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aEDF R&D, Département AMA, 7 Boulevard Gaspard Monge, 91120 Palaiseau, France
bIMSIA, UMR EDF/CNRS/CEA/ENSTA 9219, Université Paris-Saclay, 828 Boulevard des Maréchaux,
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Abstract

This paper is devoted to the computation of the fast depressurization of water using a two-
fluid model. Such application, which is extensively studied in the nuclear field, involves many
interactions between two phenomena, the mass transfer and the propagation of pressure waves.
A simple but physically-based modelling of the mass transfer for the depressurization of water
is proposed, which relies on the work of Bilicki & Kestin [4] in the homogeneous frame. Four
different experiments have been chosen to assess the proposed model. Three of them study the
depressurisation of hot water in a pressurized pipe. The comparison between converged numerical
results and the experimental data shows a good agreement and demonstrates the ability of the two-
fluid-model to capture the proper mass transfer for a wide range of thermodynamical conditions.
The last test-case is the HDR experiment which considers the depressurization of a full-scale vessel
under the hypothesis of a Loss Of Coolant Accident. The results of an ALE computation show
the ability of the proposed model to retrieve experimental data in both structure and fluid.

1 Introduction

Compressible two-phase flows are involved in many industrial applications such as naval engineering,
petroleum industry, nuclear power generation, automative or aerospace technologies. In the nuclear
field, two-phase flows are mainly steam-water flows in Pressurized Water Reactors (PWR). Since the
1960s, many two-phase flow models have been proposed for nuclear thermal hydraulics. Most of the
modelling efforts have been made to predict the Loss-Of-Coolant-Accident (LOCA) which is one of the
basic failure mode of PWR. In such transient steam-water flows, two main physical phenomena are
involved and highly interact with each other, the propagation of pressure waves and the mass transfer.
The interactions with the structure surrounding the fluid should also be taken into account when the
amplitudes of pressure waves are strong.

Two different approaches are usely distinguished to model two-phase flows: the homogeneous
approach and the two-fluid approach. Models based on the first approach consider the mixture of
the two phases as one fluid assuming different equilibria between both phases. In the second approach,
no phasic equilibrium is assumed and two different fluids are considered. As a consequence, many
transfers between the two phases, including the mass transfer, require proper modelling. Ransom and
Hicks [33] proposed one of the first models based on this second approach. Since then, the two-fluid
approach has gained interest and many models can be found in the literature, see [3, 25, 20, 36, 18, 16]
among others.

The present work is dedicated to the modelling of the fast depressurization of water following
the two-fluid approach. Thus, the governing equations of the model are obtained using a classical
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statistical averaging of the local conservation laws [23, 11]. The corresponding model is hyperbolic but
cannot be written in a fully conservative form. It also requires closure laws for interfacial quantities
involved in the non-conservative terms and for the source terms. Based on the comparison of different
two-fluid models on steam-water transients proposed in [29], the closure laws of the Baer-Nunziato
model [3] have been chosen for the interfacial pressure and velocity. As in previous work [22, 7], the
modelling of the source terms is based on relaxation phenomena to comply with the entropy inequality.
Thus, several relaxation time scales are involved in the transfers between phases and require proper
modelling. Evaluations of the pressure and velocity relaxation time scales can be found in [29] whereas
the chemical potential relaxation, which corresponds to the mass transfer, requires further work. In
order to propose simple but physically-based evaluation of this time scale, we focus on the work of
Bilicki and co-authors [4, 5, 10] on the Homogeneous Relaxation Model. Based on the same approach,
a simple evaluation of the temperature relaxation time scale is also proposed. As in [7], particular
attention is paid to the validation of the proposed model. Four different experiments studying the fast
depresussurisazion of water have been chosen to that end.

Hence the paper is organized as follows. We first present the governing equations of the two-fluid
model with the complete sets of closure laws including the non-conservative terms and the source terms.
The main mathematical properties of the model are briefly recalled. Then, the evaluation of the four
relaxation time scales involved in the source terms are discussed. The modelling of the mass transfer
in the current model is compared, under some hypothesis, to the one proposed by Bilicki et al. [4] in
the Homogeneous Relaxation Model. Thus, an evaluation of the chemical potential relaxation time
scale is obtained. The second section of the paper is dedicated to the validation of the proposed model
with the Bilicki-like mass transfer. The numerical methods used for the computation of the two-fluid
model are briefly presented with associated references. Four experiments have been chosen to assess
the proposed model. Three of them study the fast depressurization of hot water from a pressurized
pipe: the Canon, Super-Canon and Edwards pipe experiments. 1D converged numerical results of the
two-fluid model with and without the Bilicki-like mass transfer model are compared to the experimental
data. The comparison shows that the proposed Bilicki-like mass transfer significantly improves the
results of the two-fluid model for a wide range of thermodynamical states. The last test-case is the
HDR experiment which studies the depressurization of a full-scale vessel under the hypothesis of a
LOCA. Both pressures in the fluid and diplacements of internal structures are measured in the vessel
during the experiment allowing to focus on the mechanical consequences of a LOCA. A 3D Arbitrary
Lagrangian-Eulerian computation taking into account the Fluid-Structure Interactions is carried out
and numerical results show a fair agreement with experimental measurements in both structure and
fluid.

2 The two-fluid model

The derivation of two-fluid models is based on classical statistical averaging of local conservation laws
[23, 11]. Relevant closure laws are required in the construction and the entropy inequality is a major
tool to derive them [18, 16, 24, 31].

