and (3.5) we have the desired result. ⇤

4. Dedicated partitioned schemes for the ADR equations

We now address the numerical solution of the nonlinear ADR problem (3.2). Based on the structure
of the nonlinear di↵usion matrix D(c) and of the reaction vector G(c) = (G1(c), . . . , Gm

(c)), diverse
techniques can be employed. Let {'

i

: i = 1, . . . , NSh} be the vector-valued basis of shape functions
of the finite element space for the concentration S

h

, where NSh = dim(S
h

). Then we denote the finite
element approximation of the concentration vector as:

c

h

(x, tn) =

NShX

i=1

C
i

(tn)'
i

(x) =

MShX

i=1

mX

j=1

Cj

i

(tn)'j

i

(x), (4.1)

where MSh =
NSh

m
and Cj

i

represents the j-th component of c
h

at the mesh node i and we regrouped

the basis vectors as '1
i

= ('
i

, · · · , 0)T , . . ., 'm

i

= (0, · · · ,'
i

)T .

The algebraic form of (3.2) is derived by substituting in the weak formulation the expression (4.1) and
the analogous form for the test function. First we will focus on a monolithic solver for the ADR system
based on a Newton method with full Jacobian.

4.1. A fully implicit Newton-Raphson method

From (3.2) the following nonlinear algebraic system must be solved at each time-step tn+1:
✓
Ac

�t
+ C(un+1

h

) +D(Cn+1)

◆
Cn+1 = e

G(Cn+1) +
1

�t
Cn (4.2)

where the global nodal concentration vector in RNSh and the reaction vector are:

(Cn)
i

= Cn

i

, (eG(C))
i

=

Z

⌦

G

0

@
NShX

k=1

C
k

'

k

1

A
'

i

i = 1, . . . , NSh , (4.3)

and matrices Ac, C, D in RNSh ⇥ RNSh are given by:

(Ac)ij =

Z

⌦

'

j

·'
i

, (C)
ij

=

Z

⌦

�
u

n+1
h

·r�'
j

·'
i

,

(D(C))
ij

=

Z

⌦

D

0

@
NShX

k=1

C
k

'

k

1

Ar'

j

: r'

i

.

(4.4)

Notice that the convection matrix C depends on the velocity vector u

n+1
h

, solution of the Brinkman
problem computed at the previous stage of the splitting scheme so that it is constant with respect to

9
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the unknown concentration vector cn+1
h

. The nonlinearity of system (4.2) resides in the di↵usion matrix

D and in the reaction vector eG which are functions of the unknown vector c

n+1
h

. We introduce the
monolithic ADR residual vector:

Rn(C) :=

✓
Ac

�t
+ C(un+1

h

) +D(C)

◆
C� e

G(C)� Ac

�t
Cn,

and realize that solving (4.2) is equivalent to solve Rn(Cn+1) = 0. With this purpose, we employ the
Newton-Raphson iterative procedure: Suppose that at time tn and k-th iteration of the Newton-Raphson
method, we are given an approximation Cn+1,k of the concentration vector Cn+1, then we solve the
following linear system in the correction �C and update as:

 
Ac

�t
+ C(un+1

h

) + eD(Cn+1,k)� @ eG
@C

(Cn+1,k)

!
�C = �Rn(Cn+1,k), (4.5)

Cn+1,k+1 = Cn+1,k + �C, (4.6)

where the matrices eD and @ eG/@C arise form the linearization of the di↵usion matrix and the reaction
vector, respectively, and are given by:

( eD(C))
ij

= D
ij

(C) +

NSnX

k=1

✓Z

⌦

@

@c
D(C)'

j

r'

k

: r'

i

◆
C

k

,

(
@ eG
@C

(C))
ij

=

Z

⌦

'

T

j

rG(C)'
i

(4.7)

and the matrix
@

@c
D(C)'

j

is a shorthand notation for
mX

s=1

@D

@c
s

(C)'s

j

. The Newton-Raphson system

(4.5) for the full monolithic ADR can be reformulated as a variational problem for the finite element
correction vector �c

h

, leading to the following solver for the ADR system:

(ADR1): Given a velocity u

n+1
h

, a solution c

n

h

of the ADR at time tn, and the approximate solution c

n+1,k
h

at the k-th iteration of the Newton-Raphson method for the full monolithic ADR system, find
�c

h

2 S
h,0 such that:

✓
1

�t
Ac + C(un+1

h

) + dDcn+1,k
h

� dGcn+1,k
h

◆
�c

h

= �Rn(cn+1,k
h

), (4.8)

and update c

n+1,k+1
h

= c

n+1,k
h

+ �c
h

, until k�c
h

kL2(⌦)  tol.

