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Abstract
In mechanical engineering, nonlinear modes characterise the behaviour of nonlinear vibratory systems.
In the current state-of-the-art, they are well defined for smooth nonlinear systems (of moderate size) of
Ordinary Differential Equations governing the dynamics. They are defined as continua of periodic orbits
forming two-dimensional invariant manifolds in the state space. This framework has lately been extended
to nonsmooth mechanical systems involving impact dynamics.

From the theoretical standpoint, strong mathematical results about existence, uniqueness and analyti-
cal or approximate equations of nonsmooth modes have recently been established on a linear spring-mass
chain undergoing a Newton elastic impact law on one of its masses. From the industrial point of view,
their application is not straightforward. This paper investigates the possibilities and the limitations of
these tools with a practical end: the issue of blade–casing unilateral contact interactions in turbomachines.

The main differences between a simple spring-mass chain and complex blade–casing models are
investigated point by point: non-diagonal mass matrix, geometrical differences, scalability for thousands
of degrees of freedom, convergence with respect to the number of dofs, stability and relationships with
force and damped mechanical systems.

It is found that the proposed formulation and corresponding solutions apply to very general spring-
mass systems, involving non-diagonal mass matrices and non-tridiagonal stiffness matrices, opening
avenues to investigate complex industrial systems. However, the relationship between the forced and
damped behaviour and nonsmooth modes is not fully understood yet.
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Mechanical Engineering, McGill University, Montreal, Canada

INTRODUCTION

Nonlinear modes of vibration provide useful means of investi-
gating the dynamics of nonlinear systems [1]. They can be de-
fined as a two-dimensional continuum of periodic trajectories
lying on invariant manifolds in the state space, whose coordi-
nates are the chosen generalised coordinates and generalised
velocities. The “invariant”’ property refers to the fact that if
the state of a mechanical system is on its nonlinear mode at
a given time, it will remain on it as time unfolds. Thus, non-
linear modes are particular surfaces in the state space which
characterise, locally, the behaviour of a dynamical system.

For smooth nonlinear systems, nonlinear modes can be
approximated locally by choosing a pair of master coordi-
nates [2, 3], writing the generalised coordinates and velocities
as unknown functions of this pair and calculating a Taylor
expansion of these unknown functions. This results in a para-
metric equation formulated in the pair of master coordinates,
yielding one two-dimensional surface in the state space: a
nonlinear mode.

A considerable limitation of this method is that it relies
on the smoothness of the differential equations (ODEs) and
no longer applies to nonsmooth mechanical systems, i.e. sys-
tems undergoing impact or dry friction. Yet, many vibratory

systems undergo unilateral contact conditions such as the com-
mon blade–casing contact occurrences in turbomachines. The
operating clearance between blades and surrounding casing
has to be as small as possible for efficiency purposes, po-
tentially initiating contact induced vibratory phenomena [4].
Because of the velocity discontinuities induced by impacts,
such events are no longer captured by ODEs and require
more complex mathematical tools such as linear complemen-
tary conditions, inclusions in cones, inclusions of differential
measures or variational inequalities [5]. Modal analysis is
currently unable to properly handle such systems.

A simple spring-mass oscillator has been recently stud-
ied [6, 7]. The oscillator is subject to unilateral contact with
a Newton impact law: v(t+

imp) = −v(t−imp) where timp is any
time of impact, v(t−imp) is the pre-impact velocity and v(t+

imp)
is the post-impact velocity. The number of impact(s) per pe-
riod arises a as a natural criterion for the classification of
nonsmooth modes. Periodic solutions with one impact per
period (ipp) have been thoroughly investigated in [6], leading
to 1 ipp nonsmooth-modes. In [7], a formulation for 2 ipp is
proposed. More general results for n dof and k ipp have been
found and will be published soon.