2.1 Governing equations

The two-fluid model considered here that does not assume any equilibrium between the two phases.
Throughout the paper, the subscript k refers to the phase (k = v for the vapor and k = l for the
liquid). αk ∈ ]0, 1[ is the statistical fraction of phase k and complies with the following relation:

αv + αl = 1

We denote ρk the mean density of phase k, uk its mean velocity, pk its mean pressure and ek its mean
specific total energy complying with:

ek = εk +
1

2
u2
k (1)
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εk is the mean specific internal energy of phase k which is linked to the mean density and pressure of
phase k by an Equation Of State (EOS):

εk = εk (ρk, pk) (2)

Based on the EOS, the celerity ck of acoustic waves as well as the specific entropy sk of phase k can
be defined. They comply with the following relations:

ρkc
2
k = (∂pkεk)

−1

(
pk
ρk
− ρk (∂ρkεk)

)
(3)

c2k (∂pksk) + (∂ρksk) = 0 (4)

Thus, the governing equations of the two-fluid model read:
∂t (αk) + uI ∂x (αk) = S1,k

∂t (αkρk) + ∂x (αkρkuk) = S2,k

∂t (αkρkuk) + ∂x
(
αkρku

2
k + αkpk

)
− pI ∂x (αk) = S3,k

∂t (αkρkek) + ∂x (αkρkekuk + αkpkuk)− pIuI ∂x (αk) = S4,k

(5)

Many closure laws for the interfacial velocity and pressure (uI , pI) have been proposed in the literature
[3, 6, 19, 36] and some of them have been compared for steam-water transients in [29]. In the sequel,
we consider the closure laws proposed by Baer & Nunziato [3], given by the following:

(uI , pI) = (ul, pv) (6)

The closure laws for the source terms Sj,k (j = 1, 4) on the right-hand side are the following:

S1,k = Φk
S2,k = Γk
S3,k = Dk + UΓk
S4,k = Qk + UDk +HΓk − pIΦk

(7)

where U = 1
2 (uv + ul) and H = 1

2 (uvul). The different contributions are written as relaxation phe-
nomena:

Φk =
1

τppref
αkαj (pk − pj)

Γk =
1

τµµref

mkmj

mk +mj
(µj − µk)

Dk =
1

τu

mkmj

mk +mj
(uj − uk)

Qk =
1

τT

mkCV kmjCV j
mkCV k +mjCV j

(Tj − Tk)

, j 6= k (8)

where CV k is the heat capacity at constant volume of phase k, mk = αkρk and µk =
gk
Tk

. Tk is the

temperature of phase k and gk its specific Gibbs enthalpy:

1

Tk
= (∂pkεk)

−1
(∂pksk) (9)

gk = εk +
pk
ρk
− Tksk (10)

Each relaxation phenomenum involves a relaxation time scale τϕ which drives the quantity ϕ (ϕ =
p, µ, u, T ) towards the phasic equilibrium. Finally pref and µref are respectively a reference pressure
and a reference potential.
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2.2 Main properties of the model

We may now recall the main properties of the two-fluid model (5) with the Baer-Nunziato closure law
(6). The first property focuses on the entropy of the global model whereas the other properties deal
with the convective part of the model which was first studied by Embid & Baer [13].

• Entropy inequality
Smooth solutions of system (5) comply with an entropy inequality:

∂t

(∑
k

mksk

)
+ ∂x

(∑
k

mkskuk

)
= (µl − µv) Γv

+
1

Tl
(pv − pl) Φv

+

(
1

2Tv
+

1

2Tl

)
(ul − uv)Dv

+

(
1

Tv
− 1

Tl

)
Qv ≥ 0 (11)

• Hyperbolicity and structure of waves
The convective part of system (5):

∂t (αk) + uI ∂x (αk) = 0
∂t (αkρk) + ∂x (αkρkuk) = 0
∂t (αkρkuk) + ∂x

(
αkρku

2
k + αkpk

)
− pI ∂x (αk) = 0

∂t (αkρkek) + ∂x (αkρkekuk + αkpkuk)− pIuI ∂x (αk) = 0

(12)

is hyperbolic. It admits six real eigenvalues:

λ1 = uv − cv, λ2 = uv, λ3 = uv + cv,
λ4 = ul − cl, λ5,6 = ul, λ7 = ul + cl

(13)

and associated righteigenvectors span the whole space R7 if |ul − uv| 6= cv. Fields associated
with eigenvalues λ2,5,6 are linearly degenerate (LD) whereas fields associated with eigenvalues
λ1,3,4,7 are genuinely non linear (GNL).

• Jump conditions
Unique jump conditions hold within each isolated field. Moreover, classical single phase jump
relations hold in the GNL fields:

[αk] = 0
−σ [ρk] + [ρkuk] = 0
−σ [ρkuk] +

[
ρku

2
k + pk

]
= 0

−σ [ρkek] + [ρkekuk + pkuk] = 0

(14)

where [ϕ] = ϕR−ϕL is the jump between the Left and Right states on each side of a shock wave
traveling at speed σ.