The linear and bilinear operators in the variational problem (4.8) are given by:

[Rn(c), s] :=
1

�t
[Ac(c� c

n), s] + [C(c);un+1
h

, s] + [D(c), s]� [G(c), s],

[dDc(�c), s] :=

Z

⌦

D(c)r�c : rs+

Z

⌦

@

@c
D(c)�c rc : rs,

[dGc(�c), s] :=

Z

⌦

s

TrG(c)�c.

(4.9)

We stress that in problem (4.8) we require that the unknown �c
h

= c

n+1,k+1
h

� c

n+1,k
h

is in S
h,0, because

it must be zero at the boundaries where the Dirichlet conditions apply. To obtain an adequate initial
guess cn+1,0

h

we can solve, at the beginning of the Newton-Raphson scheme, a simplified linear problem,
typically with D(cn

h

) and G(cn
h

).

The (ADR1) solver for the full ADR system using Newton-Raphson method is combined with a flow
solver (B1) or (B2), leading to a global solution scheme for the problem, denoted as (B1/B2-ADR1). The
steps of the solution strategy of our problem using the (B1/B2-ADR1) are summarized in Algorithm 1.

10
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Data: �, µ, ⇢, ↵, D, G, �t, N , tol ;
Initialize: u0

h, !
0
h, p

0
h, c

0
h ;

for n = 1, . . . , N time steps do
Given cnh, solve the Brinkman system (B1):

0

B@
Au B1 B2

B⇤
1 �A! 0

�B⇤
2 0 0

1

CA

0

@
un+1

h

!n+1
h

pn+1
h

1

A =

0

@
F1(c

n
h)

0

0

1

A ;

or its split counterpart (B2):

• bA!!
n+1
h = F2(c

n
h),

• bApp
n+1
h = F3(c

n
h),

• un+1
h  A�1

u F1(c
n
h), and project discrete velocity if using lowest order elements;

Update: un+1
h  un

h ; !n+1
h  !n

h ; pn+1
h  pnh ;

Given un+1
h , solve the full ADR system via Newton-Raphson (ADR1):

Initialize: cn+1,0
h ;

while k�ckL2(⌦) � tol do
Solve the linearized ADR equations monolithically:

✓
1
�t

Ac + C(un+1
h ) + dD

cn+1,k
h

� dG
cn+1,k
h

◆
�ch = �Rn(cn+1,k

h ),

Update: cn+1,k+1
h  cn+1,k

h + �ch;
end

Update: cn+1
h  cnh ;

end

Algorithm 1: Staggered procedure (B1/B2-ADR1) for the Brinkman problem solved with either
(B1) or (B2) and the full ADR problem solved with (ADR1).

4.2. Inner splitting of the ADR system

When the di↵usion matrix D is constant and the reaction term G(c) leads to highly sti↵ systems, it
is convenient to split the ADR dynamics into a pure advection-di↵usion phase and into a pure reaction
phase. This implies we solve problem (3.2) separating the nonlinear term due to reaction G(c), which
defines a nonlinear system of ODEs, from the (typically more regular and smooth) advection-di↵usion
process. This method is denoted (ADR2) and consists in solving the ADR system in two steps

(ADR2): – Pure advection-di↵usion phase: Given u

n+1
h

and c

n

h

, find c

n+1,⇤
h

in S
h

solution of the linear
problem:

Z

⌦

c

n+1,⇤
h

� c

n

h

�t
· s

h

+

Z

⌦

(un+1
h

·r)cn+1,⇤
h

· s
h

+

Z

⌦

Drc

n+1,⇤ : rs

h

= 0 8s
h

2 S0,h.

(4.10)

– Pure reaction phase: Setting c

n

h

= c

n+1,⇤
h

, solve the nonlinear problem:

Z

⌦

c

n+1
h

� c

n

h

�t
· s

h

=

Z

⌦

G(cn+1
h

) · s
h

8s
h

2 S0,h. (4.11)

Problems (4.10) and (4.11) are discretized using the same notations (4.4) and (4.3) for matrices and
vectors as in the previous section. The nonlinear algebraic system equivalent to the pure reaction phase
(4.11), that must be solved at each time iteration tn+1 is given by:

Ac

�t
Cn+1 =

Ac

�t
Cn + eG(Cn+1), (4.12)

11
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where matrices and vectors Ac, Cn and eG are defined in (4.4), (4.3). System (4.12) can be solved
iteratively using the Newton-Raphson method. With this aim we define the residual R⇤,n of the pure
reaction phase as

R⇤,n :=
Ac

�t
Cn+1 � Ac

�t
Cn � eG(Cn+1),

and again we notice that solving (4.12) is equivalent to solve R⇤,n(Cn+1) = 0. Given an approximate
solution of the system (4.12) Cn+1,k at iteration k, one solves the Newton-Raphson system for the pure
reaction problem:  

Ac

�t
� @ eG

@C
(Cn+1,k)

!
�C = �R⇤,n(Cn+1,k),

Cn+1,k+1 = Cn+1,k + �C.

