On some classes of bipartite unitary operators
Résumé
We investigate unitary operators acting on a tensor product space, with the property that the quantum channels they generate, via the Stinespring dilation theorem, are of a particular type, independently of the state of the ancilla system in the Stinespring relation. The types of quantum channels we consider are those of interest in quantum information theory: unitary conjugations, constant channels, unital channels, mixed unitary channels, PPT channels, and en-tanglement breaking channels. For some of the classes of bipartite unitary operators corresponding to the above types of channels, we provide explicit characterizations, necessary and/or sufficient conditions for membership, and we compute the dimension of the corresponding algebraic variety. Inclusions between these classes are considered, and we show that for small dimensions, many of these sets are identical.