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1 Introduction

The boundary element method (BEM) is a numerical method for
solving boundary value or initial value problems formulated in
boundary integral equations (BIEs). In some literature, it is also
called the boundary integral equation method because of this rela
tionship. The most important advantage of the BEM as compared
with other domain based numerical methods is the reduction of the
dimensions of the problems to be solved, from 3D to 2D, or from 2D
to 1D, leading to much easier mesh generation as compared with
domain based methods. The second advantage is the accuracy the
BEM offers, due to the nature of integrals used in the formulations.
The third advantage of the BEM is its capability of accurately model
ing infinite domain problems without introducing additional, often
cumbersome, conditions at infinity. Table 1 is a comparison of the
BEM with the finite element method (FEM), which may change in
the future based on new developments in either one or both methods.

1.1 A Brief History. The direct BIE formulations (in which
the unknown functions have clear physical meanings) and their
modern numerical solutions with boundary elements originated
more than 40 years ago during the 1960s. The 2D potential prob
lem was first formulated in terms of a direct BIE and solved
numerically by Jaswon, et al. [1 3]. This work was later extended
to the 2D elastostatic case by Rizzo in the early 1960s as his dis
sertation work at the University of Illinois, which was later pub
lished as a journal article in 1967 [4]. Following these early
works, extensive research efforts were carried out in the BIE for
mulations of many problems in applied mechanics and in the nu
merical solutions during the 1960s and 1970s [5 20]. The name
boundary element method appeared in the middle of the 1970s in
an attempt to make an analogy with the FEM [21 23].

Some personal accounts of the historical developments of the
BIE and BEM in various places of the U.S., Europe, and China
were given by Rizzo [24], Cruse [25], Watson [26], Shippy [27],
Mukherjee [28], Telles [29], and Yao and Du [30] in a special issue
of the Electronic Journal of Boundary Elements in 2003 [31]. A
comprehensive review of the heritage and early history of the BIE
and BEM was given by Cheng and Cheng in 2005 [32]. This review
provides vivid descriptions of the long history and major contribu
tions to the mathematical foundations of the integral methods by
the pioneers from the 18th to the first half of the 20th centuries and
the early days of the BEM until the late of 1970s. Another compre
hensive review of the BEM research up to the early of 1980s was
given by Tanaka in 1983 [33]. A special review was given by
Tanaka, Sladek and Sladek in 1994 [34] on the research efforts in
the late 1980s and early 1990s regarding the various approaches to
dealing with the singular and hypersingular integrals in the BIEs.
Ten representative books on the BEM, published during the last
three decades, can be found in Refs. [35 44] which can be con
sulted to further study the details of the BEM.

1.2 A Review of the BEM Formulation. We use the 3D
potential theory problem as an example to show the key steps and
main results in the BEM formulation. For a domain V with bound
ary S (Fig. 1), we have the following boundary value problem:

r2/ðxÞ ¼ 0; x 2 V (1)

where / is the potential field. The boundary conditions (BCs) are

/ðxÞ ¼ /ðxÞ; x 2 S/ ðDirichlet BCÞ (2)

qðxÞ � @/
@n

ðxÞ ¼ qðxÞ; x 2 Sq ðNeumann BCÞ (3)

in which the overbar indicates the prescribed value, S/ [ Sq ¼ S,
and n is the outward normal of the boundary S (Fig. 1).

The fundamental solution (also known as full space Green’s
function) Gðx; yÞ for 3D potential problems is given by

Gðx; yÞ ¼ 1

4pr
(4)

where r is the distance between source point x and field point y.
The normal derivative of G is

Fðx; yÞ � @Gðx; yÞ
@nðyÞ ¼ 1

4pr2
r;k nkðyÞ (5)

with r;k ¼ @r=@yk ¼ ðyk xkÞ=r. The fundamental solution
Gðx; yÞ represents the response (potential) at y due to a unit source
at x (See Sec. 2.1 for the definition of a Green’s function).

If we apply the second Green’s identity with / and Gðx; yÞ in
domain V with boundary S, we obtain the following representation
integral:

/ðxÞ ¼
ð
S

Gðx; yÞqðyÞ Fðx; yÞ/ðyÞ½ �dSðyÞ; x 2 V (6)

Equation (6) is an expression of the solution / inside the domain
V for Eq. (1). Once the boundary values of both / and q are
known on the entire boundary S, Eq. (6) can be applied to calcu
late / everywhere in V, if needed. To solve the unknown bound
ary values of / and q on S, we let x tend to the boundary S to
obtain the following BIE:

cðxÞ/ðxÞ ¼
ð
S

Gðx; yÞqðyÞ Fðx; yÞ/ðyÞ½ �dSðyÞ; x 2 S (7)

in which cðxÞ is a coefficient and cðxÞ ¼ 1=2 if S is smooth around
x. Equation (7) is called a conventional or singular BIE for solving
potential problems.

If we take the normal derivative of Eq. (6) and let the source point
x go to boundary S, we obtain the so called hypersingular BIE:

cðxÞqðxÞ ¼
ð
S

Kðx; yÞqðyÞ Hðx; yÞ/ðyÞ½ �dSðyÞ; x 2 S (8)

Table 1 A Comparison of the FEM and BEM

Finite element method Boundary element method

Unknown DOFs everywhere
in domain

Unknown DOFs only on boundary
for linear problems

Banded symmetric matrices Smaller full nonsymmetric matrices
Very efficient Less efficient in standard form (fast

with new forms)
Exterior problems somewhat
difficult

Exterior problems in infinite domains
easy

Nonhomogeneous problems
fine

Needs Green’s functions for maxi
mum efficiency

Moving boundary problems
can be difficult

Efficient for moving boundary
problems

Needs compatible elements Incompatible=nonconforming ele
ments fine

Inter element discontinuity of
derivatives

Continuous internal derivatives

Fig. 1 A 3D domain V with boundary S
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where the two new kernels for 3D are

Kðx; yÞ � @Gðx; yÞ
@nðxÞ ¼ 1

4pr2
r;k nkðxÞ (9)

Hðx; yÞ � @Fðx; yÞ
@nðxÞ ¼ 1

4pr3
nkðxÞnkðyÞ 3r;k nkðxÞr;l nlðyÞ½ �

(10)

Hypersingular BIEs are needed in the BEM when it is applied to
model cracks, thin shapes and exterior acoustic wave problems, as
discussed in other sections. The Fðx; yÞ and Kðx; yÞ kernels are
strongly singular. Therefore, the second integral in BIE (Eq. (7)) and
the first integral in BIE (Eq. (8)) are Cauchy principal value (CPV)
integrals in general. The Hðx; yÞ kernel is hypersingular, and the sec
ond integral in BIE (Eq. (8)) is a Hadamard finite part (HFP) inte
gral. There are different approaches [34,45 47] to evaluate or avoid
the singular and hypersingular integrals in the BIE formulations
which are no longer the barriers in the implementation of the BEM.

The BIE as shown in Eq. (8) is called a direct BIE formulation
in which the density functions / and q have clear physical mean
ings. The so called indirect BIE formulations are also available in
the literature, in which only one integral is applied and the density
function has no clear physical meanings. In some cases, the indi
rect BIE formulation is advantageous because of the reduction of
the integrals with which to work. More details about the indirect
BIE formulations can be found in many textbooks on the BEM.

Complex variable BIE formulations in the BEM are also popu
lar for dealing with various 2D problems (see, e.g., Refs. [48 51];
[44] (Chapter 4 on 2D elasticity)), because of the efficiencies in
using the complex functions. However, this approach has limited
applicability as to solving 3D problems.

As an example to see how to discretize the BIEs, assume that
we use N constant boundary elements (surface patches for 3D,
line segments for 2D) on boundary S. We can obtain the following
discretized equation of BIE (7):

f11 f12 � � � f1N
f21 f22 � � � f2N

..

. ..
. . .

. ..
.

fN1 fN2 � � � fNN

26664
37775

/1

/2

..

.

/N

8>>><>>>:
9>>>=>>>; ¼

g11 g12 � � � g1N
g21 g22 � � � g2N

..

. ..
. . .

. ..
.

gN1 gN2 � � � gNN

26664
37775

q1
q2

..

.

qN

8>>><>>>:
9>>>=>>>;

(11)

with

gij ¼
ð
DSj

GidS; fij ¼ 1

2
dij þ

ð
DSj

FidS; for i; j ¼ 1; 2; :::;N

(12)

in which Gi and Fi are the kernels with the source point x placed at
node i, DSj represents element j, and dij is the Kronecker d symbol.
In the conventional BEM approach, we form a standard linear system
of equations by applying the boundary condition at each node and
switching the columns in the two matrices in Eq. (11) to obtain:

a11 a12 � � � a1N
a21 a22 � � � a2N
..
. ..

. . .
. ..

.

aN1 aN2 � � � aNN

26664
37775

k1
k2
..
.

kN

8>><>>:
9>>=>>; ¼

b1
b2
..
.

bN

8>><>>:
9>>=>>;; or A~k ¼ b

(13)

where A is the coefficient matrix, ~k is the unknown vector, and b
is the known vector.

The disadvantages of the conventional BEM formulations are: (1)
The construction of matrix A requires OðN2Þ operations using
Eq. (12), (2) The size of the memory required for storing A is also
OðN2Þ because A is in general a nonsymmetrical and dense matrix,

and (3) The solution of the system in Eq. (13) using direct solvers
such as Gauss elimination requires OðN3Þ operations. Thus, for
several decades, the conventional BEM approach of solving Eq. (13)
directly has been limited to small scale models with, at most, a few
thousands of elements, for example, on a desktop PC running a
32 bit operating system. In Secs. 2 and 3, new BIE formulations and
new fast solution methods aimed to address these shortcomings of
the conventional BEM approach are discussed.

The rest of this review paper is organized as follows: In Sec. 2,
new developments in the last decade in the theoretical formulations
related to the BIE and BEM are discussed. These developments are:
new development in the Green’s functions which are the key ingre
dients in the BEM, the symmetric Galerkin BEM formulation, the
BIE related boundary meshfree methods, and the variationally based
BEM formulations. In Sec. 3, three fast solution methods that
emerged in the last decade for solving the BEM systems of equations
are reviewed. These fast methods are the fast multipole method, the
pre corrected fast Fourier transformation method, and the adaptive
cross approximation method. These fast solution methods are the key
factors in the last decade that have contributed to revitalizing the
BEM. In Sec. 4, modern applications of the BEM in solving large
scale, critical research and industrial problems using the advanced
BEM are presented. The areas of applications include: modeling
microelectromechanical systems, composite materials, functionally
graded materials, fracture mechanics, acoustic, elastic and electro
magnetic waves, time domain problems, and coupling of the BEM
with other methods. In Sec. 5, we discuss the future directions of the
BEM research, development and education for the next five to ten
years, based on our own opinions. More than 400 references that
highlight the history and advances of the BEM research in the last
decade or so are listed at the end of this paper for readers to further
study the related topics.