(4.13)

System (4.13) can be rewritten as a variational problem for the finite element correction �c
h

. Given c

n

h

and the approximate solution c

n+1,k
h

at k�th iteration, the problem is to find �c
h

2 S0,h such that:

✓Ac

�t
� dGcn+1,k

h

◆
�c

h

= �R⇤,n(cn+1,k
h

).

The operator dGc is given in (4.9), while the linear operator corresponding to the pure-reaction residual
vector is:

[Rn,⇤(c), s] :=
1

�t
[Ac(c� c

n), s]� [G(c), s].
Notice that if the reaction vector G is zero and the di↵usion matrix is constant, then the (ADR2) solver
reduces to a pure linear advection-di↵usion problem (4.10). A global solver for the Brinkman-ADR
problem is then obtained combining one of the two Brinkman solvers (B1) or (B2) and (ADR2). These
solution strategies are summarized in Algorithm 2.

5. Numerical tests

This section contains a collection of numerical examples serving as validation of the coupling strategies
discussed in Section 3, and illustrating the behavior of the model in two applications of wide interest.
Before addressing the applicative tests, we perform a convergence analysis indicating the spatial and
temporal accuracy of the methods. Let us consider the square domain ⌦ = (�1, 1)2, where (2.1) admits
the following exact solutions

c =

✓
cos(⇡x) cos(⇡y) sin(2t)
sin(⇡x) sin(⇡y) cos(2t)

◆
, u =

✓� cos(⇡x) sin(⇡y) sin(2t)
sin(⇡x) cos(⇡y) sin(2t)

◆
, p = �1

4
(cos(2⇡x) + cos(2⇡y)) sin2(2t),

and ! =
p
µ curlu. For sake of this first convergence test, we assume µ = ⇢ = 1, � is the identity matrix,

we impose F = c+f , G = c+g, whereas boundary and initial conditions are now non-homogeneous, and
the data in (2.2) are set according to the exact solutions above. Also the source and forcing terms g,f
are computed using these exact solutions in combination with (2.1). The experimental mesh convergence
analysis is done by successively refining an initial coarse triangular mesh and computing individual errors
between the numerical solution produced with the finite element methods defined in Section 3 and the
exact solution projected on each refinement level (these errors are denoted by e(·) and are measured in
their natural norms, at the final time T = 1, and employing a timestep of �t = 1E�4). The convergence
history displayed in Table 1 confirms the O(h)-accuracy expected by the used spaces characterizing
each finite element formulation. Likewise, an asymptotic O(�t) convergence rate is obtained for the
time discretization, assessed by fixing a refined mesh of size h =

p
2/400 and considering accumulative

errors (in the energy norm E(�) = [�t
P |�n

h

� �(tn)|2]1/2) on successively smaller timesteps. The
errors themselves are larger for the second partitioned coupling (B2), but the convergence orders remain
essentially the same.
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Data: �, µ, ⇢, ↵, D, G, �t, N , tol ;
Initialize: u0

h, !
0
h, p

0
h, c

0
h ;

for n = 1, . . . , N time steps do
Given cnh, solve the Brinkman system (B1):

0

B@
Au B1 B2

B⇤
1 �A! 0

�B⇤
2 0 0

1

CA

0

@
un+1

h

!n+1
h

pn+1
h

1

A =

0

@
F1(c

n
h)

0

0

1

A ;

or its split counterpart (B2):

• bA!!
n+1
h = F2(c

n
h),

• bApp
n+1
h = F3(c

n
h),

• un+1
h  A�1

u F1(c
n
h), and project discrete velocity if using lowest order elements;

Update: un+1
h  un

h ; !n+1
h  !n

h ; pn+1
h  pnh ;

Given un+1
h , solve the advection-di↵usion phase:

�
Ac + C(un+1

h ) +D
�
cn+1,⇤
h = 0 ;

Initialize: cn+1,0
h = cn+1,⇤

h ;
Solve the pure reaction phase via Newton-Raphson:
while k�chkL2(⌦) � tol do

Solve the linearized reaction problem:

✓
Ac

�t
� dG

cn+1,k
h

◆
�ch �R⇤,n(cn+1,k

h );

Update: cn+1,k+1
h  cn+1,k+1

h + �ch;
end

Update:
cn+1
h  cnh ;

end

Algorithm 2: Staggered procedure (B1/B2-ADR2) for the Brinkman problem solved with either
(B1) or (B2) and the full ADR problem solved with (ADR2).

