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Abstract

Let b ≥ 2 be an integer and let sb(n) denote the sum of the digits
of the representation of an integer n in base b. For sufficiently large
N , one has

Card{n ≤ N : |s3(n)− s2(n)| ≤ 0.1457205 log n} > N0.970359.

The proof only uses the separate (or marginal) distributions of the
values of s2(n) and s3(n).

1 Introduction

For integers b ≥ 2 and n ≥ 0, we denote by “the sum of the digits of n in
base b” the quantity

sb(n) =
∑
j≥0

εj, where n =
∑
j≥0

εjb
j with ∀j : εj ∈ {0, 1, . . . , b− 1}.

Our attention on the question of the proximity of s2(n) and s3(n) comes
from the apparently non related question of the distribution of the last non
zero digit of n! in base 12 (cf. [2] and [3]).1

1Indeed, if the last non zero digit of n! in base 12 belongs to {1, 2, 5, 7, 10, 11} then
|s3(n)− s2(n)| ≤ 1; this seems to occur infinitely many times.
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Computation shows that there are 48 266 671 607 positive integers up
to 1012 for which s2(n) = s3(n), but it seems to be unknown whether there
are infinitely many integers n for which s2(n) = s3(n) or even for which
|s2(n)− s3(n)| is significantly small.

We do not know the first appearance of the result we quote as Theorem
1; in any case, it is a straightforward application of the fairly general main
result of N. L. Bassily and I. Kátai [1]. We recall that a sequence A ⊂ N of
integers is said to have asymptotic natural density 1 if

Card{n ≤ N : n ∈ A} = N + o(N).

Theorem 1. Let ψ be a function tending to infinity with its argument. The
sequence of natural numbers n for which(

1

log 3
− 1

log 4

)
log n− ψ(n)

√
log n ≤ s3(n)− s2(n)

≤
(

1

log 3
− 1

log 4

)
log n+ ψ(n)

√
log n

has asymptotic natural density 1.

Our main result is that there exist infinitely many n for which |s3(n)− s2(n)|
is significantly smaller than

(
1

log 3
− 1

log 4

)
log n = 0.18889... log n. More pre-

cisely we have the following:

Theorem 2. For sufficiently large N , one has

Card{n ≤ N : |s3(n)− s2(n)| ≤ 0.1457205 log n} > N0.970359. (1)

The mere information we use in proving Theorem 2 is the knowledge of
the separate (or marginal) distributions of (s2(n))n and (s3(n))n, without
using any further information concerning their joint distribution.

In Section 2, we provide a heuristic approach to Theorems 1 and 2; the
actual distribution of (s2(n))nand (s3(n))n is studied in Section 3. The proof
of Theorem 2 is given in Sections 4.

Let us formulate three remarks as a conclusion to this introductory sec-
tion.
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It seems that our present knowledge of the joint distribution of s2 and s3
(cf. for exemple C. Stewart [5] for a Diophantine approach or M. Drmota [4]
for a probabilistic one) does not permit us to improve on Theorem 2.

Theorem 2 can be extended to any pair of distinct bases, say q1 and q2:
more than computation, the Authors have deliberately chosen to present an
idea to the Dedicatee.

Although we could not prove it, we believe that Theorem 2 represents the
limit of our method.

Acknowledgements The authors are indebted to Bernard Bercu for sev-
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notion to be developped later. They also thank the Referees for their con-
structive comments. The first, third and fourth authors wish to thank the
Indo-French centre CEFIPRA for the support permitting them to collabo-
rate on this project (ref. 5401-A). The first named author acknowledges with
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2 A heuristic approach

As a warm-up for the actual proofs, we sketch a heuristic approach. A
positive integer n may be expressed as

n =

J(n)∑
j=0

εj(n)bj, with J(n) =

⌊
log n

log b

⌋
.

If we consider an interval of integers around N , the smaller is j the more
equidistributed are the εj(n)’s, and the smaller are the elements of a family
J = {j1 < j2 < · · · < js} the more independent are the εj(n)’s for j ∈
J . Thus a first model for sb(n) for n around N is to consider a sum of⌊
logN
log b

⌋
independent random variables uniformly distributed in {0, 1, . . . , b−

1}. Thinking of the central limit theorem, we even consider a continuous
model, representing sb(n), for n around N by a Gaussian random variable
Sb,N with expectation and variance given by

E (Sb,N) =
(b− 1) logN

2 log b
and V (Sb,N) =

(b2 − 1) logN

12 log b
.
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In particular

E (S2,N) =
logN

log 4
and E (S3,N) =

logN

log 3
,

and their standard deviations have the order of magnitude
√

logN .

Towards Theorem 1. In [1], it is proved that a central limit theorem
actually holds for sb; more precisely, the following proposition is the special
case of the first relation in the main Theorem of [1], with f(n) = sb(n) and
P (X) = X.

