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Let b ≥ 2 be an integer and let s b (n) denote the sum of the digits of the representation of an integer n in base b. For sufficiently large N , one has Card{n ≤ N : |s 3 (n) -s 2 (n)| ≤ 0.1457205 log n} > N 0.970359 . The proof only uses the separate (or marginal) distributions of the values of s 2 (n) and s 3 (n).

Introduction

For integers b ≥ 2 and n ≥ 0, we denote by "the sum of the digits of n in base b" the quantity s b (n) = j≥0 ε j , where n = j≥0 ε j b j with ∀j : ε j ∈ {0, 1, . . . , b -1}.

Our attention on the question of the proximity of s 2 (n) and s 3 (n) comes from the apparently non related question of the distribution of the last non zero digit of n! in base 12 (cf. [START_REF] Deshouillers | The least non zero digit of n! in base 12[END_REF] and [START_REF] Deshouillers | A footnote to The least non zero digit of n! in base 12[END_REF]). 11 Computation shows that there are 48 266 671 607 positive integers up to 10 12 for which s 2 (n) = s 3 (n), but it seems to be unknown whether there are infinitely many integers n for which s 2 (n) = s 3 (n) or even for which |s 2 (n) -s 3 (n)| is significantly small. We do not know the first appearance of the result we quote as Theorem 1; in any case, it is a straightforward application of the fairly general main result of N. L. Bassily and I. Kátai [START_REF] Bassily | Distribution of the values of q-additive functions, on polynomial sequences[END_REF]. We recall that a sequence A ⊂ N of integers is said to have asymptotic natural density 1 if

Card{n ≤ N : n ∈ A} = N + o(N ).
Theorem 1. Let ψ be a function tending to infinity with its argument. The sequence of natural numbers n for which

1 log 3 - 1 log 4 log n -ψ(n) log n ≤ s 3 (n) -s 2 (n) ≤ 1 log 3 - 1 log 4 log n + ψ(n) log n
has asymptotic natural density 1.

Our main result is that there exist infinitely many n for which |s 3 (n) -s 2 (n)| is significantly smaller than (

The mere information we use in proving Theorem 2 is the knowledge of the separate (or marginal) distributions of (s 2 (n)) n and (s 3 (n)) n , without using any further information concerning their joint distribution.

In Section 2, we provide a heuristic approach to Theorems 1 and 2; the actual distribution of (s 2 (n)) n and (s 3 (n)) n is studied in Section 3. The proof of Theorem 2 is given in Sections 4.

Let us formulate three remarks as a conclusion to this introductory section.

It seems that our present knowledge of the joint distribution of s 2 and s 3 (cf. for exemple C. Stewart [START_REF] Stewart | On the representation of an integer in two different bases[END_REF] for a Diophantine approach or M. Drmota [START_REF] Drmota | The joint distribution of q-additive functions[END_REF] for a probabilistic one) does not permit us to improve on Theorem 2.

Theorem 2 can be extended to any pair of distinct bases, say q 1 and q 2 : more than computation, the Authors have deliberately chosen to present an idea to the Dedicatee.

Although we could not prove it, we believe that Theorem 2 represents the limit of our method.
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A heuristic approach

As a warm-up for the actual proofs, we sketch a heuristic approach. A positive integer n may be expressed as

n = J(n) j=0 ε j (n)b j , with J(n) = log n log b .
If we consider an interval of integers around N , the smaller is j the more equidistributed are the ε j (n)'s, and the smaller are the elements of a family In particular

J = {j 1 < j 2 < • • • < j s }
E (S 2,N ) = log N log 4 and E (S 3,N ) = log N log 3 ,
and their standard deviations have the order of magnitude √ log N .

Towards Theorem 1. In [START_REF] Bassily | Distribution of the values of q-additive functions, on polynomial sequences[END_REF], it is proved that a central limit theorem actually holds for s b ; more precisely, the following proposition is the special case of the first relation in the main Theorem of [START_REF] Bassily | Distribution of the values of q-additive functions, on polynomial sequences[END_REF], with f (n) = s b (n) and P (X) = X. Proposition 1. For any positive y, as x tend to infinity, one has

1 x Card n < x : |s b (n) -E (S b,n )| < y (V (S b,n )) 1/2 → 1 √ 2π y -y e -t 2 /2 dt.
Theorem 1 easily follows from Proposition 1: the set under our consideration is the intersection of 2 sets of density 1.