5.1. Double-di↵usion in porous cavities

We now perform a series of computations focused on a doubly-di↵usive model governing the interac-
tion between the concentration of brine (field c1), temperature (encoded in c2), and immiscible flow in
saturated porous media. A similar study can be found in [10, 30]. The problem under consideration takes
place in a porous square cavity ⌦ = (0, 1)2 filled with a Newtonian fluid of velocity, vorticity, and pressure
(u,!, p). The left and right walls are maintained at di↵erent uniform temperatures and concentrations
respectively cleft2 = cleft1 = 0 and cright2 = cright1 = 1. The horizontal walls are assumed adiabatic and
insulated (that is, no-flux boundary conditions are set for the ADR system). Slip velocity conditions
(i.e., zero normal velocities) and zero vorticity are imposed everywhere on the boundary, and the coupled
system adopts the form (2.1) where di↵usion, reaction, permeability, and forcing terms are defined as

D(c) = diag((Le Pr)�1, R
k

Pr�1), G(c) = 0, � =
1

Da
, F (c) = Gr(c2 +Nc1)g,

respectively. The particular structure of the problem implies that the buoyancy term N is a measure of
the coupling strength between the flow and the ADR equations. Notice that for a given velocity, the
ADR equations are now linear and the associated errors would be more easily tractable to the (B1-ADR2)
splitting method at hand.

In order to investigate the robustness of the proposed (B1-ADR2) splitting method with respect to
the coupling strength, we fix the parameters Le = 10, µ = ⇤ = 1, Da =1E-3, R

k

= 1, Pr = 0.71,
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Space accuracy

Dof e(c) rate e(u) rate e(!) rate e(p) rate Iter

Algorithm 1 (B1-ADR1)

51 1.3240 – 5.6127 – 22.3124 – 1.5630 – 5
163 0.9662 0.4542 4.0102 0.4849 17.2105 0.3742 0.9481 0.7215 6
579 0.5177 0.9002 2.1811 0.8786 9.5741 0.8439 0.4777 0.9894 5

2179 0.2553 1.0197 1.1136 0.9695 4.9105 0.9591 0.2537 0.9772 6
8451 0.1274 0.9834 0.5599 0.9924 2.4655 0.9702 0.1304 0.9828 6

33283 0.0617 0.9845 0.2804 0.9981 1.2361 0.9891 0.0664 0.9574 6
132099 0.0315 0.9776 0.1404 0.9976 0.6117 0.9953 0.0341 0.9599 6
526339 0.0157 1.0002 0.0716 0.9701 0.3058 0.9987 0.0180 0.9617 7

Algorithm 2 (B2-ADR2)

36 16.8527 – 5.6124 – 22.3284 – 2.3027 – 8
100 14.1156 0.2556 4.0105 0.4848 17.2265 0.3742 1.1871 0.9558 5
324 7.3737 0.9368 2.1812 0.8786 9.5974 0.8439 1.1215 0.0819 5

1156 3.7222 0.9862 1.1139 0.9694 4.9365 0.9591 0.5807 0.9496 6
4356 1.8655 0.9965 0.5602 0.9416 2.4860 0.9896 0.2933 0.9853 6

16900 0.9333 0.9991 0.2827 0.9863 1.2452 0.9974 0.1470 0.9958 5
66564 0.4667 0.9997 0.1488 0.9321 0.6229 0.9993 0.0736 0.9987 4

264196 0.2333 0.9999 0.1644 0.9557 0.3114 0.9998 0.0368 0.9991 4

Time accuracy

�t E(�) rate Iter E(�) rate Iter

Alg. 1 (B1-ADR1) Alg. 2 (B2-ADR2)

1 28.4456 – 6.1 32.8502 – 5.8
0.1 16.3242 0.6877 5.5 20.5543 0.7796 5.6

0.01 8.2311 0.9425 6.2 10.3370 0.9137 5.6
0.001 4.2832 0.9203 6.2 5.6941 0.9426 5.8

0.0001 2.1655 0.9849 6.1 2.3681 0.9832 5.8

Table 1: Accuracy test. Errors with respect to manufactured exact solutions, convergence rates, and iteration count until
convergence (with a residual tolerance of 1e-6), for two di↵erent strategies solving the ADR-Brinkman coupled problem,
either with Algorithm 1 (B1-ADR1) solver based on (2.4) (where Iter denotes the number of Newton steps to converge in
the monolithic ADR solver), or Algorithm 2 (B2-ADR2) based on formulation from (2.5) (where Iter stands for the required
reaction step sub-iterations). The iteration count in the bottom table refers to average number of steps.