The three properties are crucial from both theoretical and numerical points of view. We underline
the fact that the 5,6-field is LD ; thus the non-conservative products of the model are properly defined
and not active in GNL fields. More details on those properties could be found in [6, 16, 21].
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2.3 Evaluation of relaxation time scales

This section is dedicated to the evaluation of the four relaxation time scales τϕ (ϕ = p, µ, u, T ) in the
case of the fast depressurization of water. Such an evaluation is difficult to provide and most available
work in the literature deals with instantaneous relaxation [27, 32, 9]. Since the underlying physical
phenomena are far from being instantaneous in many applications, we only consider non-instantaneous
relaxations in the present work. For pressure and velocity relaxations, we consider the time scales used
in [29] for steam-water transients. The chemical potential relaxation corresponds to the mass transfer
Γk and a new evaluation of its time scale is proposed based on the work of Bilicki et al. [4, 10]. Finally,
we propose a simple evaluation of the temperature relaxation time scale.

2.3.1 Pressure relaxation

Based on [17], the pressure relaxation time scale is evaluated using the Rayleigh-Plesset equation,
which considers the evolution of a bubble in an infinite medium. It provides the following evaluation:

τppref =



4
3ηl if αv < αmin

4
3ηv if αv > αmax(

αmax − αv
αmax − αmin

)
4
3ηl +

(
αv − αmin
αmax − αmin

)
4
3ηv otherwise

(15)

where ηk is the dynamic viscosity of phase k.

2.3.2 Velocity relaxation

The behavior of a bubble in an infinite medium is also considered for the velocity relaxation. Thus the
evaluation of the corresponding time scale is based on the drag equation. More precisely, we consider
the following model proposed in the NEPTUNE-CFD code [26] for liquid-gas separated flows:

Dk = αkαjFD(αv) (uj − uk) , j 6= k (16)

where the function FD of αv is defined as follows:

FD(αv) =



FD,v(1− αv) if αv < αmin

FD,l(αv) if αv > αmax(
αmax − αv
αmax − αmin

)
FD,v(1− αmin) +

(
αv − αmin
αmax − αmin

)
FD,l(αmax) otherwise

The function FD is equal to the function FD,p(αq) in the case of isolated spherical inclusions of phase
p in the continuous phase q. The following classic correlations are used [1, 26]:

FD,p(αq) =
3

4

ρq
αq

CD,p
dp
|up − uq| , q 6= p

with:

CD,p =
24

Rep

(
1 + 0.15 (Rep)

0.687
)

and Rep =
ρqdp
ηq
|up − uq|

where dp is a characteristic diameter of the inclusion. It is defined using the critical Weber number
We = 10 (see [1]) and the surface tension σ of the liquid phase:

We =
ρqdp
σ
|up − uq|2
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Thus, the evaluation of the velocity relaxation time scale is obtained using (8) and (16):

τu =
ρvρv

mv +ml

1

FD(αv)
(17)

2.3.3 Chemical potential relaxation

The chemical potential relaxation corresponds to the mass transfer Γk. Therefore we focus on the
modelling of the mass transfer used by Bilicki et al. [4, 10] for the depressurization of water in order
to propose an evaluation of the chemical potential relaxation time scale. The Homogeneous Relax-
ation Model (HRM) of Bilicki & Kestin [4] is detailed in 4. Downar-Zapolski et al. [10] proposed a
correlation for the relaxation time scale involved in this model based on the results of the Moby Dick
experiments [34]. Although this correlation has been determined in the stationary case, it has been
used in the transient case with both homogeneous [14] and two-fluid [15] models.

In order to propose an evaluation of the time scale τµ based on the model proposed by Bilicki
& Kestin [4] in the homogeneous frame, we assume that that both phases are in an homogeneous
state (∂x (ϕ) = 0, ∀ϕ) at rest (uk = 0) with the following thermodynamical equilibrium: pv = pl and
Tv = Tl. Based on those hypothesis, the governing equations of the two-fluid model (5) become:

∂t (αk) = 0
∂t (αkρk) = Γk
∂t (αkρkuk) = 0
∂t (αkρkek) = 0

(18)

We can recast this system in the following way:
∂t (αk) = 0
∂t (mk) = Γk
∂t (mkuk) = 0
∂t (mkεk) = 0

(19)

Thus, the thermodynamical variable µk, whose desequilibrium drives the mass transfer Γk, can be
written as a function of the partial mass mk only. Indeed:

µk = µk (ρk, εk) = µk

(
mk

α0
k

,
m0
kε

0
k

mk

)
where we use the notation ϕ0 = ϕ(t = 0). To provide a deeper analysis of the mass transfer, we assume
that both phases are governed by the Stiffened Gas EOS:

εk = ((γk − 1)ρk)
−1

(pk + γkp
∞
k ) + qk

Tk = (CV k(γk − 1)ρk)
−1

(pk + p∞k )

sk = CV k ln
(

(CV k (γk − 1) ρk)
−γk (pk + p∞k )

)
+ q′k

(20)

We also assume that qk = 0. Based on this particular choice of the EOS, the function µk(mk) can be
expressed in the following way:

µk(mk) = CP k + CP k ln (mk)− S0
k (21)

where we use the following constants :

CP k = γkCV k and S0
k = CV k ln

((
p0
k + p∞k

) (
α0
k

)γk
(CV k (γk − 1))

γk

)
+ q′k
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Let us now focus on the difference µj −µk. An important remark is that those quantities are equal
at the thermodynamical and chemical equilibrium since both temperatures and chemical potentials
would be equal: µj = µk. Therefore, this difference could be written in the following way:

µj − µk =
(
µj − µj

)
−
(
µk − µk

)
=
(
µj(mj)− µj(mj)

)
−
(
µk(mk)− µk(mk)