2 New Formulations

2.1 Green’s Functions for Anisotropic and Layered
Materials. Green’s function (GF) is named after George Green,
who wrote the famous essay on the application of mathematical
analysis to the theories of electricity and magnetism [52]. In his
essay, Green coined the term “potential” to denote the results
obtained by adding the masses of all the particles of a system,
each divided by its distance from a given point. The general prop
erties of the potential function were subsequently developed and
applied to electricity and magnetism. The formula connecting the
surface and volume integrals, now known as the Green’s theorem,
was also introduced in that work.

A Green’s function, also called singular function or fundamen
tal solution (a full space GF), represents the solution in a given
system due to a point source. For example, the GF denoted by
Gðx; yÞ for potential theory problems governed by Eq. (1) and in
an infinite domain satisfies

r2Gðx; yÞ þ dðx; yÞ ¼ 0; x; y 2 R2=R3 (14)

where r2 ¼ @2ð Þ=@yi@yi, and R2 and R3 indicate the full 2D and
3D spaces, respectively. The Dirac d function dðx; yÞ in Eq. (14)
represents a unit source (e.g., heat source) at the source point x,
and Gðx; yÞ represents the response (e.g., temperature) at the field
point y due to the source. The solution of Eq. (14) in 3D is given
in Eq. (4). GFs play a key role in the BEM. Without the GFs, the
boundary nature of the BEM will be hard to obtain. On the other
hand, due to the use of the GF, the BEM is often regarded as a
semi analytical method and thus more accurate, because the BEM
solution is built upon the analytical result provided by the GF.
More information about the GFs can be found in Refs. [53,54].

The GF concept is now extensively used in the solution of par
tial differential equations. The recently re emerged method of fun
damental solutions also makes direct use of the GFs [55,56]. In
the Eshelby based micromechanics theory, the GFs further plays
an important role [57].
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The GF also played an important role in the development of
various advanced material systems in the last decade. Anisotropy
and multiphase coupling are important features in advanced smart
material systems. The static GFs in 3D transversely isotropic pie
zoelectric infinite, half, and bimaterial spaces were derived by
Ding’s group at Zhejiang University [58,59] and Dunn’s group at
University of Colorado at Boulder [60] where the potential func
tion method was employed. Furthermore, under the assumption of
transverse isotropy, Ding’s group has further derived the corre
sponding magnetoelectroelastic GFs in the infinite space, half
space, and bimaterial space [61].

The corresponding 2D GFs in general anisotropy (including
also the piezoelectric and magnetoelectroelastic coupled systems)
can be best represented by the Stroh formalism based on the com
plex variable method for infinite, half, and bimaterial planes
[62 64]. In general, GFs of the degenerated case where repeated
eigenvalues appear cannot be directly reduced from these expres
sions. However, those of slightly perturbed cases (i.e., the quasi
isotropic) can give very accurate solutions [65]. On the other
hand, Yin [66] employed the Lekhnitskii’s formalism and derived
the Green’s functions for infinite, half, and bimaterial planes
where both general anisotropy (with distinguished eigenvalues)
and quasi isotropic case (with repeated eigenvalues in different
ranks) were cast into unified expressions.

Three dimensional GFs in an anisotropic and elastic full space
were derived using various mathematical methods, including
eigenvalues/vectors, Fourier transform, Radon transform, among
others. A comprehensive review on this topic can be found in Lav
agnino [67]. Very recently, Buroni et al. [68] derived the set of
solutions which contain any kind of mathematical degeneracy of
the eigenvalues. The corresponding half space and bimaterial GFs
were obtained in Ref. [69]. Similar GFs were also derived for the
half space case with general surface conditions [70] and for the
bimaterial case with general (or imperfect) interface conditions
[71]. Simple line integral expressions for the interfacial GFs and
trimaterial GFs can also be obtained.

Three dimensional GFs in the corresponding anisotropic piezo
electric and even magnetoelectroelastic full, half, and bimaterial
space can be derived by following a similar procedure. Actually, to
derive these GFs, one only needs to extend the problem dimension
from three to four for the piezoelectric case and to five for the mag
netoelectroelastic case. For instance, for the 3D magnetoelectroelas
tic case, the GFs can be found in Refs. [72,73]. Besides the point
“force” GFs, some point “dislocation” GFs were also derived, which
have been shown to be very efficient in dealing with fracture prob
lems in piezoelectric and magnetoelectroelastic solids [74,75].

Layered structures are very common in advanced composite
structures, and therefore, derivation of the GFs in these systems is
also important. Typical methods to find the GFs is to first apply
the double Fourier transform or Hankel transform in the horizontal
layer plane and solve the problem in the transformed domain via
the propagator matrix method. The physical domain solution is
obtained by applying the inverse transform, which usually
requires numerical integration. Besides the GFs for elastic iso
tropic, transversely isotropic, thermoelastic, and poroelastic lay
ered spaces, GFs for the piezoelectric layered half space and even
piezoelectric functionally graded half space were also derived
[76,77]. Similar approaches have also been developed to derive
the GFs in general anisotropic and layered elastic spaces [78].

Significant efforts have been conducted by different authors to
derive dynamic GFs in anisotropic solids and further extending
these ideas to the piezoelectric and magnetoelectroelastic cases.
Denda et al. [79] derived the 2D time harmonic GFs by means of
the Radon transform, and implemented them for the eigenvalue
analysis of piezoelectric solids. Following the same approach,
Wang and Zhang [80] presented their time domain, Laplace’s do
main, and 3D counterparts of the GFs. Wu and Chen [81] later
derived explicit dynamic GFs for the 2D case. With respect to the
magnetoelectroelastic case, Ren and Liu [82] presented a time
harmonic dynamic fundamental solution for transversely isotropic

magnetoelectroelastic media under anti plane deformation. Chen
et al. [83] derived the explicit expressions for the dynamic poten
tials of an inclusion embedded in a “quasi plane” magnetoelec
troelastic medium of transverse isotropy and for the dynamic GFs
of such a medium both in the time domain and in the frequency
domain. Rojas Dı́az et al. [84] later derived the 2D and 3D time
harmonic GFs by means of Radon transform.

For the development of GFs in other fields, readers may consult
a special issue of the journal Engineering Analysis with Boundary
Elements published in 2005 [78] where some recent research on
GFs and related BEM issues are discussed.

2.2 Symmetric Galerkin BEM. There are two basic proce
dures that are generally used to reduce the continuous boundary in
tegral Eqs. (7) and (8) to finite systems. The simpler procedure is
collocation, wherein the BIEs are explicitly enforced at a finite set
of points. In its simplest form, these collocation points are chosen
to be the nodes used to discretize the boundary. If the boundary
potential and flux are interpolated from their values at these N
points, then the pointwise enforcement of Eqs. (7) and (8) provides
the N equations needed to solve for the unknown values. Colloca
tion necessarily leads to non symmetric matrices system.

In contrast to collocation, the Galerkin approach does not require
that the integral equations be satisfied at any point. Instead, the equa
tions are enforced in a weighted average sense as follows:

PðxÞ � cðxÞ/ðxÞ ¼
ð
S

Gðx; yÞqðyÞ Fðx; yÞ/ðyÞ½ �dSðyÞ; 8x 2 S

(15)

QðxÞ � cðxÞqðxÞ ¼
ð
S

Kðx; yÞqðyÞ Hðx; yÞ/ðyÞ½ �dSðyÞ; 8x 2 S

(16)ð
S

wkPðxÞ dSðxÞ ¼ 0ð
S

wkQðxÞ dSðxÞ ¼ 0

(17)

where wk are the chosen weight functions. The needed N equa
tions can be generated by an appropriate choice of N weights. The
strict definition of Galerkin is that the weight function wk is com
posed of the shape functions that are non zero at the node x, the
shape functions being the local basis functions used to interpolate
the boundary functions. For a linear interpolation, the Galerkin
weight functions are illustrated in Fig. 2.

In mathematical terminology, collocation is a strong solution,
the equations being satisfied at the specified points, whereas

Fig. 2 Illustration of the Galerkin weight functions for 2D BEM
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Galerkin is a weak solution. The requirement that the equations
hold in an integrated sense has a geometric interpretation: The ap
proximate Galerkin solution is obtained by projecting the exact
solution onto the subspace consisting of all functions which are a
linear combination of the shape functions. The Galerkin solution
is therefore the linear combination that is the closest to the exact
solution. In general, the Galerkin method is more accurate than
the collocation method, and also provides a more elegant treat
ment of boundary corners. However, the primary advantage of the
Galerkin method is that the treatment of hypersingular integrals is
actually much simpler than with collocation. The Galerkin form
of the hypersingular integral exists if the interpolation of the
boundary potential is continuous C0. For collocation, a smoother
interpolation (differentiable C1) is required for the existence of
the integral. Standard elements, e.g., linear or quadratic, are con
tinuous across element boundaries, and it is quite a bit more com
plicated to implement a differentiable interpolation.

2.2.1 Symmetric Galerkin Formulation. With Galerkin, x and
y are treated equally, and thus it is possible to produce a symmet
ric coefficient matrix, the symmetric Galerkin boundary element
method (SGBEM). This algorithm is based upon the symmetry
properties of the Green’s function,

Gðx; yÞ ¼ Gðy; xÞ
@Gðx; yÞ
@nðyÞ ¼ @Gðx; yÞ

@nðxÞ ¼ @Gðy; xÞ
@nðxÞ

@2Gðx; yÞ
@nðxÞ@nðyÞ ¼

@2Gðy; xÞ
@nðxÞ@nðyÞ

(18)

It follows that if the potential is specified everywhere on the
boundary, then the Galerkin form of the potential equation will
yield a symmetric matrix; a similar statement holds for flux
boundary data and the flux equation. For a general mixed bound
ary value problem, symmetry results if each equation is applied
on its appropriate surface. That is, the potential equation is applied
on the Dirichlet portion of the boundary and the flux equation is
applied on the Neumann portion of the boundary.