✏ = 0.5, Ra = 100, Gr = Ra/(PrDa), we use a timestep �t =1E-3 and a structured grid of meshsize
h = 1/100, and let the buoyancy term N vary. By �

MONO
h

and �

SPLIT
h

we will denote the finite element
solution (at the final time T = 0.5) generated by the fully monolithic approach, and the operator splitting
method (B1-ADR2), respectively. A comparison is then performed in terms of the evolution of global
errors defined as the L2� norm of the di↵erence between the two solutions e(�) = k�MONO

h

� �

SPLIT
h

k,
where the approximation produced by the monolithic method is considered as a reference solution. In
Figure 5.2 we report the temporal evolution of e(�) for di↵erent values of the buoyancy N 2 {0, 2, 5, 10}.
As N increases, the error grows, implying that the coupling strength a↵ects substantially the quality of
the solution generated by the segregated solver. For reference we also depict each individual field of the
numerical solution generated with the splitting method, shown at the final time T = 0.5, in Figure 5.1.

The results of the finite element model proposed are compared with published results on the purely
thermal problem (decoupled thermal and mass N = 0). Consider the square domain ⌦ = (0, 1)2 and set
the boundary conditions as:

c1 = c2 = 1 : x = 0, c1 = c2 = 0 : x = 1, u = 0 : @⌦.
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Figure 5.1: Example 1A. Double di↵usion in a porous cavity, 2D case. Approximate solutions at the final time (brine
concentration, temperature, pressure, velocity components, and vorticity).
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Figure 5.2: Example 1A. Evolution of the norm of the solution �h in the double di↵usion problem with high buoyancy
N = 10, using both the monolithic and the splitting method (B1-ADR2) (left panel). On the right we plot the evolution of
the error between the monolithic and splitting solutions, e(�).

We fix the parameters N = 0, Le = 10, µ = ⇤ = 1, R
k

= 1, Pr = 0.71, ✏ = 0.5, Ra = 100, Gr = Ra/(PrDa)
and let vary Da 2 {10�1, 10�3, 10�5} and Ra 2 {100, 200}. The comparisons are based on the average
Nusselt and Sherwood numbers:

Nu = �
Z 1

0

@c1
@x

|
x=0 dy, Sh = �

Z 1

0

@c2
@x

|
x=0 dy. (5.1)

The (B1-ADR2) scheme is used on a regular mesh containing 20000 triangles, considering a timestep of
�t = 0.01 and the system is run until T = 2. The computed numbers are collected in Table 2.
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Da Ra Reference Nu Computed Nu Reference Sh Computed Sh

10�1 100 1.52 1.52 5.56 5.60
200 2.07 2.10 7.32 7.50

10�3 100 2.96 3.01 12.33 11.90
200 4.43 4.64 17.58 16.57

10�5 100 3.11 3.13 13.40 13.25
200 4.96 5.01 19.52 19.25

Table 2: Example 1A. Average Nusselt and Sherwood numbers Nu and Sh obtained with the (B1-ADR2) splitting in the
case of decoupled mass and heat transfer processes (N = 0, Le = 10) and comparison against reference results published in
Shao et al. [30].

0.33

0.659

0.01

1.00
c

0.33

0.659

0.01

1.00
c

-90.81

193.7

-4e+02

5e+02
p

1.643

3.129

0.2

4.6
u Magnitude

1.821

3.642

0.0

5.5
u Magnitude

10.96

0

22
w

Figure 5.3: Example 1B. Double di↵usion in a porous enclosure, 3D case. Approximate solutions at the final time (brine
concentration, temperature, pressure, velocity streamlines, velocity magnitude, and vorticity magnitude).

We also carry out a simulation of double-di↵usion-driven natural convection in a porous 3D enclosure.
The problem setting follows [21], and we reuse most of the parameters from the 2D computation, except
for Ra = 1e4 and N = 1. The structured tetrahedral mesh discretizing the domain ⌦ = (0, 0.75)3 consists
of 295488 elements and 50653 vertices, and we employ a fixed timestep of �t = 1E� 3. A portray of the
generated solutions (using Algorithm 2 and the solver (B2-ADR2)) is presented in Figure 5.3, indicating
well-resolved profiles and absence of spurious oscillations.