Towards Theorem 2. If we wish to deal with a difference

|s 3 (n) -s 2 (n)| < u log n for some u < 1 log 3 -1 log 4
we must, by what we have seen above, consider events of asymptotic probability zero, which means that a heuristic approach must be substantiated by a rigorous proof. Our key remark is that the variance of S 3,N is larger than that of S 2,N ; this implies the following: the probability that S 3,N is at a distance d from its mean is larger that the probability that S 2,N is at a distance d from its mean. So, we have the hope to find some u <

1 log 3 -1 log 4
such that the probability that |S 2,N -E(S 2,N )| > u log N is smaller than the probability that S 3,N is very close to E(S 2,N ). This will imply that for some ω we have

|S 3,N (ω) -S 2,N (ω)| ≤ u log N .
3 On the distribution of the values of s 2 (n) and s 3 (n)

In order to prove Theorem 2 we need • an upper bound for the tail of the distribution of s 2 ,

• a lower bound for the tail of the distribution of s 3 .

3.1 Upper bound for the tail of the distribution of s 2 Proposition 2. Let λ ∈ (0, 1). For any

ν > 1 -((1 -λ) log(1 -λ) + (1 + λ) log(1 + λ)) / log 4
and any sufficiently large integer H, we have

Card{n < 2 2H : |s 2 (n) -H| ≥ λH} ≤ 2 2Hν . (2) 
Proof. When b = 2, the distribution of the values of s 2 (n) is simply binomial; we thus get

Card 0 ≤ n < 2 2H : s 2 (n) = m = 2H m .
Using the fact that the sequence (in m) 2H m is symmetric and unimodal plus Stirling's formula, we obtain that when m ≤

(1 -λ)H or m ≥ (1 + λ)H, one has 2H m ≤ H O(1) (2H) 2H ((1 -λ)H) (1-λ)H ((1 + λ)H) (1+λ)H ≤ H O(1) 2 2 (1 -λ) (1-λ) (1 + λ) (1+λ) H ≤ H O(1) 2 (1-((1-λ) log(1-λ)+(1+λ) log(1+λ))/2 log 2) 2H .
Relation (2) comes from the above inequality and the fact that the left hand side of (2) is the sum of at most 2H such terms.

3.2 Lower bound for the tail of the distribution of s 3 Proposition 3. Let L be sufficiently large an integer. We have Card{n < 3 L : s 3 (n) = L log 3/ log 4 } ≥ 3 0.970359238L .

(3)

Proof. The positive integer L being given, we write any integer n ∈ [0, 3 L ) in its non necessarily proper representation, as a chain of exactly L characters, i (n) of them being equal to i, for i ∈ {0, 1, 2}, the sum 0 (n) + 1 (n) + 2 (n) being equal to L, the total number of digits in this representation2 . One has Card 0 ≤ n < 3 L :

s 3 (n) = m = 0 + 1 + 2 =L 1 +2 2 =m L! 0 ! 1 ! 2 ! . (4) 

1 log 3 Theorem 2 .

 132 -1 log 4 log n = 0.18889... log n. More precisely we have the following: For sufficiently large N , one has Card{n ≤ N : |s 3 (n) -s 2 (n)| ≤ 0.1457205 log n} > N 0.970359 .

  the more independent are the ε j (n)'s for j ∈ J . Thus a first model for s b (n) for n around N is to consider a sum of log N log b independent random variables uniformly distributed in {0, 1, . . . , b -1}. Thinking of the central limit theorem, we even consider a continuous model, representing s b (n), for n around N by a Gaussian random variable S b,N with expectation and variance given by E (S b,N ) = (b -1) log N 2 log b and V (S b,N ) = (b 2 -1) log N 12 log b .

Indeed, if the last non zero digit of n! in base 12 belongs to {1,

2, 5, 7, 10, 11} then |s 3 (n) -s 2 (n)| ≤ 1; this seems to occur infinitely many times.

For example, when L = 5, the number "sixty" will be represented as 02020. Happy palindromic birthday, Robert!

In order to get a lower bound for the left hand side of (4), it is enough to select one term in its right hand side. We choose

A straightforward application of Stirling's formula, similar to the one used in the previous subsection, leads to (3).

Proof of Theorem 2

Let N be sufficiently large an integer. We let K = log N/ log 3 -2 and H = (K -1) log 3/ log 4 + 2. We notice that we have

We use Proposition 2 with λ = 0.14572049 log 4, which leads to

) and so it follows from Proposition 3 that we have

This implies that we have

From ( 6) and (7), we deduce that for N sufficiently large, we have Card{n ≤ N : |s 2 (n) -s 3 (n)| ≤ 0.1457205 log n} ≥ N 0.970359 .
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