This contribution targets the implementation of modal
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analysis in the framework of rotating machinery where unilat-
eral contact events are known to emerge. It focuses on current
challenges and limitation by paying attention to simple qual-
itative behaviours. Questions of interest are the theoretical
and practical applicability of nonsmooth modes to generic
mechanical systems featuring potential large arbitrary mass
and stiffness matrices.

The main mathematical results, unpublished yet, of nons-
mooth modal analysis for a spring-mass chain are provided in
Section 1. They serve as a starting point for the present study
and a basic example is proposed for illustrative purposes. In
Section 2, the main steps required to extend the results to a full
blade-casing contact model are identified and investigated.

1. STARTINGPOINT:MATHEMATICALRESULTS
In this section, the main mathematical results about nons-
mooth modes are given. For the sake of conciseness, only the
main ingredients are listed in a quite abstract fashion, limiting
the presentation to the important results. In substance, the lat-
ter prove existence and uniqueness, under some conditions, of
periodic solutions to the problem described in subsection 1.1
for k impact(s) per period. They also yield an analytical
(k = 1) or approximate (k ≥ 2) expressions of the nonsmooth
modes.

1.1 Model and dynamical equations
Consider the spring-mass system in Fig. 1. The quantities mi

m1

k1

m2

k2

mn−1

kn−1

mn

kn

d

Figure 1. Base model for the study of nonsmooth modes.

are masses and ki are stiffnesses. The position of the mass i
is stored in xi and by convention xi = 0 at rest, for i ∈ ~1, n�.
The position xn of the last mass is constrained by an obstacle
located at position d, which is described mathematically by
the following Signorini condition such that ∀t ≥ 0:

d − xn (t) ≥ 0 (1a)
λ(t) ≥ 0 (1b)
λ(t)(d − xn (t)) = 0 (1c)

This unilateral condition has to be supplemented by an im-
pact law between the n-th mass and the obstacle: to this end,
the simple Newton impact law is selected so that the overall
dynamics writes:

∀t, d − xn (t) ≥ 0 (2a)
∀t such that xn (t) < d, Mẍ + Kx = 0 (2b)
∀t such that xn (t) = d, ẋn (t+) = −ẋn (t−) (2c)

with the mass matrix M = diag(m1, . . . ,mn ), the stiffness
matrix K = tridiag(−ki−1, ki−1 + ki,−ki ) and the vector of
positions x = [x1, . . . , xn]>.

1.2 Preliminary definitions
Let us define:

• B = −(√M
)−1√K; Q an orthogonal matrix such that

BB> = Q∆2Q−1 with ∆ a diagonal matrix; ωi > 0 the
element (i, i) of ∆.
• k the number of impacts per period and t1, . . . , tk the in-

stants of impacts. The duration between two successive
impacts denoted by σi = ti − ti−1 with t0 = 0.
• The period T ; as by convention contact is activated at

t = 0, the period is equal to the time of the k-th impact:
T = tk .
• The function

QT (σ) =

n∑
i=1

sin(ωiσ/2)
sin(ωiT/2)

qn, j 2 (3)

where qn, j is the element (n, j) of Q.
• The following vectors:

Wn = − 1√
mn



qn,1/ω1
0
...

qn,n/ωn

0



R = − 1√
mn



qn,1
0
...

qn,n
0



(4)

• The matrix exponential

S(t) = exp
(
t

[
0 I

−M−1K 0

] )
(5)

• The skew-symmetric matrix Π populated by

Πi j (t1, . . . , tk ) = QT (2(t j − ti ) − T ) (6)

for i < j ≤ k.
• The symmetric matrix Σ populated by the elements

Σi j (t1, . . . , tk ) = 2W>
n

(
S(T2 )−S(−T

2
)−1S(ti − t j + T

2 )R
(7)

for i < j ≤ k.
• The constant vector j = [1, . . . , 1]> ∈ Rk .