5.2. Exothermic reaction-di↵usion fronts in porous media

Let us now consider a rectangular domain ⌦ = (0, L) ⇥ (0, H) and endow (2.1) with the following
specification of di↵usion, reaction, permeability and forcing terms, respectively:

D(c) = diag(1,Le), G(c) = Da f(c1)(�1, 1)T, � =
1

Da
, F (c) = (�

T

� c1)g, (5.2)
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where f(c1) = 36c1( + 7c1)(1 � c1)2,  = 1 and g = (0,�1)T. Denoting c1 and c2 respectively as
concentration of solutal and temperature inside the fluid, the system defined by (2.1) and (5.2) represents
the dynamics of a two-dimensional porous medium in the presence of gravity (along the streamwise
direction), in which solutal and thermal densities have a competing behavior. Let us consider initial
concentrations of solutal and high temperature near the top of the rectangular domain

c0
i

(x, y) =

(
0.999 + ⇣

i

(0.001) if H � ✏  y  H,

0 otherwise
, i = 1, 2,

where ⇣1, ⇣2 are random variables uniformly distributed in the interval [0, 1]. The resulting chemical front
moves downwards invading the fresh reactants. Instabilities result from the competition between solutal
and thermal e↵ects through the kinetic term f(c1) and the buoyancy term (�

T

�c1)g. Downward traveling
fronts are buoyantly unstable and develop solutal density fingers in time, as evidenced in Figure 5.4. Model
and numerical parameters are given as H = 1000, L = 2000, �t = 40, T = 8000, Le = 8, Da = 0.001,
�
T

= 5.

Because the di↵usion matrix is constant and the reaction term is highly nonlinear, we numerically
solve this problem using the sub-splitting for the ADR problem described in Section 4.2 leading to the
global (B1-ADR2) solver.

The domain is discretized into 26848 elements with 13675 vertices. The number of degrees of freedom
for the Brinkman problem is 81045, while for the ADR is 27350. In Figure 5.5 we report on the CPU
times for solving the Brinkman-ADR problem defined by (5.2) using the (B1-ADR2) solver with the inner
splitting of the ADR problem into a pure advection-di↵usion phase and into a pure reaction phase (ADR2).
We notice that the computational cost of the nonlinear, pure reaction phase is much higher than that of
the linear advection-di↵usion phase. As a matter of fact, the rate of convergence of the Newton-Raphson
iterative procedure to solve the former is only linear in the sense that kcn+1,k+1

h

� c

n+1,k
h

kL2(⌦) ⇡1E-k
(i.e. to reach k digits of precision in the solution of the pure reaction problem approximately k Newton-
Raphson iterations are needed), as shown in Figure 5.5. The evolution of the norms of the concentration,
gradient of the concentration, velocity and vorticity vector are shown in Figure 5.6. In correspondence
with the developing of finger instabilities, there is a peak in krc

h

kL2(⌦) and a subsequent decay towards
a spatially homogeneous configuration.

The e↵ects of modifying the size ratio (typically on the wavenumber of the solutions) are observed in
the wide fingers displayed in Figure 5.7.

5.3. Bioconvection of oxytactic bacteria

For our next round of simulations, let us consider a rectangular box where both bacteria and oxygen
coexist within a porous array of fixed particles, filled with an incompressible fluid. After removing the
top lid of the box, an interaction between bacteria and the di↵usion of oxygen into the liquid onsets
the formation of high bacterial concentrations moving towards the bottom of the box. As proposed in
[16], an adequate model for this phenomenon is (2.1) with a cross-di↵usion term, where we identify the
concentration of bacteria with the field c1 and that of oxygen with c2. The di↵usion, reaction, and
remaining concentration-dependent coe�cients are

D(c) =

✓
D1 �↵r(c2)c1
0 D2

◆
, G(c) = � r(c2)

✓
0
�1

◆
, � =

1

Sc
, F (c) = � c1g,

where r(c2) =
1

2

 
1 +

c2 � c⇤2p
(c2 � c⇤2)

2 + "2

!
and g = (0,�1)T.