)
= CP j ln

(
mj

mj

)
− CP k ln

(
mk

mk

)
Finally, a last hypothesis is being made, we assume that the two-phase flow is close to the thermody-
namical and chemical equilibrium: mk ≈ mk. Noticing that mk +mj = mk +mj , we get:

µj − µk = CP j ln

(
mj

mj

)
− CP k ln

(
mk

mk

)
≈ CP j

mj −mj

mj
− CP k

mk −mk

mk

≈ −
CP jmk + CP kmj

mj mk

(
mk −mk

)
Thus, we obtain the following approximation of the mass transfer, defined in equation (8):

Γk ≈ −
1

τµµref

CP jmk + CP kmj

mk +mj

(
mk −mk

)
, j 6= k (22)

If we compare it to the closure law proposed by Bilicki and Kestin [4] and given in equation (32), we
have:

τµµref ≈
CP jmk + CP kmj

mk +mj
θ (23)

Therefore, we propose the following evaluation of the time scale τµ and the reference potential µref :

τµ = θ and µref =



CP v if αv < αmin

CP l if αv > αmax(
αmax − αv
αmax − αmin

)
CP v +

(
αv − αmin
αmax − αmin

)
CP l otherwise

(24)

where θ is defined as follows (see [10] and the recent study in [28]):

θ = 6.51× 10−7 α−0.257
v

(
psat − p
psat

)−2.24

(25)

using the mean pressure p = αvpv + αlpl. The use of this time scale will be referred to as Bilicki-like
mass transfer in the sequel.

2.3.4 Temperature relaxation

In order to propose a simple evaluation of the temperature relaxation time scale, we assume that
this phenomenum is mainly driven by the vaporisation. This hypothesis is relevant for steam-water
transients such as the depressurization of water since the heat diffusion can be neglected in those fast
applications. Thus, we have the following evaluation of the time scale:

τT = τµ (26)
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3 Numerical results

In order to assess the proposed modelling of the mass transfer, four different experiments have been
selected. Three of them (the Canon experiment, the Super-Canon experiment [35] and the Edwards
pipe experiment [12]) study the rapid depressurization of hot liquid water from an horizontal pipe with
similar characteristics (a length of about 4 m and a constant inner diameter of about 10 cm). The pipe
has a closed end at one side and a membrane on the other side. At time zero, the membrane is broken
and a rarefaction wave starts propagating along the pipe. At the final time, water is fully turned
into vapor therefore these are excellent test-cases to study the mass transfer. Those experiments are
classical test cases for nuclear safety codes in order to study the Loss-Of-Coolant-Accident (LOCA).
The main difference between the three experiments lies in the initial conditions, summarized in table
1. The last experiment, which has been carried out by the HDR (Heißdampfreaktor) Safety Program
in Germany [37], studies the depressurization of a full-scale reactor vessel under the hypothesis of a
LOCA. Many measurements of pressure and displacement in the vessel are provided so that mechanical
consequences of the depressurization can be studied unlike the three other test-cases.

Table 1: Initial conditions of liquid water in the different experiments

Experiment
Pressure Temperature

(Bar) (◦C)
Canon 32 220
Super-Canon 150 300
Edwards pipe 70 242

A fractionnal step method is used for the computation of the two-fluid model with source terms
(system (5)). A key property of this method, proposed in [22] without mass transfer, is to be consistent
with the entropy inequality of the model (equation (11)). It was then extended to the case with mass
transfer in [7, 29]. We also use the first-order HLLC-type convective solver recently proposed in [30],
with a Courant number CCFL = max(λk) ∆t

∆x = 0.5 . The Equation Of State used in the computations
is the Stiffened Gas EOS:

εk = ((γk − 1)ρk)
−1

(pk + γkp
∞
k ) + qk

Tk = (CV k(γk − 1)ρk)
−1

(pk + p∞k )

sk = CV k ln
(

(CV k (γk − 1) ρk)
−γk (pk + p∞k )

)
+ q′k

(27)

Thus 5 thermodynamical constants are required for each phase: γk > 1, CV k > 0, p∞k > 0, qk
and q′k. We also need (pk + p∞k ) > 0 in order to guarantee the positivity of some thermodynamical
quantities. Finally, we use the estimations of the relaxation time scales τϕ (ϕ = p, µ, u, T ) provided in
the previous section (equations (15)-(17)-(24)-(26)) with αmin = 0.2 and αmax = 0.8. All the following
computations have been performed with the fast transient dynamics software Europlexus [2].

3.1 Canon experiment

The Canon experiment was carried out by Riegel [35] and studied the fast depressurization of hot
liquid water (220◦C and 32 bar). Figure 1 presents the experimental set-up, consisting in a 4.389 m
long horizontal pipe, with an inner diameter of 102.3 mm. Pressure is measured at different locations
along the pipe (from P1 to P5). The void fraction is also measured at location Pt (between P2 and
P3 on figure 1) using a neutron scattering method.
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Figure 1: Schematic of Canon test facility

The parameters of the Stiffened Gas EOS for both phases are chosen to recover the steam-water
phase diagram as in [9] and recalled in table 2. The computational domain is a 1D grid with a closed
end at one side, and a tank, where atmospheric conditions are applied, on the other side. The initial
conditions for the pipe and the tank are provided in table 3. Before comparing the experimental data
and the numerical results obtained with the Bilicki-like mass transfer, we study the influence of the
mesh refinements on the numerical results. Four different 1D grids with 103 to 104 cells are used in
this study. The history of the void fraction at Pt obtained with those different grids is provided in
figure 2. The gap between the results obtained with the coarsest grid and the results obtained with
the finest one appears to be small. Refining the mesh only slightly delays the vaporisation process.
We notice that grid independance is obtained from 5000 cells therefore the results obtained on this
grid will be considered as converged results.