1.3 Mathematical results
A necessary condition for the existence of a periodic solution
with k ipp is that there exists a λ ∈ Rk such that:

Π(t1, . . . , tk )λ = 0 (8)
Σ(t1, . . . , tk )λ = dj (9)

If such a condition is satisfied, then let us define:

φp,T (σ) = − 1√mp

n∑
j=1

cos(ω jσ/2)
ω j sin(ω jT/2)

qp, jqn, j (10)

and

ψp,T (σ) = 2
dφp,T

dt
(t) =

1√mp

n∑
j=1

sin(ω jσ/2)
sin(ω jT/2)

qp, jqn, j
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(11)

Also, consider ∀τ ∈ [0, σi+1] the p-th position:

xp (τ + ti ) =

i∑
j=1

λ jφp,σ (2(τ + ti − t j ) − T )+

k∑
j=i+1

λ jφp,σ (2(τ + ti − t j ) + T )

(12)

If ∀i ∈ ~1, k�, ∀τ ∈ [0, σi+1], xn (τ + σi+1) ≤ d, then x is a
periodic solution of problem (2) with k impact times t1, . . . , tk .
The velocity p is given ∀τ ∈ [0, σi+1] by

yp (τ + ti ) =

i∑
j=1

λ jψp,T (2(τ + ti − t j ) − T )

+

k∑
j=i+1

λ jψp,σ (2(τ + ti − t j ) + T )

(13)

1.4 Example
For illustration purposes, arbitrary choices n = 2 and k = 2
are made with k1 = k2 = 1 and m1 = m2 = 1/2. The
definition of matrix Π, see Eq. (6), with t2 = T leads to

Π(t1,T ) =

[
0 QT (T − 2t1)

−QT (T − 2t1) 0

]
(14)

Condition (8) yields either the trivial solution λ = 0 or the
more interesting equation

QT (T − 2t1) = 0 (15)

From the definition of QT given in Eq. (3), and the eigenfre-
quencies of the system ω1, ω2, it is possible to approximate
(t1,T ) solution of (15). Note that the resonant cases are ex-
cluded (t1,T < { 2π

ω1
, 2π
ω2
}). The roots of the numerator of

QT (T − 2t1) is displayed in Fig. 2. To correctly interpret
Eq. (8), is has to be understood that 2 ipp motions do not exist
for any (t1,T ). Eq. (8) gives a necessary (but not sufficient)
condition for the existence of such solutions. Note that the
line of equation T − t1 = t1 in Fig. 2 corresponds to 1 ipp
motions of period T/2 but seen as T-periodic motions.

For chosen (t1, t2) satisfying Eq. (8), Eq. (9) yields the
values of the vector λ. This forces the impact conditions at
t1 and t2 to coincide with xn = d. The relation between the
positions xp and the components of λ is in Eq. (12).

Both conditions (8) and (9) are not sufficient: among the
motions they lead to, they do not exclude those which can
violate the constraint xn ≤ d. This condition has to be tested
numerically using Eq. (12). If it is fulfilled, then the cor-
responding x is a solution. By continuity, there are other
solutions in the neighbourhood of the selected (t1,T ), yield-
ing a continuum of periodic trajectories with two impacts
per period. Samples of the continuum are plotted in Fig. 3,
corresponding to points chosen on the red curve of Fig. 2.
This continuum of solutions can also be represented as an
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Figure 2. Numerically calculated roots of the numerator of
QT (T − 2t1). In red: continuum of solutions corresponding
to Fig. 3 and 4. Dashed line: T = 5T2 where T2 = 2π/ω2 is
the second eigenfrequency.
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Figure 3. Example of periodic trajectories with two impacts
per period. They correspond the red curve parametrised by
(t1,T ) on Fig. 2 and delimited by 1 and 2 . 1 corresponds
to a 1 ipp trajectory taken on two impacts. 2 corresponds to
the fifth harmonic of the second linear mode. In between are
purely 2 ipp motions.