It is known (cf. [16]) that for suitable parameters, the solution of the ADR problem c1, c2 converges
to a steady-state solution (homogeneous in x) of the following system:

�c1 = ↵r · [c1r(c2)rc2], ��c2 = �r(c2)c1,
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Figure 5.4: Example 2A. Exothermic fingers within porous media. Snapshots of concentration c1 at di↵erent times.
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Figure 5.5: Example 2A. Evolution of the required CPU time for the solution of the Brinkman problem using (B1) and
for the ADR problem using the sub-splitting into a pure Advection-Di↵usion phase and a pure Reaction phase (ADR2) at
each time step. Number of Newton-Raphson iteration needed to reach convergence in the pure Reaction phase with a fixed
tolerance tol= 1e� 10.

where � = D2/D1. Let us consider the domain ⌦ = [0, 2]⇥ [0, 1], along with the initial conditions

c01(x, y) =

(
1 if y � 0.501� 0.01 sin((x� 0.5)⇡),

0.5 otherwise
, c02(x, y) = 1.

Fixing the parameters � = 10, � = 1, � = 418 and Sc = 7700, and varying ↵ leads to such a quasi-
stationary solution. The splitting (B1-ADR1) with fully implicit treatment of the ADR system, described
in Algorithm 1, is run until convergence to a steady-state solution, using �t =1E-3. The vertical profiles
of the cell c1 density and oxygen c2 at t = 0.22 for ↵ = {1, 2, 5.952} are shown in Figure 5.8.

The increase in the value of ↵ (with � and � fixed) indicates that the directed cell swimming increases
relative to the di↵usive swimming. Thus, as ↵ increases, the cell density near the surface increases, the
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Figure 5.7: Example 2B. Exothermic fingers within porous media. Snapshots of concentration c1 and velocity streamlines
computed at di↵erent time steps.

cells vacate the lower regions of the chamber more rapidly, and less overall oxygen consumption occurs
in these regions. These results are in qualitative agreement with [22, Figure 7].

If we assign the model parameters ↵ = 10,� = 10, � = 1000, � = 5 and Sc = 500, the solution of
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� = 418, Sc = 7700, and ↵ = 1, 2, 5.952.
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Figure 5.9: Example 3A. Plot of the (rescaled) norm of the solution �h over time (left) and number of Newton-Raphson
iterations in the solution of the monolithic scheme (ADR1) (right).

the ADR equations shows bioconvection patterns evolving in time. At around t = 0.2 the solution starts
developing instabilities, at t = 0.25 a drop of bacterial concentration c1 starts falling down and hits the
bottom of the chamber at t = 0.3. In Figure 5.9 (left) we report the scaled norm of the solution k�

h

k2. It
is evident that k�

h

k2 has a peak, which is in correspondence to the development of solution instabilities
due to spatial inhomogeneity. In Figure 5.9 (right) we show the number of Newton-Raphson iterations to
reach a solution of the ADR monolithic system using the (ADR1) solver, within a tolerance of tol =1E-
13. We can observe an increase of the number of iterations at the onset of instabilities generated by the
strongly nonlinear behaviour of the system.

Snapshots of the numerical solutions obtained with the splitting method (B1-ADR1) are displayed in
Figure 5.10. Even if the oxygen distribution does not show a very marked gradient in the x�direction,
the vorticity plots (bottom center panels) indicate a high flow recirculation at the center of the domain.
We also stress that modifying the aspect ratio of the box influences the onset of fingering phenomena in
the system, as clearly seen from Figure 5.11.

Another set of simulations (referred to as Example 3B), is performed, now on a 3D setting. We
consider a cylindrical geometry of radius 0.5 and height 0.75, discretized into a tetrahedral mesh of
169392 cells and 29109 points. The configuration of the governing equations and specification of constant
and variable coe�cients is given as follows: ↵ = 0.25, � = 1.5, � = 1500, D1 = 0.005, D2 = 0.4,
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Figure 5.10: Example 3A. Snapshots at mid (top) and advanced (bottom) times of cell density, oxygen concentration,
velocity magnitude, vorticity, and pressure.

S = 7700, � = S�1 ⇥ 1E 6, s? = 0.3, µ = 2. A fixed timestep of �t = 5E-4 is used, and we assess
the capabilities of two di↵erent coupling methods based on the split Brinkman solvers defined by (2.4)
(B1) and (2.5) (B2), respectively. For the first coupling (B1), the solve involves the preliminary assembly
of the Brinkman system (arising from a finite element discretization using lowest order Raviart-Thomas
approximation of velocity, first degree Nédélec elements for vorticity, and piecewise constants for pressure)
representing 678020 degrees of freedom, and the assembly of the ADR equations, where the piecewise
linear discretization of the bacteria and oxygen concentrations leads to a system of 58218 unknowns.
The second coupling strategy (B2) has a Brinkman solve split into a vorticity matrix of size 193724 (also
using Nédélec finite elements), a pressure solution with 29109 degrees of freedom, and a matrix-vector
multiplication to project the reconstructed velocity on the Raviart-Thomas space. As a reference, let us
point out that the monolithic solver requires the assembly and solution (at each Newton step) of a system
with 736238 degrees of freedom.