After discretization, the set of Eq. (17) can be written in block
matrix form as f½ �/ ¼ h½ �q, and in block matrix these equations
become

f11 f12
f21 f22

� �
/bv

/un

� �
¼ h11 h12

h21 h22

� �
qbv
qun

� �
(19)

Symmetry of the coefficient matrix for a general mixed boundary
value problem is achieved by the following simple arrangement.
The BIE is employed on the Dirichlet surface, and the HBIE equa
tion is used on the Neumann surface. The first row represents the
BIE written on the Dirichlet surface, and the second row repre
sents the HBIE written on the Neumann surface. Similarly, the
first and the second columns arise from integrating over Dirichlet
and Neumann surfaces, respectively. The subscripts in the matrix
therefore denote known boundary values bv and unknown un
quantities. Rearranging into the form Ak ¼ b, one obtains

h11 f12
h21 f22

� �
qun
/un

� �
¼ f11/bvþh12qbv

f21/bv h22qbv

� �
(20)

The symmetry of the coefficient matrix, h11 ¼ hT11, f22¼ fT22 and
f12¼ hT21, now follows from the properties of the kernel functions.
The advantages of Galerkin, of course, come at a price: although,
as shown in Fig. 2, the weight functions have local support, the
additional boundary integration with respect to x is nevertheless
computationally expensive. These costs can be reduced somewhat
by exploiting symmetry or by fast solution methods, but Galerkin
BEM will nevertheless require more computation time than
collocation.

2.2.2 Brief History. Almost all of the early BEM computa
tions employed a collocation approximation. In 1977, Bui [85]
produced a Galerkin formulation for fracture analysis, and in
1979, Sirtori [86] proposed the symmetric Galerkin formulation
for linear elasticity. It was recognized almost after a decade that
collocation BEM failed to retain many of the nice properties of fi
nite elements: sign definite symmetric matrix operators, a varia
tional formulation, and proofs of convergence and stability. In
addition, a collocation implementation for fracture analysis had to
resort to higher order C1 elements, e.g., Overhauser or Hermite
elements to adequately deal with the hypersingular kernel, and
these elements proved difficult to handle, especially in three
dimensions. These negative aspects of collocation fueled the inter
est in the symmetric Galerkin boundary element formulation, and
subsequent development was primarily carried out in Europe.

Hartmann et al. [87] in 1985 extended the symmetric Galerkin
formulation to beams and Kirchhoff plates, while Maier and
Polizzotto [88] in 1987 developed SGBEM for elastoplastic sol
ids. Maier and Polizotto [88] extensively studied elastoplasticity,
gradient elasticity, cohesive crack simulation, elastodynamics and
plasticity problems using the SGBEM. Different computational
implementations appeared, such as those by Holzer [89], Bonnet
and Bui [90], and Kane and Balakrishna [91].

Treatment of hypersingular integrals in 3D is a hurdle [34].
Two main approaches have been based upon Hadamard finite
parts, including Andra [92], Carini and Salvadori [93], Carini
et al. [94], Haas and Kuhn [95], Frangi and Novati [96], Frangi
and Guiggiani [97], and Salvadori [98,99], among others; and
direct limit methods by Gray et al. [100,101] for homogeneous
materials, and Sutradhar et al. [102] for graded materials.

2.2.3 Recent Applications. One of the important application
areas of symmetric Galerkin is fracture. An implementation for
fracture analysis in plane orthotropic elasticity was reported by
Gray and Paulino [103]. A weak form integral equation for 3D
fracture analysis was proposed by Li, Mear, and Xiao [104].
Frangi [105,106] developed a similar crack analysis based on inte
gration by parts, and applied it to crack propagation and fatigue
crack growth. Salvadori [107] presented a crack formulation for
cohesive interface problems, and Sutradhar and Paulino [108] pre
sented a symmetric Galerkin formulation to evaluate T stress and
stress intensity factors (SIFs) using the interaction integral
method. Xu, Lie and Cen [109] presented a 2D crack propagation
analysis using quasi higher order elements. Phan et al. [110 114]
presented SIF analysis with frictional contact sliding at disconti
nuity and junctions, SIF calculations for crack inclusion interac
tion problems, and a SGBEM based quasi static crack growth
prediction tool to investigate crack particle interactions. Galerkin
methods have found a broad range of engineering applications.
For instance, an SGBEM formulation for 2D steady and incom
pressible flow was developed by Capuani et al. [115]. A Stokes
problem with general boundary condition with slip condition was
reported by Reidinger and Steinbach [116]. Other works using
SGBEM include; for example, steady state harmonic solution of
the Navier equation by Perez Gavilan and Aliabadi [117], inter
face and multi zone problems by Gray and Paulino [118], lower
bound shakedown analysis by Zhang et al. [119], dynamic soil
structure interaction by Lehman and Antes [120], problems of fi
nite elasticity with hyperelastic and incompressible materials by
Polizotto [121], dynamic frequency domain viscoelastic problems
subjected to steady state time harmonic loads by Perez Gavilan
and Aliabadi [122,123], analysis of Kirchhoff elastic plates by
Frangi and Bonnet [124].

2.3 Meshfree Methods Based on BIEs. Boundary based
meshfree methods are first introduced in this section. This is fol
lowed by some details of the boundary node method (BNM) and
the extended boundary node method (EBNM).

The primary idea in meshfree methods is to divorce the tradi
tional coupling between spatial discretization (meshing) and
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interpolation of the unknown solution, as is commonly practiced
in the FEM or the BEM. Instead, a “diffuse” approximation is
used to represent the unknown functions; cells, with a very flexi
ble structure (e.g., any cell can be arbitrarily subdivided without
affecting its neighbors), are used for integration. A domain based
meshfree method was first proposed by Nayroles et al. [125]; this
idea was improved and expanded upon by Belytschko et al. [126]
who proposed the element free Galerkin method (EFG). The EFG
couples the moving least squares (MLS) approximation scheme
with the Galerkin weak form to obtain a domain based meshfree
method. The BNM, first proposed by Mukherjee and Mukherjee
[127], on the other hand, is a combination of the MLS approxima
tion scheme and the standard BIE, thus producing a boundary
based meshfree method. Thus, the BNM retains the meshless
attribute of the EFG and the dimensionality advantage of the
BEM. As a consequence, the BNM only requires the specification
of points on the 2D bounding surface of a 3D body (including
crack faces in fracture mechanics problems), together with
unstructured surface cells, thereby practically eliminating the
meshing problem. In contrast, the FEM needs volume meshing,
the BEM needs surface meshing, and the EFG needs points
throughout the domain of a body.

Some publications related to the BNM are [42,128 133]. Other
examples of boundary based meshfree methods are the local BIE
(LBIE) approach [134,135], the boundary only radial basis function
method (BRBFM) [136], the boundary cloud method (BCM)
[137,138], the boundary point interpolation method (BPIM) [139],
the hybrid boundary node method (HBNM) [140], the boundary
face method (BFM) [141], the boundary element free method [142],
and the Galerkin boundary node method (GBNM) [143 147].

The BCM [137,138] is very similar to the BNM in that scat
tered boundary points are used for constructing approximating
functions and these approximants are used with the appropriate
BIEs for the problem. However, a key attractive feature of these
papers is that, unlike the BNM where boundary curvilinear coor
dinates must be employed, the usual Cartesian coordinates can be
used in the BCM. Use of Cartesian, rather than curvilinear bound
ary coordinates, is certainly preferable, especially for 3D prob
lems. One disadvantage of the variable basis approach [138] (as
well as the standard BNM [127]), on the other hand, is that these
methods do not properly model possible discontinuities in the nor
mal derivative of the potential function across edges and corners.
Telukunta and Mukherjee [148] have tried to combine the advan

tages of the variable basis approach [138], together with allowing
possible discontinuities in the normal derivative of the potential
function, across edges and corners, in an approach called the
extended boundary node method (EBNM). A detailed formulation
for the EBNM for 2D potential theory, together with numerical
results for selected problems, appear in [148]; while the EBNM
for 3D potential theory is the subject of [149]. A brief description
of the EBNM for 3D potential theory is given below. Details are
available in Ref. [149].

It is assumed that the bounding surface S of a solid body occu
pying the region V is the union of piecewise smooth segments
called panels. The BNM employs a diffuse approximation in
which the value of a variable at a boundary point is defined in
terms of its values at neighboring boundary points within its do
main of dependence (DOD). Correspondingly, a boundary node
affects points within its range of influence (ROI). These regions
are shown in Fig. 3(a).

Let /ðxÞ be the sought after harmonic function in 3D and qðxÞ
be its outward normal derivative. The first step is to write:

/ðxÞ ¼ pTðxÞa; qðxÞ ¼ qTðxÞb (21)

Appropriate selection of the approximation functions pðxÞ and
qðxÞ (each is a vector of length m) is of crucial importance, and is
discussed in detail in Ref. [149].

The coefficients ai and bi are obtained by minimizing weighted
discrete L2 norms. Finally, one gets

/ðxÞ ¼
Xn
I 1

MIðxÞ/̂I ; qðxÞ ¼
Xn
I 1

NIðxÞq̂I (22)

where

MðxÞ ¼ pTðxÞðA�1BÞðxÞ; NðxÞ ¼ qTðxÞðC�1DÞðxÞ (23)

Here, Eq. (22) relates the nodal approximations of / and q to their
real nodal values. The matrices A, B, C, D are defined in Ref.
[149].

A moving least squares (MLS) approach is adopted in the BNM
and in the EBNM. Now, one has variable weight functions within
each cloud, i.e., wIðx; xIÞ. The basic idea behind the choice of a
weight function is that its value should decrease with distance

Fig. 3 Domain of dependence and range of influence. (a) The nodes 1, 2 and 3 lie within the DOD of the evaluation point
E. The ROIs of nodes 1, 2, 3, 4 and 5 are shown as gray regions. In the standard BNM, the ROI of a node near an edge, e.g.,
node 4, is truncated at the edges of a panel. In the EBNM, the ROI can reach over to neighboring panels and contain edges
and=or corners - see, e.g., node 5 (b) Gaussian weight function defined on the ROI of a node (from Ref. [149]).
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from a node and that it should have compact support so that the
ROI of the node (see Fig. 3(b)) is of finite extent. A possible sim
ple choice is the Gaussian weight function, used in Ref. [149]:

wIðdÞ ¼ e�ðd=dIÞ2 for d � dI

0 for d > dI

(
(24)

where d ¼ gðx; xIÞ is the minimum distance measured on the sur
face S (i.e., the geodesic) between x and the collocation node I
with co ordinates xI ; and the quantities dI determine the extent of
the ROI (the compact support) of node I.

The EBNM combines the advantages of the variable basis
approach presented in Ref. [138] together with allowing disconti
nuities in q. A basis (i.e., the functions in p or q in Eq. (21)) for a
cloud must satisfy two competing requirements it must be broad
enough to include all cases, yet it must be narrow enough such
that the matrices A and C in Eq. (23) are nonsingular [149].