invariant manifold, gathering the continuum of periodic orbits
in the state state. This two-dimensional object, embedded in a
2n dimensional state space (n positions, n velocities) can be
projected into the three-dimensional space (x1, x2, ẋ2). Such
a projection is represented in Fig. 4. This example was used
to illustrate the mathematical results and show, in practice,
how they lead to the construction of nonsmooth modes for
the spring-mass chain system of Fig. 1. The next part con-
sists in exploring the applicability of these developments to
more challenging models such as a blade–casing model of a
turbomachine.
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Figure 4. Example of nonsmooth mode corresponding to
(t1,T ) on the red curve of Fig. 2. The green curve corresponds
to an periodic solution of the nonsmooth dynamics. The red
curve highlights the velocity discontinuities occurring when
x2 = d.

2. GENERIC MECHANICAL SYSTEMS
Though very fruitful, these results were proven for the spring-
mass system of Fig. 1. FEM models used for turbomachines
differ from such a simple model: they involve a priori non-
diagonal mass matrices, contain thousands of degrees-of-
freedom, target much more complicated geometry involv-
ing more than two connexion per element, etc. making this
method not directly applicable. These points are discussed in
the present part. Nevertheless, contact is assumed to occur
only on one node.

In all the computations, k = 1, m = 1/N and d = 1.

2.1 Non-diagonal mass matrices
For linear spring-mass systems, the equations governing the
dynamics of every degree-of-freedom can be gathered in a
matrix form with a diagonal mass matrix. When dealing with
finite-elements, this property is no longer conserved: basis
functions are in general not orthogonal (for the canonical
scalar product), yielding off-diagonal terms. However, the
mass matrix remains symmetric1. During phases of free flight
(xn < d), this symmetry does not invalidate the results of
Section 1. Since the proof is not given, the reader will not
be able to verify this statement; the key idea is that the mass
matrix is a real symmetric matrix, so is diagonalisable in
an orthogonal basis. But t no longer holds for the Newton
impact law: the transformation vn

+ = −vn− corresponds to a
reflection matrix N = diag(1, . . . , 1,−1) of size 2n which is
an isometry for the energy if and only if Mn j = 0 for all j , n.
In other words, the Newton impact does not preserve energy
if the mass which impacts the obstacle is not punctual. This is

1The symmetry of the mass matrix can be proven with Maxwell–Betti’s
theorem.

not a severe restriction. Nevertheless, our first investigations
on defining an elastic impact law as an isometry for the energy
and a orthogonal symmetry with respect to an hyperplane of
the state space are promising and could raise this restriction.
This is a complicated topic on itself and is not discussed
here. Also, note that non-diagonal mass matrix are commonly
lumped resulting in a diagonal mass matrix.

2.2 Geometry of the mechanical system
Here, it is shown that the results of Section 1 apply for more
complex geometries than that of Fig. 1. Two changes of
geometry are investigated:

• the addition of a tangential velocity at the impact;
• the connection of a mass to more than two springs.

A tangential velocity is introduced in a spring-mass system.
The goal is to show that the results of Section 1 still apply.
The model to capture tangential velocity is as simple as pos-
sible, see Fig. 5. The impact law is such that the tangential

y = ax + b

x

y

Figure 5. One mass with two degrees of freedom, subject to
an elastic impact law.

component of the velocity is unchanged while the sign of its
normal component is changed. This writes:

~v+ = ~v−t − e~v−n (16)

where + (−) denotes the post-impact (pre-impact) velocity.
Eq. (16) can be expanded as

[
ẋ+

ẏ+

]
=

1
| |~t | |2 ([ẋ ẏ] ·~t)~t − e

| |~n| |2 ([ẋ ẏ] · ~n)~n (17)

=
1

1 + a2

[
1 − ea2 a(1 + e)
a(1 + e) a2 − e

]

︸                                ︷︷                                ︸
N

[
ẋ−
ẏ−

]
(18)