Table 2: EOS parameters for Canon experiment
γk p∞k qk CV k q′k

(Pa) (J.kg−1) (J.kg−1.K−1) (J.kg−1.K−1)
vapor 1.34 0.00 2032350.00 1162.00 2351.11
liquid 1.66 769317123.86 −1359570.00 2807.61 11671.61

Table 3: Initial conditions for Canon experiment
αk ρk pk uk

(kg.m−3) (bar) (m.s−1)

Pipe
vapor 10−3 16.72 32 0.00
liquid 1− 10−3 841.12 32 0.00

Tank
vapor 1− 10−3 0.52 1 .
liquid 10−3 837.74 1 .

The comparison between the converged numerical results and the experimental data on the void
fraction at Pt is shown on figure 3. We also add a reference numerical result without the Bilicki-like
mass transfer obtained on the same grid with constant time scales, τµ = 5×10−5 s and τT = 10−7 s, as
in a previous work [29]. An overall good agreement between the numerical and experimental results can
be observed, with a complete vaporisation of the water. Although this vaporisation process happens
earlier for both computations, the use of the Bilicki-like mass transfer delays it, which significantly
improves the numerical results when compared with the experimental ones. Figure 4 provides the
comparison between the measured pressure at P1 and the mean pressure p = αvpv + αlpl obtained
with the different computations. The experimental results show a sudden drop from the initial pressure
32 bar to 21 bar. Then the pressure remains constant at a saturation plateau until 400 ms and finally
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Figure 2: Influence of the grid refinement on the history of the void fraction at Pt in Canon experiment

slowly decreases towards the atmospheric pressure. The reference computation that uses constant
time scales shows a plateau at 23 bar, the exact saturation pressure of the initial temperature, due
to the fact that time scales remain very small. When compared with the experiment, this plateau
appears to be slightly too high and too short. The results obtained with the Bilicki-like mass transfer
show an important pressure undershoot before a pressure plateau at 20 bar. Unlike the reference
computation, this plateau is slightly below the experimental one. We also notice that it is longer
thanks to the proposed mass transfer, although the vaporisation process is predicted earlier in both
computations. Apart from the undershoot before the plateau, the overall behavior of the pressure given
by the two-fluid model with the Bilicki-like mass transfer is really similar to the measured pressure.
We underline the fact that it delays the vaporisation and no longer imposes the saturation pressure
when compared to the reference computation. Thus the Bilicki-like mass transfer appears to bring
a significant improvement on the modelling of the vaporisation process with the two-fluid model ;
nonetheless it needs to be assessed on other experimental cases.
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Figure 3: Void fraction vs time at Pt in Canon experiment: comparison between the experimental
data, converged numerical results obtained with and without Bilicki-like mass transfer
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Figure 4: Pressure vs time at P1 in Canon experiment: comparison between the experimental data,
converged numerical results obtained with and without Bilicki-like mass transfer
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3.2 Super-Canon experiment

The Super-Canon experiment was also carried out by Riegel [35] with the same set-up as the Canon
experiment (figure 1). The main difference between the two experiments lies in the initial conditions
of the liquid water in the pipe which are the standard conditions of the primary loop in Pressurized
Water Reactors (PWR): 300◦C and 150 bar. Based on the initial temperature, the EOS parameters,
gathered in table 4, are determined as before to retrieve the steam-water diagram [9]. Table 5 provides
the initial conditions used in the computations.

Table 4: EOS parameters for Super-Canon experiment
γk p∞k qk CV k q′k

(Pa) (J.kg−1) (J.kg−1.K−1) (J.kg−1.K−1)
vapor 1.49 0.00 2288300.00 603.37 4829.37
liquid 1.38 570798395.20 −1530700.00 3612.17 −515.21

Table 5: Initial conditions for Super-Canon experiment
αk ρk pk uk

(kg.m−3) (bar) (m.s−1)

Pipe
vapor 10−3 88.23 150 0.00
liquid 1− 10−3 736.45 150 0.00

Tank
vapor 1− 10−3 0.59 1 .
liquid 10−3 717.72 1 .