The next important step is to use the MLS approximations in
Eq. (22) for the functions / and q in the regularized BIE for 3D
potential theory. This regularized BIE is:

0 ¼
ð
S

½Gðx; yÞqðyÞ Fðx; yÞf/ðyÞ /ðxÞg�dSðyÞ (25)

The boundary S is partitioned into Nc cells Sk and MLS approxi
mations (Eq. (22)) are used in Eq. (25). The result is:

0 ¼
XNc

k 1

ð
Sk

"
Gðx; yÞ

Xny
I 1

NIðyÞq̂I Fðx; yÞ

�
(Xny

I 1

MIðyÞ/̂I

Xnx
I 1

MIðxÞ/̂I

)#
dSðyÞ (26)

where MIðxÞ and MIðyÞ are the contributions from the Ith node to
the collocation (source) point x and field point y, respectively.
Also, ny nodes lie in the DOI of the field point y and nx nodes lie
in the DOI of the source point x. When x and y belong to the same
cell, the cell is treated as a singular cell and special techniques are
needed to numerically evaluate the weakly singular integrals that
involve the kernel Gðx; yÞ. This method is described in Ref. [42]
for 3D problems. Regular Gaussian integration is used for numeri
cal evaluation of nonsingular integrals.

The final assembled equations from the EBNM are of the form:

½K1�f/̂g þ ½K2�fq̂g ¼ 0 NB equations (27)

Equation (27) is combined with Eq. (22) and the given boundary
values in order to solve for the unknown quantities on the
boundary S.

It is well known that surface meshing (that suffices for BEM
applications in linear problems) is much easier than (3D) domain
meshing (as is typically required for the FEM). One might then
wonder about the need for a (pseudo) mesh free version of the
BEM. It is important to point out, however, that certain situations,
such as problems with moving boundaries, or those in which opti
mal shape design and/or adaptive meshing is carried out, typically
require multiple remeshings during the solution process. This pro
cess can be painful even for the BEM. The BNM has a very flexi
ble cell structure; the cells, used just for integration, only need to
cover the surface of a body and not overlap. No other topological
restrictions are imposed. Therefore, this method offers an attrac
tive alternative to the standard BEM, especially for this class of
problems. As an illustration of the power of the BNM, the initial
and final cell distribution on a cube, from an ONE step adaptive
(standard) BNM calculation for 3D potential theory [131], is
reproduced as Fig. 4 in this paper. This is, in fact, a Dirichlet prob
lem with the prescribed potential on the cube surface given by

/ ¼ sinh
px1
2

� �
sin

px2
2 2
p

	 

sin

px3
2 2
p

	 

(28)

The advantage of a flexible cell structure is apparent in Fig.
4(b) in which the cube surface has 1764 cells of different sizes.

Application examples of the BNM and other related methods
can be found in Refs. [42,127 133,148,149].

2.4 Variationally Based BEM Formulations. In this sec
tion, we review the conventional, collocation BEM from a point
of view that is not common in the literature, but which helps to
understand some key concepts and also indicates how the BEM
relates to some variationally based developments [150]. This sec
tion also shows the connection of the BEM with the FEM, that is
not highlighted in the literature.

We start with the derivation of the BEM. For brevity, we
restrict to elastostatics, out of which the formulation of potential
problems may be obtained as a special case. Let an elastic body
be subjected to body forces bi in domain V and traction forces ti
on part Sr of the boundary S. Displacements ui are known on the

Fig. 4 ONE-step multilevel BNM cell refinement for the “sinsinh cube” problem: (a) initial configuration with 96 surface
cells; (b) final adapted configuration (obtained in one step) with 1764 surface cells (from Ref. [131])
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complementary part Su of S. We look for an approximation of the
stress field that best satisfies equilibrium in V:

rji;j þ bi ¼ 0 in V (29)

and rjinj ¼ ti on Sr, with a corresponding displacement field that
best corresponds to ui ¼ ui on Su, where nj is the outward unit
normal to S. Index notation is used here.

2.4.1 From Variational to Consistent Weighted Residual
Formulations of the BEM. The present problem might be formu
lated in the following framework of the strong form of the princi
ple of stationary (minimum) total potential energy [151], only
assuming that rij is a symmetric tensor that satisfies a priori the
constitutive equation rij ¼ Cijkl uk;l:

dP udi
� � ¼ ð

V

rdji;jduidV þ
ð
S

rdjinj ti

� �
duidS ¼ 0 (30)

for a variation dui of ui, already extending the boundary integral
from Sr to S, since dui ¼ 0 on Su. The weak form of Eq. (30) is
the basis of the displacement finite element method [152] and this
is explicitly assumed by the superscript ð Þd attached to the stress
field in Eq. (30). For brevity, the body force bi is assumed to be
zero (see Ref. [150] for the general case).

For the BEM, the above problem may be formulated in terms of
weighted residuals, in a non variational, less restrictive frame
work than Eq. (30), using as weighting functions a field of varia
tions of fundamental solutions:ð

V

rji;j du
�
i dV þ

ð
S

rjinj ti
� �

du�i dS ¼ 0 (31)

The sequential presentation of the two latter equations helps to
clarify the main difference between the FEM and the BEM:
besides integrability issues that are inherent to any integral state
ment, the premise for Eq. (30) is that dui ¼ 0 on Su, whereas the
premise for Eq. (31) is that du�i be the fundamental solution of Eq.
(29).

The BEM is derived from Eq. (31) for variations of the follow
ing series of fundamental solutions r�ij and u�i , given in terms of
force parameters p�m,

r�ij ¼ r�ijmp
�
m; u�i ¼ ðu�im þ urisCsmÞp�m (32)

where uris, for s ¼ 1…nr , are nr rigid body displacements that are
multiplied by, in principle, arbitrary constants Csm. In the above
equations, m characterizes both location and direction of applica
tion of p�m. Then, r

�
ijm and u�im are functions with global support

of the coordinates and directions of p�m referred to by m (the
source point), as well as of the coordinates and directions referred
to by i (the field point), at which the effects of p�m are measured.
For simplicity of notation, the coordinates of source and field
points are not explicitly represented.

Substituting for dr�ijm and du�im in Eq. (31) according to
Eq. (32), we obtain, for arbitrary dp�m, the modified expression of
the Somigliana’s identity,

um ¼
ð
S

tiu
�
imdS

ð
S

r�jimnjuidSþ Csm

ð
S

tiu
r
isdS (33)

which is used to evaluate displacements um (and, subsequently,
stresses) at a domain point m for prescribed forces ti, and bound
ary displacements ui. The last term vanishes only if ti are in equi
librium, which is not necessarily true when we are dealing with
approximations. Then, the results are in principle influenced by
some arbitrary constants Csm [153].

Equation (33) may also be used to evaluate displacements ui
and traction forces ti as the problem’s unknowns along Sr and Su

when the collocation point is placed on the boundary. Using
boundary elements and placing the collocation point at each node,
we arrive at the basic equation of the conventional, collocation
boundary element method, given in matrix form as

Hd ¼ Gtþ e (34)

where H ¼ Hmn½ � � Ð
S r

�
jimnjuindSþ dmn is a kinematic transforma

tion matrix andG ¼ Gm‘½ � � Ð
S ti‘u

�
imdS is a flexibility type matrix.

The error term e in Eq. (34) corresponds to residuals whose
magnitude depends on the amount of rigid body displacements
that are implicit in the fundamental solution, Eq. (32), as well as
on how refined is the boundary mesh. This vector of residuals is
usually disregarded in the implementations shown in the literature
[153]. A consistent numerical formulation must take this term ex
plicitly into account and end up with matrices that are independent
from Csm instead of just disregarding it. Otherwise, uncontrolled
ill conditioning related to the matrix G may appear in the equation
system of Eq. (13). This specific issue has already been the subject
of a thorough theoretical investigation [150,154] and shall not be
addressed in the present review. For simplicity, it is henceforth
assumed that, for a sufficiently fine mesh, e ¼ 0.

2.4.2 The Hybrid BEM. A variational formulation was pro
posed in the year 1987 as an attempt to preserve the mechanical
consistency of Eq. (30) and the boundary only features of the
BEM [151]. It turned out to be a generalization of the Hellinger
Reissner potential [152] and was called hybrid BEM in reference
to Pian’s developments on finite elements [155]. We require that
the potential

PRðrsij; udi Þ ¼
ð
V

UC
0 r

s
ij þ rsji;ju

d
i

h i
dV þ

ð
S

ti rsjinj
� �

udi dS

(35)

be stationary for boundary displacements udi interpolated along S
and such that udi ¼ ui on Su, and for domain stresses given by Eq.
(32). The superscripts ð Þd and ð Þs characterize that two independent
fields of displacements and stresses are used as trial functions.
The displacement field corresponding to rsij is given by Eq. (32).

After substituting for udi , r
s
ij and usi in Eq. (35) according to the

element discretization, we arrive at the following sets of matrix
equations, for arbitrary variations dd and dp�:

HTp� ¼ p; F�p� ¼ Hd (36)

In these equations, H is the same matrix of the BEM, introduced in
Eq. (34), which performs a kinematic transformation in the second
set of equations and, in its preceding transpose form, an equilibrium
transformation. The nodal force vector p ¼ pm½ � � Ð

S tiuimdS is
equivalent, in terms of virtual work, to the applied forces ti on S.
Any terms related to Csm are naturally void.

In Eq. (36), F� is a symmetric flexibility matrix that transforms
point forces p� into equivalent nodal displacements d�, as referred
to the sets of nodal quantities used to interpolate the domain stress
field (fundamental solutions). The definition of F� is given in the
following, also repeating the definition of H in order to clarify
some key concepts [150,151]:

Hmn F�
mn½ � �

ð
S

r�jimnj uin u�inh idSþ dmn U�
mnh i

� fp

ð
S

r�jimnj uin u�inh idSþ
ð
Sdisc

r�jimnj uin u�inh idS
� Hfp F�

fp

 �þHdisc I U�½ �
(37)

The matrix F� shares the singularity features of the matrices H
(singularity of r�jim) and G (improper integral due to u�im), except

8



when m and n refer to the same nodal point. The evaluation of the
singular integral is carried out in terms of a finite part plus a dis
continuous term, as indicated in the second and third lines of Eq.
(37). The impossibility of obtaining the coefficients about the
main diagonal of F� in Eq. (37) is evident, as the coefficients of
the matrix U� � U�

mn are the displacement fundamental solution
evaluated at point n for a source point applied at m: If m ¼ n, this
would correspond to a meaningless value at a point that lies out
side the domain of interest V. The response of U� � U�

mn for
m ¼ n is actually not infinite, but rather undefined in the frame of
an integral statement. The evaluation of such terms, for a finite do
main, must succeed in a linear algebra framework, as briefly
explained in the following.