Proposition 1. For any positive y, as x tend to infinity, one has

1

x
Card

{
n < x : |sb(n)− E (Sb,n)| < y (V (Sb,n))1/2

}
→ 1√

2π

∫ y

−y
e−t

2/2dt.

Theorem 1 easily follows from Proposition 1: the set under our consideration
is the intersection of 2 sets of density 1.

Towards Theorem 2. If we wish to deal with a difference |s3(n)−s2(n)| <
u log n for some u <

(
1

log 3
− 1

log 4

)
we must, by what we have seen above,

consider events of asymptotic probability zero, which means that a heuris-
tic approach must be substantiated by a rigorous proof. Our key remark
is that the variance of S3,N is larger than that of S2,N ; this implies the
following: the probability that S3,N is at a distance d from its mean is
larger that the probability that S2,N is at a distance d from its mean. So,

we have the hope to find some u <
(

1
log 3
− 1

log 4

)
such that the proba-

bility that |S2,N − E(S2,N)| > u logN is smaller than the probability that
S3,N is very close to E(S2,N). This will imply that for some ω we have
|S3,N(ω)− S2,N(ω)| ≤ u logN .

3 On the distribution of the values of s2(n)

and s3(n)

In order to prove Theorem 2 we need
• an upper bound for the tail of the distribution of s2,
• a lower bound for the tail of the distribution of s3.
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3.1 Upper bound for the tail of the distribution of s2

Proposition 2. Let λ ∈ (0, 1). For any

ν > 1− ((1− λ) log(1− λ) + (1 + λ) log(1 + λ)) / log 4

and any sufficiently large integer H, we have

Card{n < 22H : |s2(n)−H| ≥ λH} ≤ 22Hν . (2)

Proof. When b = 2, the distribution of the values of s2(n) is simply binomial;
we thus get

Card
{

0 ≤ n < 22H : s2(n) = m
}

=

(
2H

m

)
.

Using the fact that the sequence (in m)
(
2H
m

)
is symmetric and unimodal plus

Stirling’s formula, we obtain that when m ≤ (1−λ)H or m ≥ (1 +λ)H, one
has (

2H

m

)
≤ HO(1) (2H)2H

((1− λ)H)(1−λ)H((1 + λ)H)(1+λ)H

≤ HO(1)

(
22

(1− λ)(1−λ)(1 + λ)(1+λ)

)H
≤ HO(1)

(
2(1−((1−λ) log(1−λ)+(1+λ) log(1+λ))/2 log 2)

)2H
.

Relation (2) comes from the above inequality and the fact that the left hand
side of (2) is the sum of at most 2H such terms.

3.2 Lower bound for the tail of the distribution of s3

Proposition 3. Let L be sufficiently large an integer. We have

Card{n < 3L : s3(n) = bL log 3/ log 4c} ≥ 30.970359238L. (3)

Proof. The positive integer L being given, we write any integer n ∈ [0, 3L) in
its non necessarily proper representation, as a chain of exactly L characters,
`i(n) of them being equal to i, for i ∈ {0, 1, 2}, the sum `0(n) + `1(n) + `2(n)
being equal to L, the total number of digits in this representation2. One has

Card
{

0 ≤ n < 3L : s3(n) = m
}

=
∑

`0+`1+`2=L
`1+2`2=m

L!

`0!`1!`2!
. (4)

2For example, when L = 5, the number ”sixty” will be represented as 02020. Happy
palindromic birthday, Robert!
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In order to get a lower bound for the left hand side of (4), it is enough to
select one term in its right hand side. We choose

l2 = b0.235001144Lc ; l1 = bL log 3/ log 4c − 2 l2 ; l0 = L− l1 − l2.

A straightforward application of Stirling’s formula, similar to the one used
in the previous subsection, leads to (3).

4 Proof of Theorem 2

Let N be sufficiently large an integer. We let K = blogN/ log 3c − 2 and
H = b(K − 1) log 3/ log 4c+ 2. We notice that we have

N/81 ≤ 3K−1 < 3K < 22H ≤ N. (5)

We use Proposition 2 with λ = 0.14572049 log 4, which leads to

Card{n ≤ 22H : |s2(n)−H| ≥ λH} ≤ 20.970359230×2H ≤ N0.970359230. (6)

For any n ∈ [2 · 3K−1, 3K) we have s3(n) = 2 + s3(n − 2 · 3K−1) and so it
follows from Proposition 3 that we have

Card{n ∈ [2 · 3K−1, 3K) : s3(n) = H}
= Card{n < 3K−1) : s3(n) = H − 2}
= Card{n < 3K−1) : s3(n) = b(K − 1) log 3/ log 4c}
≥ 30.970359238(K−1) ≥ N0.970359237.

This implies that we have

Card{n ≤ 22H : s3(n) = H} ≥ N0.970359237. (7)

From (6) and (7), we deduce that for N sufficiently large, we have

Card{n ≤ N : |s2(n)− s3(n)| ≤ 0.1457205 log n} ≥ N0.970359.

2
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