As in the previous case, a convergence study is carried out and suggests that numerical results ob-
tained on the 5000-cell grid can be considered as converged results. Thus, we compare those numerical
results obtained with the Bilicki-like mass transfer to the experimental results and to the results of a
reference computation that uses constant time scales (τµ = 5 × 10−5 s and τT = 10−7 s). Figure 5
shows the comparison between those three results on the history of the void fraction at location Pt. If
we first focus on the experimental data, we notice that the vaporisation process is similar to the one
observed in the Canon experiment, despite the fact that it appears to be faster. We also observe that
the measurements are more scattered in this case, particularly before 100 ms. Later on, it is easier to
compare the experimental data with the numerical results. As it occurs in the Canon experiment, both
computations show an earlier vaporisation but Bilicki-like mass transfer significantly reduces the gap
between the computed results and the experimental ones. Then we compare the measured pressure at
location P1 to the mean pressure p = αvpv+αlpl from the computations (figure 6). The overall behav-
ior of the pressure in the Super-Canon experiment is the same as in the Canon experiment: a sudden
drop of pressure from the initial pressure to a plateau and a final slow decrease towards the external
pressure. It is important to notice that the pressure level of the plateau, i.e. 60 bar, is very different
from the saturation pressure of the initial temperature 86 bar unlike in the Canon experiment. Thus,
the metastable states of water must be taken into account in the modelling process in order to retrieve
the experimental data. When comparing the results of the reference computation to the experimental
ones, we observe that the plateau of the computation is higher, around 80 bar, and really shorter. It
shows that the use of small constant time scales is not relevant to capture metastable states since the
pressure plateau is too close to the saturation pressure of the initial temperature. On the contrary, the
computation with the Bilicki-like mass transfer provides a plateau with the same pressure level as in
the experiment. The main differences between those two results are the important numerical pressure
undershoot before the plateau and a shorter plateau obtained by the computation. Apart from those
differences, the overall behavior of the pressure history obtained with the Bilicki-like mass transfer is
really close to the experimental history. Thus it confirms the modelling choice of the mass transfer,
especially regarding metastable states of water.
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Figure 5: Void fraction vs time at Pt in Super-Canon experiment: comparison between the experi-
mental data, converged numerical results obtained with and without Bilicki-like mass transfer
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Figure 6: Pressure vs time at P1 in Super-Canon experiment: comparison between the experimental
data, converged numerical results obtained with and without Bilicki-like mass transfer
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3.3 Edwards pipe experiment

We study a third experiment of rapid depressurization of water carried out by Edwards and O’Brien
[12]. The horizontal pipe used in the experiment is 4.097 m long and its inner diamater is 7.315 cm.
One end of the pipe is closed and the other end has a membrane which is broken at the initial time.
Unlike the previous experiments, the cross section of the break is 12.5% smaller than the cross section
of the pipe. Different sensors are located around the pipe as shown in figure 7. Pressure is measured
at both ends of the pipe (GS1 and GS7) and temperature is measured at GS5. A X-ray densitometer
is also located at GS5 to measure the void fraction.

Figure 7: Schematic of the Edwards pipe

The initial conditions for the water in the pipe are 241.85◦C and 70 bar. Since the initial temper-
ature is close to the one of Canon experiment, we use the same EOS parameters recalled in table 6.
The initial conditions for the computations are provided in table 7. For simplicity, we consider a full
break and use 1D grids. As previously, different mesh refinements are used showing that the results
on the 5000-cell grid can be considered as mesh independent.

Table 6: EOS parameters for Edwards pipe experiment
γk p∞k qk CV k q′k

(Pa) (J.kg−1) (J.kg−1.K−1) (J.kg−1.K−1)
vapor 1.34 0.00 2032350.00 1162.00 2351.11
liquid 1.66 769317123.86 −1359570.00 2807.61 11671.61

Table 7: Initial conditions for Edwards pipe experiment
αk ρk pk uk

(kg.m−3) (bar) (m.s−1)

Pipe
vapor 10−3 35.03 70 0.00
liquid 1− 10−3 809.40 70 0.00

Tank
vapor 1− 10−3 0.50 1 .
liquid 10−3 802.20 1 .

Figure 8 provides the comparison of the experimental and numerical results on the void fraction.
We first notice that only a few void fraction measurements are available in this experiment unlike the
previous ones. Thus we only compare the overall behavior of the void fraction and we draw the same
conclusion as for the Super-Canon experiment. Indeed, we observe that both numerical results have the
same behavior, although the Bilicki-like mass transfer delays the vaporisation process which drives the
results really close to the experimental data. At the same location, the temperature is also measured
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in the experiment so we can also compare it to the numerical results. Figure 9 provides the comparison
between those measurements and the mean temperature T = mvCV vTv+mlCV lTl

mvCV v+mlCV l
, corresponding to the

total internal energy, obtained in the computations. We can see that all curves first show a plateau
between 500 K and the initial temperature 515 K. This plateau appears to be really short for the
reference computation and longer when Bilicki-like mass transfer is used, though not as long as the
experimental one. Then we observe a rapid decrease for both computations and the temperature finally
remains steady around 380 K whereas a slower regular decrease is observed on the experimental results
until the final time. This faster decrease of the temperature on the computational results is linked
to a faster vaporisation. Moreover, the final constant temperature observed on the numerical results
is due to the fact that no heat diffusion is taken into account in the numerical model. Finally, we
compare the experimental pressure history at GS7 with the numerical mean pressure p = αvpv + αlpl
(figure 10). This comparison appears to be really similar as the comparison of the pressure history
on Super-Canon experiment. On the one hand, the reference computation with constant time scales
provides a short pressure plateau at 34 bar, really close to the saturation pressure 34.5 bar at the
initial temperature. On the other hand, the experimental results show a longer plateau at 27 bar
and the use of Bilicki-like mass transfer leads to a pressure plateau at 28 bar. As observed on the
void fraction history, it also delays the vaporisation and we obtain a longer pressure plateau, which is
closer to the experimental one. Thus the proposed modelling of the mass transfer provides a significant
improvement of the numerical results obtained with the Baer-Nunziato model when compared with
the experimental results. Some differences are still observed, particularly a slightly earlier vaporisation
and a pressure undershoot in the first milliseconds of the computation.
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Figure 8: Void fraction vs time at GS5 in Edwards pipe experiment: comparison between the experi-
mental data, converged numerical results obtained with and without Bilicki-like mass transfer
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Figure 9: Temperature vs time at GS5 in Edwards pipe experiment: comparison between the experi-
mental data, converged numerical results obtained with and without Bilicki-like mass transfer
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Figure 10: Pressure vs time at GS7 in Edwards pipe experiment: comparison between the experimental
data, converged numerical results obtained with and without Bilicki-like mass transfer
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3.4 HDR experiment