Let W ¼ Wns½ � 2 Rnd�nr be a matrix whose columns form an or
thogonal basis of the nodal displacements d of Eq. (36) related to
the rigid body displacements of a finite domain. Then, as by con
struction W ¼ NðHÞ, we may define a matrix V ¼ NðHTÞ and
check that, for linear algebra consistency of Eq. (36),

WTHTp� ¼ WTp ¼ 0 and VTF�p� ¼ VTHd ¼ 0 (38)

for any set of force parameters p�. It results that, for a finite do
main V,

VTF� ¼ 0 (39)

which is a linear algebra means of evaluating the coefficients of
F� for m and n referring to the same nodal point, which could not
be obtained from Eq. (37) [150,151,156].

Solving for p� in Eq. (36), we obtain the stiffness relation

HT F� þ VVT
� ��1

H
h i

d ¼ p (40)

with an inverse matrix that comes from the theory of generalized
inverses [150,151]

The same developments outlined above apply to an unbounded
domain that is complementary to V. The resulting equations help
to understand several topological issues related to Eq. (39), for a
general non convex, multiply connected domain. Such relations
have eventually led to the simplified hybrid BEM [157], which is
in general as accurate as the hybrid BEM or the CBEM, although
computationally less expensive [158], since the time consuming
evaluation of F� in Eq. (37) can be circumvented.

In either hybrid or simplified hybrid BEM, once d, p and p� are
solved, for adequate boundary conditions, the results at internal
points can be directly obtained via Eq. (32), thus avoiding
the time consuming evaluation of the Somigliana’s identity of
Eq. (33) [150,151].

2.4.3 The Hybrid Displacement BEM. Motivated by the
hybrid BEM, Figueiredo and Brebbia proposed an alternative var
iational formulation, which was called hybrid displacement BEM
[159]. It consists of the application of the Hu potential [152],
given in the following using the notation already introduced for
the BEM and hybrid BEM:

PHDðusi ; udi ; tiÞ ¼
ð
V

U0ðusi;jÞdV
ð
Sr

udi tidS

ð
S

tiðusi udi ÞdS

(41)

also with fundamental solutions as domain interpolation functions,
but in terms of displacements. The compatibility between domain
and boundary displacements, usi and udi , is weakly enforced by
using the Lagrange multiplier ti. After numerical discretization,
Eq. (41) leads to

F�p� ¼ Gt; p ¼ LTt; GTp� ¼ Ld (42)

All vectors and matrices above have already been introduced,
except for L, which is expressed as L‘m ¼ Ð

S uimti‘dS [150]. We
may obtain from the above equations the stiffness relation

LTGð�1ÞF�Gð�TÞL
h i

d ¼ p (43)

where Gð�1Þ must be expressed in terms of generalized inverses,
in a consistent formulation, as G is in general rectangular and pos
sibly not full rank [150]. In the latter formulation, the undefined
coefficients of F� are obtained by means of a spectral property
related to G, which takes the place of Eq. (39), although equiva
lent to it. The same topological concerns made with respect to the
hybrid BEM affect the hybrid displacement BEM [150].

The aim of the present brief review in this subsection is to sit
uate the collocation BEM among several developments that are
based on energy concepts, as in Eqs. (30), (31), (35), and (41).
Some applications of the variationally based BEM and many in
depth conceptual details are given in Refs. [150,151,154,157,
158,160 169].

3 Fast Solution Methods

In addition to the new mathematical formulations for the BEM,
as reviewed in the previous section, a few new fast solution meth
ods for solving the BEM systems of equations also emerged in the
last decade. With the developments of these fast solution methods,
the BEM can now be applied to solve large scale and practical en
gineering problems with the number of boundary elements on the
order of a few millions on desktop computers. In this section, we
will review three fast solution methods, namely, the fast multipole
method (FMM), the pre corrected fast Fourier transformation
(pFFT) method, and the adaptive cross approximation (ACA)
method. The first two methods were mainly developed in the U.S.,
while the third one was originated in Europe. Application exam
ples of the new formulations in the BEM and these fast solution
methods will be presented in Sec. 4.

3.1 Fast Multipole Method. In the mid 1980s, Rokhlin and
Greengard [170 172] pioneered the innovative fast multipole
method that can be used to accelerate the solutions of the BEM by
several orders, promising to reduce the CPU time in the FMM
accelerated BEM to O(N). We call the fast multipole accelerated
BEM the fast multipole BEM (or FMBEM). Some of the early
work on the fast multipole BEM in applied mechanics can be
found in Refs. [173 177]. A comprehensive review paper on the
fast multipole BIE and BEM up to 2002 can be found in Ref.
[178], a tutorial paper in Ref. [179], and a textbook in Ref. [44].

The main idea of the fast multipole BEM is to apply iterative
solvers (such as GMRES [180]) to solve Eq. (13) and use the FMM
to accelerate the matrix vector multiplication (Ak) in each iteration,
without forming the entire matrix A explicitly. Direct integrations
are still needed when the elements are close to the source point,
whereas fast multipole expansions are used for elements that are far
away from the source point. A main reason for the reduction in
operations in the FMM is due to the fact that the Green’s functions
in the BIEs can be expanded in the following form:

Gðx; yÞ ¼
X
i

Gx
i ðx; ycÞGy

i ðy; ycÞ (44)

where yc is an expansion point near y. This can be achieved by
use of various forms of expansions, including, but not limited to,
Taylor series expansions. By using an expansion as in Eq. (44),
we can write the original integral, such as the one with the G ker
nel in BIE (Eq. (7)), asð

Sc

Gðx; yÞqðyÞdSðyÞ ¼
X
i

Gx
i ðx; ycÞ

ð
Sc

Gy
i ðy; ycÞqðyÞdSðyÞ

(45)
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where Sc is a subset of S away from x. In the conventional BEM,
the integral is computed with the expression on the left hand side
of Eq. (45) directly. Any changes in the location of the source
point x will require reevaluation of the entire integral. In the fast
multipole BEM, when the source point x is far away from Sc, the
original integral is computed with the expression on the right
hand side of Eq. (45), in which the new integrals need to be eval
uated only once, independent of the locations of the source point
x. That is, the direct relation between x and y is cut off by use of
the expansion and introduction of the new “middle” point yc.
Additional expansions and translations, as well as a hierarchical
tree structure of the elements, are introduced in the fast multipole
BEM to further reduce the computational costs.

As an example, we discuss the expansions in the FMM for 2D
potential problems and the main procedures and algorithms in the
fast multipole BEM. Consider the following integral with the G
kernel in BIE (Eq. (7)):ð

Sc

Gðx; yÞqðyÞdSðyÞ (46)

in which Sc is a subset of boundary S and away from the source
point x, and Gðx; yÞ ¼ 1=2pð Þ log 1=rð Þ for 2D. Using complex
notation, that is, replace the source point x ) z0 ¼ x1 þ ix2
and the field point y ) z ¼ y1 þ iy2 in the complex plane,
where i ¼ 1

p
, we can write

Gðx; yÞ ¼ RefGðz0; zÞg (47)

where

Gðz0; zÞ ¼ 1

2p
logðz0 zÞ (48)

is the fundamental solution in complex notation and Ref g indi
cates the real part of the function. Thus the integral in (46) is
equivalent to the real part of the following integral:ð

Sc

Gðz0; zÞqðzÞdSðzÞ (49)

We first expand the kernel function to separate the source point z0
and field point z. To do this, we introduce an expansion point zc
close to the field point z, that is, z zcj j 	 z0 zcj j. Applying the
Taylor series expansion, we obtain

Gðz0; zÞ ¼ 1

2p

X1
k 0

Okðz0 zcÞIkðz zcÞ (50)

where the two auxiliary functions IkðzÞ ¼ zk=k! ðfor k 
 0Þ,
OkðzÞ ¼ ðk 1Þ!=zk ðfor k 
 1Þ and O0ðzÞ ¼ logðzÞ. The inte
gral in (49) is now evaluated by the following multipole
expansion:ð

Sc

Gðz0; zÞqðzÞdSðzÞ ¼ 1

2p

X1
k 0

Okðz0 zcÞMkðzcÞ (51)

where

MkðzcÞ ¼
ð
Sc

Ikðz zcÞqðzÞdSðzÞ; k ¼ 0; 1; 2; ::: (52)

are called moments about zc, which are independent of the collo
cation point z0 and need to be computed only once. If the expan
sion point zc is moved to a new location zc0 , we compute the
moment at the new location by the moment to moment (M2M)
translation

Mkðzc0 Þ ¼
Xk
l 0

Ik�lðzc zc0 ÞMlðzcÞ (53)

Next, we introduce the so called local expansion about the source
point z0. Suppose zL is a point close to the source point z0, that is,
z0 zLj j 	 zL zcj j. From the multipole expansion in Eq. (51),
we have the following local expansion:ð

Sc

Gðz0; zÞqðzÞdSðzÞ ¼ 1

2p

X1
l 0

LlðzLÞIlðz0 zLÞ (54)

where the coefficients LlðzLÞ are given by the following moment
to local (M2L) translation:

LlðzLÞ ¼ ð 1Þl
X1
k 0

OlþkðzL zcÞMkðzcÞ (55)

If the point is moved from zL to zL0 , we have the following local
to local (L2L) translation:

LlðzL0 Þ ¼
Xp
m l

Im�lðzL0 zLÞLmðzLÞ (56)

Multipole expansion moments for the integrals with the F kernel,
as well as those in the hypersingular BIE, can be defined similarly.
The M2M, M2L, and L2L translations remain the same for these
integrals.

The algorithms in the fast multipole BEM can be described as
follows:

Step 1. Discretize the boundary S in the same way as in the
conventional BEM. For example, we apply constant ele
ments to discretize boundary S of a 2D domain as shown in
Fig. 5.

Step 2. Determine a tree structure of the elements. For a 2D do
main, consider a square that covers the entire boundary S
and call this square the cell of level 0. Next, start dividing
this parent cell into four equal child cells of level 1. Con
tinue dividing in this way cells that contain elements. Stop
dividing a cell if the number of elements in that cell is fewer
than a pre specified number (this number is 1 in the example
in Fig. 5). A cell having no child cells is called a leaf

Fig. 5 A hierarchical cell structure covering all the boundary
elements
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(shaded cells in Fig. 5). A quad tree structure of the cells
covering all the elements is thus formed after this procedure
is completed (Fig. 6).

Step 3. Upward pass. Compute the moments on all cells at all
levels l 
 2 and trace the tree structure upward (Fig. 6). For
a leaf, Eq. (52) is applied directly (with Sc being the set of
the elements in the leaf and zc the centroid of the leaf). For a
parent cell, calculate the moment by summing the moments
on its four child cells using the M2M translation (Eq. (53)),
in which zc0 is the centroid of the parent cell and zc is the
centroid of a child cell.