Note that the normal component of the velocity can be ex-
pressed in terms of the gap function g(x, y) between the mass
and the obstacle, equal to

g(x, y) =
ax + b − y√

1 + a2
(19)

This relation is~vn = ( ~grad g·~v)~n/| |~n| |. With e = 1, N becomes

N =
1

1 + a2

[
1 − a2 2a

2a a2 − 1

]
(20)
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The eigenvalues of N are +1 and −1 (with corresponding
eigenvectors [1/a, 1] and [−a, 1]). Additionally, N is symmet-
ric and involutory (N2 = I) hence is an orthogonal symmetry.

The matrix of change of basis which diagonalises N does
not affect the diagonal nature of the mass matrix, provided its
diagonal elements are equal to each other—condition which
is fulfilled here. It is therefore possible to write the initial
dynamical problem as an equivalent problem corresponding
to a 2-dof spring-mass system in chain (as in Fig. 1). More
precisely, the equivalent system has the same mass matrix;
its stiffness matrix is the conjugation of the initial stiffness
matrix with

P =

[−a 1/a
1 1

]
(21)

and the new coordinates are given by P · [x, y]>. The problem
hence falls within the context of the mathematical assumptions
and results given in Section 1.

Complex models of aircraft engines are not unidimen-
sional; one node can be connected to multiple neighbouring
nodes, breaking the tridiagonal structure of the stiffness matrix.
An example is illustrated in Figure 6. The stiffness matrix K is

x

y

Figure 6. One mass connected to more than two other masses,
breaking the tridiagonal structure of the stiffness matrix.

no longer tridiagonal but remains symmetric. Also, since M is
diagonal, M−1K is also symmetric. It can therefore always be
transformed in a tridiagonal matrix, leading to a spring-mass
system in chain. The linear transformation affects the im-
pact law but, from the previous result, the degrees-of-freedom
of the contacting node can be rearranged to match with the
generic system illustrated in Fig. 1.

The conclusion of this part is that the results extend to any
spring-mass system—as long as its free flight exhibit linear
dynamic behaviour. The key reason behind this is that any
impact law written as an orthogonal symmetry with respect
to a hyperplane can be diagonalised in an orthogonal basis
where M−1K remains symmetric positive definite.

2.3 Scalability to large systems
Turbomachine models may include thousands degrees-of-
freedom. It is natural to investigate how the results of Sec-
tion 1 scale with the number of degrees of freedom. For
motions with one impact per period, this is straightforward:
for any T , expression (12) gives a potential solution which

will be an actual solution if xn (t) ≤ d for all t. For two
impacts per period, solutions only exist for specific times of
impact t1, t2 and an additional step is required to find such
appropriate t1, t2. This consists in finding roots of the nonlin-
ear equation (8) for k = 2. Computation times on a standard
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Figure 7. Computation time for construction of matrices
of Section 1.2 and calculation of coordinates in phase space.
[ ] 1 ipp. [ ] 2 ipp.

desktop PC are reported in Fig. 7 using the computer program
Mathematica®. The left diagram shows the computation time
for the matrix reduction, i.e. the calculation of the different
matrices involved (namely: M,K,B and Q). For a given num-
ber of degrees of freedom n, this is to be computed once. The
right diagram shows the computation time of one coordinate
in the state space, for a given time. Note that these timings
would probably be reduced with a lower-level implementation
and performance-tuning. Typical timing for 2000 dofs is 2 ms
per coordinate. To approximate a nonlinear mode of a model
with 2000 dofs with a few thousand states of the system would
thus take a few seconds.

The conclusion of this subsection is that the number of
degrees-of-freedom is not limiting for the computation of
nonsmooth modes.