The last test-case considered here is the HDR (Heißdampfreaktor) experiment [37] which studies the
LOCA on a full-scale reactor vessel unlike the previous test-cases. The experimental setup is presented
in figure 11. It consists of a rigid pressure vessel with a single discharge nozzle and a simplified rep-
resentation of the internals, including a flexible core barrel firmly clamped at its upper flange and a
massive ring attached to the core barrel bottom to simulate the core mass. Different tests have been
carried out on this vessel and we select the test V32 since it involves the most severe depressurization.
In this case, the initial pressure in the vessel is 110 bar and the initial temperature varies from 221.6◦C
in the lower plenum to 308◦C in the upper one. A membrane at the end of the nozzle is broken at
the initial time, generating a rarefaction wave propagating along the pipe toward the vessel. Pressures
in the vessel and core barrel displacements are measured at different locations. Thus the mechanical
consequences of the depressurization can be studied in order to assess the two-fluid model.

Figure 11: Schematic of the HDR pressure vessel

Unlike previous test-cases, a 3D fluid-structure computation is required to simulate the HDR ex-
periment. The fast transient dynamics software Europlexus [2] uses a classical Arbitrary Lagrangian-
Eulerian (ALE) formulation in order to compute Fluid-Structure interactions. More details on the
computation of the Baer-Nunziato model using ALE formulation can be found in [8]. Based on the
symmetry, the computational domain consists in half of the vessel, as presented in figure 12. The fluid
and the structure are meshed in a conforming way with 5.8× 106 finite volumes for the fluid, 68× 103

shells elements for the core barrel and 11× 103 solid elements for the mass ring. The computation of
the 80 ms of physical time lasts around 15 hours on 80 CPU, with a Courant number CCFL = 0.9 based
on the celerity of pressure waves in the structure. Since the initial temperature in the pipe, where the
vaporization occurs, is close to the one in Canon experiment, we use the same EOS parameters recalled
in table 8. The structures are considered as linear elastic materials whose characteristics are detailed in
table 9. Finally, table 10 provides the initial conditions for the computation. The temperature gradient
in the vessel is neglected and the initial conditions of the nozzle (110 bar and 240◦C) are applied in the
whole vessel. As in the previous test-cases, atmospheric conditions are used in the tank representing
the exterior medium. Since the physical time of the experiment is very short (80 ms), mass transfer
is only considered in the nozzle therefore only pressure and velocity relaxations are applied in the vessel.
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Figure 12: 3D mesh for the HDR experiment (Fluid mesh on the left and structure mesh on the right)

Table 8: EOS parameters for HDR experiment
γk p∞k qk CV k q′k

(Pa) (J.kg−1) (J.kg−1.K−1) (J.kg−1.K−1)
vapor 1.34 0.00 2032350.00 1162.00 2351.11
liquid 1.66 769317123.86 −1359570.00 2807.61 11671.61

Table 9: Mechanical parameters for HDR experiment
Density Young’s modulus Poisson’s ratio
(kg.m−3) (GPa)

Mass ring 10612.2 175 0.295
Core barrel 7790 175 0.295

Table 10: Initial conditions for HDR experiment
αk ρk pk uk

(kg.m−3) (bar) (m.s−1)

Vessel and nozzle
vapor 10−6 55.25 110 0.00
liquid 1− 10−6 816.50 110 0.00

Tank
vapor 1− 10−6 0.52 1 .
liquid 10−6 837.74 1 .

Figure 13 provides the comparison between the experimental measurements and the numerical
mean pressure histories p = αvpv+αlpl at different locations in the vessel. For all the selected sensors,
the results issuing from the experiment show a decrease of the pressure, from 110 bar to about 90
bar. The pressure decrease is really smooth for sensors far from the nozzle (see BP8302 on the bottom
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right). For sensors closer to the nozzle, a greater pressure decrease is observed between 10 and 20 ms,
then pressure remains constant around 100 bar, or even increases (see BP9136 on the top right), and
finally decreases again after 55 ms. If we focus on the numerical results, similar trends are observed,
however pressure decreases towards a lower value, slightly under 80 bar. Moreover, for sensors close to
the nozzle, we notice that the mean pressure remains constant between 20 and 55 ms around 96 bar
; no increase of pressure is observed. When comparing experimental and numerical results, the main
difference lies in the fact that pressure is underestimated in the numerical simulations due to a faster
decrease. It results in a relative error of 10% at the end of the computation. This difference may be
due to the fact that an instantaneous full break is considered in the numerical simulation resulting in
a faster discharge of the vessel in the computation.