Step 4. Downward pass. In the downward pass, we compute the
local expansion coefficients on all cells starting from level 2
and tracing the tree structure downward to all the leaves
(Fig. 6). The local expansion associated with a cell C is the
sum of the contributions from the cells in the interaction list
of cell C and from all the far cells (see Refs. [44,179] for
definitions). The former is calculated by use of the M2L
translation, Eq. (55), with moments associated with cells in
the interaction list, and the latter is calculated by use of the
L2L translation, Eq. (56), for the parent cell of C with
the expansion point being shifted from the centroid of C’s
parent cell to that of C.

Step 5. Evaluation of the integrals. Compute integrals from ele
ments in leaf cell C and its adjacent cells directly as in the
conventional BEM. Compute the integrals from all other
cells (in the interaction list of C and far cells) using the local
expansion (Eq. (54)).

Step 6. Iterations of the solution. The iterative solver updates
the unknown solution vector k in the system Ak ¼ b and
continues at Step 3 to evaluate the next matrix and vector
multiplication (Ak) until the solution k converges within a
given tolerance.

More details of the fast multipole BEM can be found in Refs.
[44,178,179]. The fast multipole algorithm discussed in this sec
tion is the original algorithm [172], which is efficient for models
in which the elements are about the same size and distributed uni
formly in a bulky domain. For BEM models with non uniform
element distributions and especially with large elements adjacent
to smaller elements, the so called adaptive FMMs are more effi
cient, in which the definitions of the adjacent cells and cells in the
interaction list are further refined. Discussions on the adaptive
algorithms can be found in Refs. [181 185].

3.2 Pre-Corrected Fast Fourier Transformation
Method. The pre corrected FFT accelerated technique was pro
posed in 1997 by Phillips and White [186,187] in an effort to de
velop a kernel independent acceleration technique to rapidly solve
integral equations associated with Laplace and Helmholtz prob

lems. During the next decade, this technique has been improved,
extended and applied together with the BEM to obtain solutions
of various large scale engineering problems governed by Laplace
equation [188,189], Stokes equation [190,191], linear elasticity
[192], coupled electrostatic and elasticity [193], Poisson’s equa
tion [194] and even quasi linear equations [195]. In recent years,
extensions to dynamic problems have also been conducted
[196,197], resulting in a more powerful and versatile method. A
distinct advantage of the pre corrected FFT technique, in addition
to its kernel independent nature, is its simplicity. Unlike the
FMM, this method requires only one Cartesian grid and there is
no need to construct a hierarchical structure. As such, the imple
mentation is straightforward. The complexity of the method is
OðNÞ þ OðNg logNgÞ, where N is the total number of surface ele
ments and Ng is the total number of grid points. For a discussion
of the complexity, readers are referred to Ref. [187].

Similar to most acceleration schemes, the pre corrected FFT tech
nique achieves acceleration also by computing the far field interac
tion, that is, Ak, where the source point is located far away from the
field element, approximately via efficient means. Consider, for exam
ple, the evaluation of potential at point x due to charges qi at points
yi distributed randomly inside a cell. The cell size is much smaller
than the distances between x and yi. Instead of clustering all the dis
crete charges qi into one lumped charge Q and evaluating the poten
tial at x due to the lumped charge Q as is done in the FMM, the
pre corrected FFT scheme computes the potential at x by first replac
ing each charge qi with point charges laying on a uniform grid; for
example, the cell vertices. The grid representation allows the fast
Fourier transformation to be used to efficiently perform potential
computation on the grid. This grid potential is then interpolated onto
point x to obtain the potential at x. In the section that follows, we use
a 2D potential problem to illustrate the steps of the pFFT scheme and
discuss the algorithms.

As mentioned previously, in the pFFT scheme, the far field inter
action is calculated approximately with the aid of a regular Cartesian
grid. As such, the first step in this scheme is to construct the grid.
This is done by first constructing a parallelepiped and superimposing
it onto a 3D problem domain with its boundary being discretized into
n surface elements. This parallelepiped is then subdivided into an
array of small cubes so that each small cube contains only a few sur
face elements. The vertices of the cubes form the grid which can be
further refined if needed. In addition, these cubes are also used to
partition the near and the far fields. In most implementation schemes,
the near field of the elements within a cube includes only the nearest
neighbors of that cube. This, however, is not rigid. The optimum
number of cubes should be determined based on the balance
between accuracy and efficiency. For a fixed surface discretization,
more cubes mean a larger far field and hence a higher efficiency, but
a lower accuracy because the direct evaluation region would
be smaller. Figure 7(a) shows a 2D view of a parallelepiped

Fig. 6 A hierarchical quad-tree structure for the 2D boundary element mesh
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superimposed onto a discretized sphere. The parallelepiped has been
divided into a 3� 3� 3 array of small cubes. Each cube has been
further discretized to form the Cartesian grid indicated by black dots.
The grid is extended outside the parallelepiped in order to ensure that
the number of grid points is an even number. Note that the surface
elements and the pFFT cubes can intersect with each other. There is
no need to maintain any consistency between the surface elements
and the cubes.

To evaluate the far field interaction, for example, to compute the
potential uðxÞ at the centroid of the purple element induced by the
charge qðyÞ distributed on the yellow element as shown in Fig.
7(b), three steps are involved. First, the element charge is projected
onto the surrounding grid points q� located on or within the cube
that encloses the yellow element. The potential at each grid point
ul surrounding the evaluation element, that is, the purple element,
is then computed using the fast Fourier transformation technique.
Finally, the potential uðxÞ is obtained by interpolating the grid
potentials ul back to the element. Mathematically this procedure is

equivalent to approximating uðxÞ ¼ Ð
S Gðx; yÞqðyÞdSðyÞ by uðxÞ

� P
l Wl �

P
� Gðxl; y�Þ � q�

� �
, q� ¼

Ð
S P� qðyÞdSðyÞð Þ, where Wl

is an interpolation operator that interpolates the grid potential ul to
the potential at x and P� is the projection operator that projects the
charge at point y to charges at grid points y� surrounding y. In the
implementation of this scheme, the projection is done for all ele
ments before the FFT is performed; hence the grid charges repre
sent the distributed charges of the entire problem domain. The
resulting grid potentials thus contain the contributions from the
neighboring grid charges. To ensure accuracy, this part of the
potential must be subtracted from the total potential and the contri
butions from the neighboring elements, that is, the near field inter
actions, which are computed by directly evaluating
uðxÞ ¼ Ð

S Gðx; yÞqðyÞdSðyÞ, should then be added back. This step

is the pre correction step.
Both projection and interpolation can be performed using poly

nomial interpolation techniques and the complexity of this process
is OðNÞ. The convolution step, which is conducted via FFT,
requires about OðNg logNgÞ operations, where Ng is the total num
ber of grid points. For most problems, Ng � N and hence the com
plexity of the pFFT scheme is OðN logNÞ. The direct calculation
also requires OðNÞ operations.

The main steps in the pre corrected FFT acceleration technique
are summarized as follows:

(1) Construction and superposition of the 3D Cartesian grid
and the discretized problem domain (Fig. 7(a)).

(2) Determination of the near and far fields for each element
using the cubes of the parallelepiped; for example, for the
yellow element inside cube S, its near field includes all ele
ments inside cube S and its nearest neighboring cubes, as
illustrated by the gray region in Fig. 7(b).

(3) Projection of the element charge onto the surrounding grid
points based on polynomial interpolation, i.e., to compute
q� ¼

Ð
S P� qðyÞdSðyÞð Þ.

(4) Calculation of the grid to grid interaction using the fast Fou
rier transformation, i.e., to compute ul ¼ P

� Gðxl; y�Þ � q� .
(5) Interpolation of the grid potentials back to elements, i.e., to

compute uðxÞ � P
l Wl � ul.

(6) Subtraction of the near field interaction.
(7) Computation of the near field interaction using direct

calculation.
(8) Summation of the near field and far field contributions.

For a detailed description of this technique, readers are referred
to Refs. [187,193].

3.3 Adaptive Cross Approximation Method. The adaptive
cross approximation (ACA) follows a strategy different from the
above discussed techniques to reduce the complexity of the BEM
with respect to operations as well as to storage. However, the prin
cipal idea is the same and the same properties of the underlying
kernel functions are used. The above discussed methodologies
allow for use of the matrix vector multiplication with almost lin
ear complexity. However, the only approach that allows for all
matrix operations (matrix vector, matrix matrix product, matrix
matrix addition, matrix inversion, LU decomposition, etc.) with
almost linear complexity are the so called hierarchical matrices
(H matrices) introduced by Hackbusch [198]. They can be under
stood an as algebraic structure reflecting a geometrically moti
vated partitioning into sub blocks. Each sub block is classified to
be either admissible or not (similar to the clustering in Figs. 5
and 6). This block structure points out the fact thatH matrix arith
metic is easily parallelizable [199].

After having concluded the setup of an H matrix, admissible
blocks have to be approximated. The FMM deals with the analyti
cal decomposition of integral kernels; hence, the procedure
becomes problem dependent. The problem independent classes
are the so called algebraic approximation methods. The singular
value decomposition (SVD) leads to the optimal approximation,
however, with OðN3Þ complexity. Less expensive algorithms are
the Mosaic skeleton method developed in Ref. [200] and the suc
cessively developed ACA. It has been applied by Bebendorf [201]
to the approximation of BEM matrices for the first time. The out
standing feature of ACA compared to SVD is that it requires only
the evaluation of some original matrix entries and the approxima
tion is still almost optimal. The main idea is the approximation of
a matrix A 2 Ct�s

A � Sk ¼ UVT with U 2 Ct�k and V 2 Cs�k (57)

with a small rank k compared to t and s. This low rank representa
tion can be found whenever the generating kernel function G(x,y)
in the computational domain of A is asymptotically smooth. As
shown in Refs. [202] and [203] all kernel functions G(x,y) of
elliptic operators with constant coefficients and x 6¼ y have this
property. Only in the case x ¼ y they become singular and are not
smooth.

Due to the kernel independent idea, ACA can be used in a
black box like manner. Its coding and adaptation to existing codes
is straight forward. The algorithm is robust and it is based on a
stopping criterion depending on a prescribed approximation accu
racy e. Applications in elasticity may be found in Refs. [204,205],
for crack problems in [206,207], and for electromagnetism in Ref.
[208], to cite a few.

3.3.1 Hierarchical Matrices. Due to the previously described
kernel properties of elliptic operators, the necessity to separate the
near from the far field becomes evident. Low rank approxima
tions of the type (Eq. (57)) can be obtained only for well separated
computational domains x 6¼ y. Thus, H matrices [202,203] are
used. Their setup is based on the following idea: The index sets I

Fig. 7 (a) 2D view of a parallelepiped superimposed onto a dis-
cretized sphere. The black dots indicate grid points and the
cubes are represented by the solid lines; (b) Illustration of
the four steps in the pFFT scheme; the gray region denotes the
near-field region of the yellow element.
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and J of row and column degrees of freedom are permuted in such
a way that those who are far away from each other do also obtain
indices with a large offset.