2.4 Sensitivity to number of dofs
It is natural to investigate the sensitivity of nonsmooth modes
to the considered number of degrees-of-freedom. This is a
challenging point: even for very large numbers of dofs, the
existence of nonsmooth modes and their shape is extremely
sensitive to n. An illustration is given in Fig. 8 where a mode
exist in the neighbourhood of a period T when n = 100, while
for the same T , the position calculated with formula (12)
violates the constraint xn ≤ d with n = 101, proving no mode
locally exists around T . The reason for this is that existence
of nonsmooth modes is largely determined by the harmonics
(see denominators of Eqs. (3), (10), and (11). The set of
the periods of all harmonics {2kπ/ωi, k ∈ N∗, i ∈ ~1, n�}
becomes so dense that the existence of nonsmooth modes is
ensured only on very tiny domains in the impact times t1, t2.
As opposed to linear modes, nonsmooth modes with an impact
law do not converge with the number of degrees-of-freedom.

2.5 Behaviour of forced and damped system
Material fatigue can appear in turbomachines due to peri-
odic forcing cycles. It can lead to failure and its prediction
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Figure 8. Non-convergence with respect to spatial discretiza-
tion. Curves show the periodic motion of the n-th mass (1
ipp). For n = 100 [ ], the position is an actual solution. For
n = 101 [ ], the position is completely different and is not
even a solution: it violates the constraint xn ≤ d.

is therefore essential. In linear dynamics, the vibratory re-
sponse to a periodic excitation is governed by the autonomous
(i.e. unforced) response [8]. Vibratory resonance regimes are
observed if the forcing frequency lies in the vicinity of the
natural frequencies of the system. However, the superposition
principle no longer applies when impacts are accounted for,
making the response of nonsmooth systems under periodic
forcing much more challenging to understand. Additionally, it
is not known whether periodically-forced nonsmooth oscilla-
tors always exhibit a (periodic) steady-state regime. This sub-
section aims at comparing the energy of the nonsmooth modal
responses to the periodically forced solutions of the same
system under a purely sinusoidal force F (t) = F0 cos(Ωt)
acting to every mass and a damping matrix simply chosen as
C = αK.

Using an event-driven algorithm [5], the time-evolution
of the impact oscillator of Fig. 1 was calculated with n = 5
for several values of the excitation period T = 2π/Ω. After
500 such periods, it was observed that the system usually had
a periodic motion with 1 impact per period T , 2 impacts per
period T or 2T or 3 impacts per period 2T . For such periodic
motions, the energy is plotted in Fig. 9. For the other ones, it
is not known whether they could eventually reach the periodic
regime.

It seems the peaks of energy for the forced systems (for
T ≈ 2.4) are almost aligned with the 1 ipp energy curve.
Nevertheless, this observation cannot be generalised to all
resonances of the nonsmooth modes. It is therefore not possi-
ble to conclude that resonance phenomena of forced systems
always coincide with that of the nonsmooth modes. The re-
sponse for two applied forces and two damping coefficients
are shown in Fig. 10. Further investigations are required to
capture the variety of the observed behaviours in motion and
in energy.

2.6 Exploratory stability analysis
The question of stability is a common question in the analysis
of dynamical systems. Indeed, it characterises the dynam-
ics of a system in the vicinity of its fixed points or periodic
orbits. For periodic orbits, Lyapunov stability is by the fact

2.1 2.2 2.3 2.4 2.5 2.6
Period T

E
ne

rg
y

Figure 9. Energies of nonsmooth modes for 1 ipp [ ] and 2
ipp [ ]. Energy of periodic solutions for the forced system
with F0 = 1, α = 0.005 [ ] and α = 0.01 [ ].
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e

Figure 10. Two forced damped responses and the correspond-
ing nonsmooth mode. [ ] Nonsmooth mode. [ ] F0 =

0.3, α = 0.003. [ ] F0 = 1, α = 0.03.

that the response to any perturbation from a given periodic
orbit remains in a neighbourhood or the periodic orbit [9].
Asymptotic stability is stronger and adds the condition that
the system converges towards the orbit.