The histories of both pressure difference and displacement are provided in figure 14. A similar
behavior of the pressure differences can be observed on the different experimental histories. Indeed,
it first decreases to reach a minimum value at 25 ms due to the fact that the rarefaction wave is
propagating in the downcomer before reaching the internal part of the core barrel. Then, pressure
differences increase towards a maximum at 55 ms and finally decrease to reach a slightly negative
value at the final time. The numerical results show a very good agreement with those experimental
results on pressure difference histories. Similar maximum and minimum values can be observed and
occur around the same time. This agreement shows that the behavior of the pressure wave is accurately
captured in the computation, despite the underestimation of the absolute pressure mentionned earlier.
Unlike pressure measurements, the behavior of the radial displacement of the core barrel really differs
from one sensor to another. Due to the pressure difference between the internal part of the core barrel,
we first observe that the radial displacement increases to reach a maximum value, then it decreases
before increasing again. The value of the maximum, as well as the corresponding time, differs a lot
depending on the location of the sensor. When compared with the experimental measurements, the
numerical results show a rather good agreement. Some differences can be observed on the second half
of the computation for KS1023 (at the top) and displacement is underestimated for KS1030 (in the
middle) despite a similar behavior. On the whole, a good agreement is observed between numerical
and experimental results during the first half of the computation for both pressure difference and
displacement histories. More discrepancies appear during the second half and they may be linked to
numerical diffusion since first order schemes are used in the computation. Thus, this last test-case shows
that the proposed two-fluid model is also relevant for steam-water applications with Fluid-Structure
Interactions and can be used on industrial-sized applications.
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Figure 13: Pressure histories at different locations in the vessel
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Figure 14: Pressure difference (on the left) and displacement (on the right) histories at different
locations in the vessel
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4 Conclusion

A two-fluid model has been used to compute fast depressurization of water. Based on the work of Baer
& Nunziato [3], this two-fluid model does not assume any equilibrium between the phases. Thus the
exchanges between phases must be taken into account and they are modelled as relaxation phenomena.
Evaluations of the corresponding relaxation time scales must be provided. For pressure and velocity,
previous work has been used [29], nevertheless the chemical potential relaxation, which corresponds
to the mass transfer, requires particular attention. In order to model it in a simple but physically-
relevant way, the work of Bilicki et al. [4, 10], based on the Homogeneous Relaxation Model, has
been revisited. Thus, a new modelling of the mass transfer in the two-fluid frame is proposed. Four
different experiments have been selected in order to assess the corresponding model. Three of them,
the Canon, Super-Canon and Edwards pipe experiments, study the depressurization of a hot liquid
water in a pipe. The comparisons between grid-converged computational results and experimental
data show that the proposed Bilicki-like mass transfer significantly improves the results of the two-
fluid model, particularly regarding pressure measurements. Moreover, it appears to be relevant for
a wide range of thermodynamical states, including metastable states of water. The last test-case is
the HDR experiment where pressures and displacements are measured in a full-scale vessel under the
hypothesis of a Loss Of Coolant Accident. The results of an ALE computation show the ability of the
proposed model to retrieve experimental data in both the structure and the fluid on an industrial-sized
transient application.

The assessment of the proposed modelling of the mass transfer should be extended to other steam-
water transients. Although the use of the Stiffened Gas Equation Of State appears to be quite relevant
in the present work, the proposed modelling should also be tested with more realistic Equations Of
State. To that end, the schemes dedicated to the treatment of the source terms should be extended and
the convective solver proposed in previous work [30] could be used. Finally, extension of the current
numerical methods to higher order should be considered in order to lower the computational cost of
the two-fluid model on industrial applications.
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The Homogeneous Relaxation Model

The Homogeneous Relaxation Model (HRM) proposed by Bilicki and Kestin [4] consists in the usual
three conservation laws for the two-phase mixture and the mass conservation law for one of the phases.
Thus ρ denotes the mean density of the two-phase mixture, u its mean velocity, p its mean pressure
and e its mean specific total energy. We also denote αk the mean volume fraction of phase k and ρk
its mean density, complying with:  αv + αl = 1

mv +ml = ρ
mk = αkρk

(28)

The specific total energy of the mixture is given by the following relation:

e = ε+
1

2
u2 (29)

where an Equation Of State for the two-phase mixture is required:

ε = ε (αk, ρ, p) (30)

Thanks to the different notations, the governing equations of the HRM model are the following:
∂t (αkρk) + ∂x (αkρku) = ΓHRM

k

∂t (ρ) + ∂x (ρu) = 0
∂t (ρu) + ∂x

(
ρu2 + p

)
= 0

∂t (ρe) + ∂x (ρeu+ pu) = 0

(31)

Bilicki and Kestin [4] propose a simple form of closure law for the mass transfer:

ΓHRM

k = −mk −mk

θ
(32)

where the notation ϕ stands for the quantity ϕ at the thermodynamical and chemical equilibrium.
This simple relaxation equation gives its name to the model and requires a relaxation time scale θ.
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[24] H. Jin, J. Glimm, and D. H. Sharp. Entropy of averaging for compressible two-pressure two-phase
flow models. Physics Letters A, 360(1):114–121, 2006.

[25] A. K. Kapila, S. F. Son, J. B. Bdzil, R. Menikoff, and D. S. Stewart. Two-phase modeling of
DDT: Structure of the velocity-relaxation zone. Physics of Fluids, 9(12):3885–3897, 1997.

[26] J. Lavieville, M. Boucker, E. Quemerais, S. Mimouni, and N. Mechitoua. NEPTUNE CFD V1.0
- Theory Manual. Internal report H-I81-2006-04377-EN, EDF R&D, 2006.

[27] O. Le Métayer, J. Massoni, and R. Saurel. Dynamic relaxation processes in compressible multi-
phase flows. Application to evaporation phenomena. ESAIM: Proceedings, 40:103–123, 2013.

[28] H. Lochon. Modélisation et simulation d’écoulements transitoires eau-vapeur en approche bifluide.
Ph.D. thesis, Université d’Aix-Marseille, 2016.
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