First, by means of a distance based hierarchical subdivision of I
and J cluster trees TI and TJ are created. In each step of this proce
dure, a new level of son clusters is inserted into the cluster trees.
A son cluster is not further subdivided and is called to be a leaf if
its size reaches a prescribed minimal size bmin. Basically, two
approaches can be distinguished. First, the subdivision based on
bounding boxes splits the domain into axis parallel boxes which
contain the son clusters. Second, the subdivision based on princi
pal component analysis splits the domain into well balanced son
clusters leading to a minimal cluster tree depth. Details for both
approaches can be found in Ref. [203].

Now, the H matrix structure is defined by the block cluster tree
TI�J :¼ TI � TJ . Its setup is performed by means of the following
admissibility criterion:

min diam tð Þ; diam sð Þð Þ � g dist t; sð Þ (58)

with the clusters t�TI, s� TJ, and the admissibility parameter
0< g< 1. The diameter of the clusters t and s and their distance is
computed as usual, that is,

diamðtÞ ¼ max
i1 ;i22t

jxi1 xi2 j

diamðsÞ ¼ max
j1;j22s

jyj1 yj2 j

distðt; sÞ ¼ min
i2t;j2s

jxi yjj

Each cluster t and s is associated with its computational domain xt
and ys on C. The supports of the corresponding degrees of free
dom of row i and column j are denoted by xi and yj, i.e.,

xt :¼
[
i2I

xi and ys :¼
[
j2J

yj with xi; yj 2 R3 (59)

If Eq. (58) is fulfilled, a block b¼ t� s is admissible. If the condi
tion in Eq. (58) is not fulfilled, the admissibility is recursively
checked for their son clusters, until either Eq. (58) holds or both
clusters t and s become leafs. In the latter case, block b is not ad
missible. Admissible blocks have well separated computational
domains xt and ys and the algorithm presented in the next section
is used to approximate them. Not admissible blocks must be eval
uated in the standard fashion. An example for the hypersingular
operator with 3279 entries is presented in Fig. 8.

In this example, 1171 clusters have been used. The red colored
blocks are not admissible, whereas the green ones are admissible.
The numbers represent the final low rank of the sub blocks. They
are computed with ACA, which is discussed in the next section.

3.3.2 Approximation of the Admissible Blocks. A remark to
the notation in this section: ðAÞij denotes the ij th entry, whereas
ðAÞi and ðAÞj are the ith row vector and jth column vector, respec
tively, for matrix A. The idea of ACA is to split up a matrix
A 2 Ct�s into A ¼ Sk þ Rk where Sk denotes the rank k approxi
mation of A and Rk the residuum to be minimized. Starting from

S0 :¼ 0 and R0 :¼ A (60)

a first pivot c1 ¼ ðR0Þ�1
ij has to be found, where i and j are the row

and column indices of the actual (0 th in this case) approximation
step. Hints for the right choice of the initial pivot can be found in
Ref. [202]. In each ongoing step �, the scaled outer product of the
pivot row and column is subtracted from R� and added to S�

R�þ1 :¼ R� u�þ1v
T
�þ1

S�þ1 :¼ S� þ u�þ1v
T
�þ1

(61)

with the ith row vector and jth column vector defined as

v�þ1 ¼ c�þ1ðR�Þi and u�þ1 ¼ ðR�Þj (62)

The residuum R� is minimized and the rank of the approximant S�
is increased step by step. The pivot c�þ1 is chosen to be the largest
entry in modulus of either the row ðR�Þi or column ðR�Þj. Finally,
the approximation stops if the following criterion holds:

u�þ1k kF v�þ1k kF< e S�þ1k kF (63)

Note, the entire matrix A will never be generated. Therefore, spe
cial care has to be taken in order to find the pivot such that the
algorithm converges to the prescribed accuracy e [202,209]. The
numbers in Fig. 8 are the obtained ranks.

As already mentioned above, a crucial point is the right choice
of the pivot value. This becomes even more important in case of
vector valued problems like, e.g., elasticity. In this case each entry
is of matrix type Aij 2 C3�3 and the pivot might be defined as

c� ¼ ðR�Þ�1
ij with ðR�Þij

��� ���
p
¼ max (64)

In no norm k kp it is guaranteed that a proper pivot entry can be
found. For example, if ðR�Þij contains one very small entry com
pared to the remaining entries of ðR�Þi the pivot row U� is scaled
up by c� and Eq. (63) does not hold. If ðR�Þij contains a zero entry
the pivot c� is not even defined. This becomes evident if, e.g., the
double layer operator, Eq. (5) is evaluated on some plane
Ckfx; y 2 R3 : yk xk ¼ 0g that lies perpendicular to the coordi
nate axis k. A work around is the partitioning of the system matrix
with respect to each degree of freedom (for details, see Ref. [210]).

4 Emerging Applications

4.1 Modeling of MEMS/NEMS

4.1.1 Electrostatically Driven MEMS/NEMS Devices. Numer
ical solutions of electrically actuated microelectromechanical sys
tems (MEMS) have been carried out for nearly 20 years by using
the BEM to model the exterior electric field and the finite element
method or the BEM to model deformation of the structure. The
commercial software package MEMCAD [211], for example, uses

Fig. 8 H-matrix with 3279 entries and rank numbers of ACA
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the FEM package ABAQUS for mechanical analysis together with
a BEM code FastCap [212] for electric field analysis.

A generic MEMS structure, consisting of two parallel conduct
ing beams, is shown in Fig. 9. The electric potential /, in the
region V exterior to the two beams, is governed by Laplace’s
equation (Eq. (1)) and is prescribed on the boundary S of the two
beams (it equals /1 on the surface of beam 1 and /1 on the sur
face of beam 2).

The corresponding BIE in 2D space is of the form (see, e.g.,
Ref. [213])

/ xð Þ ¼
ð
log r x; yð Þr yð Þ

2pe
dS yð Þ þ C (65)

where r ¼ eð@/=@nÞ ¼ eq is the charge density at a point on a
beam surface and e is the dielectric constant of the exterior me
dium. The total charge Q on the surface S is

Q ¼
ð
S

r yð ÞdS yð Þ (66)

Given the potential /, and the total charge Q, Eqs. (65) and (66)
can be solved for the charge density r on the total beam surface S.
This charge density is then used to determine the traction h at any
point on the beam surface according to

h xð Þ ¼ r2 xð Þ
2e

n (67)

The mechanical problem of deformation of the beams, subjected
to traction h, is generally solved by the FEM. One can employ an
iterative procedure, as has been done by many authors, or a total
Lagrangian approach, first proposed in Ref. [214].

Examples of MEMS simulation from around the mid 1990s are
in Refs. [213,215 219]. The total Lagrangian approach has been
employed in Refs. [214,220 222]. (In addition, Refs. [217,222]
address fully coupled dynamic analysis of MEMS). A coupled
electrostatic structural analysis of MEMS devices is described in
Ref. [193], where a pre corrected FFT accelerated BEM approach
has been employed. Special BEM techniques to efficiently handle
thin structures, that are typically present in MEMS, have been
employed in Refs. [223 228]. Of these papers, Refs. [226,227]
address dynamic analysis while Ref. [228] addresses large scale
problems by the fast multipole BEM. Examples of BEM simula
tions of nanoelectromechanical systems (NEMS) can be found in
Refs. [229,230].

4.1.2 Inertial Sensors. Another successful application of the
BEM in the modeling and design of MEMS/NEMS is air damping
analysis of inertial sensors, like the currently widely used acceler
ometers and gyroscopes, and other types of micro resonators.
Micro resonators are a class of MEMS devices with applications
ranging from various physical, chemical and biological sensors to
high frequency filters, oscillators in wireless communication sys
tems. In a typical micro resonator, a mechanical structure is driven
into its resonance by an integrated micro actuator. The vibration
of the structure is then measured either electrically or optically

and its resonant frequency and the quality factor, defined as the ra
tio of the total energy to the dissipated energy within one cycle,
can be extracted. In most applications, the sensing mechanism
relies on the fact that the change in the resonant frequency is
related to the physical quantities to be measured. The resolution
of these sensors thus depends strongly on air damping, a dominant
dissipation source for devices operating in open air and even in a
low vacuum.

Air damping is determined by gas transport and its interaction
with the structure. A key parameter that influences the transport is
the Knudsen number (Kn), defined as the ratio of the mean free
path of gas molecules to the characteristic length of the fluid field.
Based on the value of Kn, gas can be classified roughly into four
regimes, the continuum regime (Kn< 0.01), the slip regime
(0.01<Kn< 0.1), the transition regime (0.1<Kn< 10) and the
free molecule regime ((Kn> 10). In the free molecule regime,
gas transport is dominated by the collisions between molecules
and structures, while in the continuum and slip regimes it is domi
nated by the collisions between gas molecules. This fact results in
different governing equations and hence requires different model
ing approaches for different gas regimes.

Continuum and slip regimes. For resonators oscillating at rela
tively low frequencies, the incompressible Stokes equation
describes accurately gas behavior in both continuum and slip
regimes. In the absence of body force, it reads

r � u ¼ 0 ixqu ¼ rPþ lr2u (68)

where u and P denote the amplitudes of the velocity and pressure
of gas, q is the density of gas, l is the coefficient of viscosity, and
x is the oscillation frequency. The equivalent integral equation of
Eq. (68) can be formulated as

cðxÞuðxÞ ¼
ð
S

Uðx; y;xÞtðyÞ Tðx; y;xÞuðyÞ½ �dSðyÞ (69)

In Eq. (69), U and T are the free space Green’s functions of oscil
latory Stokes flows [231] and t are tractions exerted by the struc
ture on the fluid.

The boundary conditions in the continuum regime follow the
classical no slip conditions, that is, the tangential gas velocity
equals the wall velocity at the boundary. In the slip regime, gas
rarefaction causes slip between the tangential velocities of the
flow and that of the solid surface (the wall). A phenomenological
slip model is shown in Eq. (70). In a non dimensional form, the
slip velocity at an isothermal and locally flat wall is given as

Ug Uw¼ 2 rv
rv

Kn

1 bKn

@Ug

@n
(70)

where Ug;Uw are normalized tangential velocities of the flow and
the wall at the interface, respectively, @Ug=@n is the normal
derivative of the normalized tangential velocity at the interface,
rv is the tangential momentum accommodation coefficient, and
b is a high order slip coefficient [232]. An integral equation for
the normal derivative of the velocity is thus required to solve
Stokes equation with slip boundary conditions.