We simulate the evolution of the system starting from an initial uniform oxygen concentration c2 = 1
and an initial distribution of bacteria packed in a ball of radius 0.2 and placed near the top of the vessel.
Snapshots of the concentration of bacteria and the associated flow patterns, computed with the first
staggered solution method (B1-ADR1), are portrayed in Figure 5.12. We observe that as the bacteria
propagate downwards, the velocity and vorticity fields indicate recirculating zones following the high
gradients of c1, whereas the pressure exhibits smooth transitions from high to low values on the bottom
and top of the domain, respectively. As soon as the high bacteria concentration reaches the bottom of
the vessel (occurring approximately at t = 0.2), the dynamics of the system implies a slightly loosleier
coupling between flow and transport. This is particularly noticed in the top right plot of Figure 5.13,
where the CPU times for assembly and solution of the Brinkman and ADR systems displays a slight step
down happening around t = 0.2. The timings reported in the top panels of the figure encompass the
RHS assembly and solution for the Brinkman equations, and the assembly of the sti↵ness matrix and
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Figure 5.11: Example 3A. Patterns generated by the bacterial chemotaxis towards oxygen concentration on a domain with
modified aspect ration. Four snapshots of the obtained solutions at di↵erent times are presented.

solution of the ADR equations. On top of these values, the initial assembly of the sti↵ness matrix of
the Brinkman problem and the RHS of the ADR equations represents an average of additional 124.91
time units for the first partitioned solver, and 28.31 time units for the second decoupling strategy. In
general, the CPU time for the flow solution is roughly half that for the transport. We also observe that
for the second coupling (B2) the CPU usage for the total solution is approximately 75% lower than the
one in the first coupling. The second row of Figure 5.13 presents the history of bacteria concentration,
oxygen quantity, and vorticity magnitude computed on the point (x0, y0, z0) = (0.6, 0.6, 0.6), indicating
that the solution itself di↵ers from one coupling to the other. As the simulation was performed using
lowest-order elements, we show the transients obtained with the second Brinkman splitting with and
without additional projection of the velocity. In any case, splitting (B2) produces a slower decay of the
bacteria concentration and vorticity fronts, but the velocity projection generates profiles closer to those
obtained with splitting (B1).
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Figure 5.12: Example 3B. Snapshots at three instances of cell density (left), velocity patterns and vorticity magnitude
(middle columns), and pressure distribution (right panels).

6. Concluding remarks

In this paper we have presented a set of coupling strategies for the partitioned solution of advection-
reaction-di↵usion equations interacting within viscous flows in porous media governed by Brinkman
equations in their velocity-vorticity-pressure formulation. The flow equations follow a discretization with,
either a family of RT0�ND1�P0 finite elements (encoded in the (B1) solver), or via a split between two
elliptic solvers for vorticity and pressure plus a postprocessing yielding velocity (referred to as the (B2)
solver). In turn, the ADR system is solved with a primal finite element method using piecewise linear
approximations of the species concentration, and a splitting of reaction and di↵usion steps is conducted in
di↵erent ways, according to the coupling strength exhibited by each particular application. Both accuracy
and robustness of the proposed schemes have been demonstrated by means of several numerical tests,
involving bioconvection of oxytactic bacteria and doubly-di↵usive viscous flows in porous media. A set of
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Figure 5.13: Example 3B. Evolution of the required CPU time (adimensional units) for the solution of the flow and transport
problems at each time step (solid and dashed lines, respectively), for the first (B1-ADR1) and second (B2-ADR1) splitting
algorithms (top left and top right plots, respectively). The bottom panels show the evolution of the bacteria concentration,
oxygen, and vorticity magnitude on a single point near the domain center, using also splitting (B2) with and without
velocity projection.

comparisons between di↵erent coupling strategies has been carried out, and quantified in terms of memory
usage, iteration count, speed of calculation, and dynamics of the energy norm in the system. These
examples convey that split-based formulations are substantially advantageous for the family of problems
at hand. Further extensions of this work include ADR systems where the di↵usion depends on the strain
rate, and the generalization of Brinkman equations to linear and nonlinear poroelasticity describing flow
within deformable porous media, and for which a large range of applications is readily envisaged. In
terms of numerical approximations, we also foresee the incorporation of conservative schemes for flow
and transport in the spirit of the recent contributions [9, 32, 33].
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