For smooth nonlinear systems, Lyapunov stability can be
proven by linearising the dynamics in the neighbourhood of
a known periodic solution. Similarly, here, the first points
of the Poincaré section xn = d are plotted for a perturbed
initial condition on the section. In other words, a point on
the section corresponding to a nonsmooth mode (or more
exactly, one periodic orbit on the manifold defining the mode)
is selected. It is slightly perturbed (except the n-th position
which is maintained equal to d) to provide an initial condition
inserted in an event-driven algorithm to solve the dynamic
equations: the dynamics is time-integrated and when xn = d,
the sign of the velocity ẋn is inverted (Newton impact law).
The time-integration then leads to a non-periodic trajectory.
Every time the system hits the hyperplane xn = d in the state
space, the pre-impact velocity ẋn and the position xn−1 are
collected. The obtained results are illustrated in Fig. 11 for
n = 5.
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Figure 11. Motions with perturbated initial conditions. Top:
Duration of the 5000 first free flights, normalised. Bottom:
Poincaré section xn = d.

First, it appears that the period T of the nonlinear mode
plays an important role in the non-periodic motion with per-
turbed trajectories as depicted in Fig. 11, top. More than half
of the 5000 free flights have a duration in [0.9T, 1.1T]. Sec-
ond, the 5000 points of the Poincaré map appear to evolve in
a fixed neighbourhood of the initial conditions. There is no
tendency to move away from the neighbourhood with time:
red and orange points are not particularly further from the
center of Fig. 11 (bottom) than blue points. This behaviour
has been observed for several numerical experiments, with
various perturbations and n.

Although not a proof, these observations tend to indicate
that orbits of nonsmooth modes are Lyapunov-stable, and not
asymptotically stable.

CONCLUSION
The main mathematical results regarding nonsmooth modes,
proven in a publication to come, are summarized. They prove
existence and uniqueness, under some conditions, of periodic
motions of an autonomous spring-mass chain, the last mass
of which is subject to a Newton impact law. They also give
the analytical expression of the solutions, when they exist and
allow for an analytical calculation of nonsmooth modes with
1 impact per period, and approximation of nonsmooth modes
for multiple impacts per period.

The goal of the present work is to identify possibilities and

limitations to apply these results to the common blade–casing
contact problem within turbomachines.

The existence of the fundamental skew-symmetric ma-
trix Π, governing nonsmooth modes, was shown to be still
ensured for non-diagonal mass matrices, opening doors to
FEM applications. Also, the unidimensional geometry of the
spring-mass chain proved not to be required for the results
to hold, making the study of complex geometries possible,
the limitation being that the impact law must have the form
of a orthogonal symmetry with respect to a hyperplane. The
computation time of a coordinate is about 2 ms for 2000 dofs
without performance-tuning and on a standard PC, which is
very reasonable and makes the study of complex turboma-
chines models conceivable. First numerical experiments tend
to show that nonsmooth orbits are Lyapunov stable and not
asymptotically stable.

Altogether, this investigation shows that the gap between
the theoretical results for the specific spring-mass chain and
real applications to turbomachines is not as wide as initially ex-
pected. However, some limitations remain. The first one is the
possibly tremendous difference in shape between nonsmooth
modes of two similar systems differing by a few degrees-of-
freedom. This is explained by the extremely rich frequency
range excited by impact events, and the underlying lack of
convergence in space discretization. This is not an issue when
the number of dof is fixed, as for example in a reduced-order
model of a turbomachine where only specific modes of the
complex structure are considered. The second current limi-
tation is that the relationship between the energy-frequency
graph of the forced system and its nonsmooth modes are
not fully understood yet. Nonsmooth modal analysis can
therefore not yet be used to predict the forced response of
turbomachines and the forcing frequencies leading to high
energy motions, when the forcing amplitude is too large.
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