The first implementations of Eq. (69) have been proposed in the
quasi static limit where inertia forces can be neglected
[190,233 235]. The effect due to the inertial force is addressed in
Ref. [190]. In the quasi static case, Eq. (69) reduces to a classical
Dirichelet problem of incompressible elasticity but turns out to be
severely ill conditioned. This issue has been resolved in Refs.
[233 235] with a Burton Miller like approach coupling the veloc
ity and the traction BIEs.

The extension to the moderate frequency regime and to the slip
regime has been addressed in Refs. [191,236] and acceleration tech
niques such as the pre corrected FFT technique [190,191,237,238],

Fig. 9 Two parallel conducting beams

14



the fast multipole method [233 236,239] and wavelets [240] have
been employed to accelerate the computation.

Air damping and quality factors of several MEMS resonators;
for example, a laterally oscillating beam resoantor (Fig. 10(a))
and a biaxial accelerometer (Fig. 10(b)) have been simulated and
compared with experimental data [190,191,233 235]. Very good
agreements have been achieved.

Transition and free molecule regimes. The situation is, how
ever, less developed and understood in the transition regime, based
on the formal classification given above. Even though a boundary
volume integral equation approach has been formulated theoreti
cally in Ref. [241], due to the complicated collision integral the
BEM is not suitable and other techniques of deterministic and sta
tistical nature are generally preferred. On the contrary, the collision
less (or free molecule) flow lends itself again to the development of
robust and competitive BIE approaches. The free molecule flow
represents the limiting case where the Knudsen number tends to in
finity and collisions between molecules can be neglected. In inertial
MEMS, this applies typically at pressures in the range of a few
mbars and below, as is often encountered in package sealed sensors
(e.g., gyroscopes, magnetometers and resonators).

Typical techniques for the simulation of gas dissipation in this re
gime belong to the class of test particle Monte Carlo (TPMC) meth
ods [241] where the trajectories of large ensembles of molecules are
analyzed with suitable models for gas surface interaction in order to
compute averages of the quantities of interest. Compared to deter
ministic techniques, the computational cost of TPMC is much higher
due to its statistical nature. In Refs. [242,243] a deterministic tech
nique based on integral equations has been put forward and has been
shown to be indeed very competitive with TPMC methods for the
typical working conditions of inertial MEMS.

4.2 Modeling of Fiber-Reinforced Composites. In this sec
tion, we review the BEM formulation for multi domain elasticity
problems [44], that can be applied to model fiber reinforced com
posite materials, functionally graded materials, and other inclu
sion problems in elasticity.

Consider a 2D or 3D elastic domain V0 with an outer boundary
S0 and embedded with n elastic inclusions Va with interface Sa,
where a ¼ 1; 2; :::; n (Fig. 11). Note: In this section, n is used to
indicate the number of inclusions. For the matrix domain V0, we
have the following BIE:

1

2
uiðxÞ ¼

ð
S

Uijðx; yÞtjðyÞ Tijðx; yÞujðyÞ
 �

dSðyÞ; 8x 2 S

(71)

where ui and ti are the displacement and traction, respectively;
S ¼ [a 0

n Sa is the total boundary of domain V0 (assuming that S

is smooth around x), and Uijðx; yÞ and Tijðx; yÞ are the two kernel
functions (Kelvin’s solution). For each inclusion, the BIE can be
written as

1

2
u
ðaÞ
i ðxÞ¼

ð
Sa

U
ðaÞ
ij ðx;yÞtðaÞj ðyÞ T

ðaÞ
ij ðx;yÞuðaÞj ðyÞ

h i
dSðyÞ; 8x2Sa

(72)

for a ¼ 1; 2; :::; n, in which u
ðaÞ
i and t

ðaÞ
i are the displacement and

traction, respectively, for inclusion a, and U
ðaÞ
ij ðx; yÞ and T

ðaÞ
ij ðx; yÞ

are the two kernel functions of inclusion a. They are functions of
the shear modulus, Poisson’s ratio, and outward normal for inclu
sion a.

Hypersingular or traction BIE can also be applied in the matrix
as well as in the inclusion domains. In fact, the dual BIE formula
tion (a linear combination of the conventional BIE and hypersin
gular BIE) is preferred for modeling inclusion problems in which
thin shapes often exist and could present difficulties for the con
ventional BIE formulation when it is applied alone.

Assume that the inclusions are perfectly bonded to the matrix,
that is, there are no gaps or cracks and no interphase regions, we
have the following interface conditions:

ui ¼ u
ðaÞ
i ; ti ¼ t

ðaÞ
i (73)

for a ¼ 1; 2; :::; n. That is, the displacements are continuous and
the tractions are in equilibrium at the interfaces. Based on these
assumptions, we can write the discretized form of the multido
main BIEs as follows, which gives faster convergence with itera
tive solvers [44]:

Fig. 10 SEM pictures of (a) a laterally oscillating beam resonator, and (b) a biaxial
accelerometer

Fig. 11 Matrix domain V0 and n inclusions
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in which u0 and t0 are the displacement and traction vector on the
outer boundary S0, ui and ti are the displacement and traction vec
tor on the interface Si (viewed from the matrix domain),
Aij and Bij are the coefficient submatrices from the matrix do
main, and A

f
i and B

f
i are the coefficient submatrices from inclu

sion i. Studies of 2D composite models with periodic conditions
can be found in Refs. [244,245].

The fast multipole BEM and other fast solution methods can be
applied to solve the BEM systems of equations shown in Eq. (74)
for the inclusion problems. The multipole expansions and related
translations for 2D and 3D elasticity BIEs can be found in Refs.
[44,246 250]. Some other related work on the fast multipole
BEM for general 3D elasticity problems can be found in Ref.
[251], for 3D inclusion problems in Refs. [175,252], and for crack
problems in Refs. [176,253,254]. In the following, we present two
examples using the BEM to show its potentials in modeling com
posite materials.

Figure 12 shows 2D BEM models of fiber reinforced composites
used to extract the effective properties in the transverse directions.
The fibers are distributed randomly and with an decreasing density
in one direction. Thus, the composites may be considered as func
tionally graded materials. The plane strain models are used to
extract the moduli of the composites in the transverse directions.
Two cases are studies, one with fibers in a circular shape and the
other with fibers in a star shape. The computed effective Young’s
moduli for the two composite models are reported in Ref. [44],
which agree with the estimates given in Ref. [255].

Figure 13 shows a 3D representative volume element (RVE)
model with 5832 fibers and 10,532,592 DOFs for a composite. The
volume fraction of the fibers is 3.85%, the fibers are distributed ran
domly. Theoretically, the moduli of the materials should be inde
pendent of the sizes of the RVE models. However, when the RVE
sizes are small (with only a few fibers), there are significant
changes in the estimated moduli as we increase the model sizes,
which suggests that the models may not be representative of the
composites [249]. The estimated moduli approach constant with the
increase of the fibers in the RVE as revealed in the results [249].

More examples in modeling composites with the fast multipole
BEM, with the total number of DOFs up to 28.8� 106, can be
found in Refs. [44,175,246 250,252].

4.3 Modeling of Functionally Graded Materials. In gen
eral, a functionally graded material (FGM) is a special type of
composite in which the constituent volume fraction varies gradu
ally leading to a non uniform microstructure with continuously
graded macroproperties, e.g., thermal conductivity, density, and
specific heat. For instance, for problems governed by potential
theory, e.g., steady state heat transfer, the thermal conductivity is
a function of position, i.e., k :k(x). Approaches to treat problems
of potential theory in non homogeneous media include the
Green’s function approach, domain integral evaluation, and vari
able transformation approach. In the context of the BEM, prob
lems of potential theory in non homogeneous media have been
previously studied by Cheng [256], Ang et al. [257], Shaw and
Makris [258], Shaw [259], Harrouni et al. [260], Divo and Kassab
[261], and recently by Gray et al. [262] and Dumont et al. [165].
Most of these works are focused on obtaining the Green’s func
tion. In the Green’s function approach, the Green’s function has to
be derived and a boundary only formulation can be obtained.

Several approaches have been developed to evaluate domain
integrals associated with boundary element formulations includ
ing approximate particular solution methods, dual reciprocity
methods, and multiple reciprocity methods. The particular solu
tion methods and dual reciprocity methods can be considered
more or less to be equivalent in nature. These methods have been
widely used on the axiom that the domain integral in the boundary
integral formulation is somehow removed. In these methods the
inhomogeneous term of the governing differential equation is
approximated by a simple function such as (1þ r) or radial basis
functions (RBFs). The mathematical properties and the conver
gence rates of the RBF approximations have been studied exten
sively. In these techniques, the boundary only nature of the BEM
is compromised.

A transformation approach, called the “simple BEM,” for poten
tial theory problems in non homogeneous media where non
homogeneous problems are transformed into known problems in
homogeneous media can be used [263,264]. The method leads to a
pure boundary only formulation. This idea has been successfully
implemented in three dimensions for steady state, transient heat
conduction problems and crack problems where the material prop
erty varies in one, two, and three dimensions. There is a class of
material variations, which can transform the problem equation to a
Laplace or standard/modified Helmholtz equation. The idea of the
“simple BEM” consists of transforming problems in non
homogeneous media to known problems in homogeneous media
such that existing codes for homogeneous media can be reused
with simple modifications. By means of this approach, which con
sists of simple changes in the boundary conditions of existing ho
mogeneous heat conduction computer codes, the solutions for

Fig. 12 2D models of fiber composites: (a) circular-shaped
fibers, (b) star-shaped fibers (Ref. [44])
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nonhomogeneous media with quadratic, exponential, and trigono
metric material variations can be readily obtained.

For problems described by potential theory, the governing differ
ential equation for a potential function / defined on a region X
bounded by a surface C, with an outward normal n, can be written as

r � ðkðx; y; zÞr/Þ ¼ 0 (75)

where k(x, y, z) is a position dependent material function and the
dot represents the inner product. Equation (75) is the field equa
tion for a wide range of problems in physics and engineering such
as heat transfer, fluid flow motion, flow in porous media, electro
statics, and magnetostatics. The boundary conditions of the prob
lem can be of the Dirichlet or Neumann type:

/ ¼ /; on C1

q ¼ kðx; y; zÞ @/
@n

¼ q on C2

(76)

respectively, with C ¼ C1 þ C2 for a well posed problem.

Variable transformation approach:
By defining the variable

v x; y; zð Þ ¼ k x; y; zð Þ
p

/ x; y; zð Þ (77)

one rewrites Eq. (75) as

r2vþ rk � rk

4k2
r2k

2k

	 

v ¼ 0 (78)

or, alternatively

r2vþ k0ðx; y; zÞ v ¼ 0 (79)

where

k0ðx; y; zÞ ¼ rk � rk

4k2
r2k

2k
(80)

By setting k0ðx; y; zÞ ¼ 0; þb2; and b2, three classical homoge
neous equations namely, the Laplace, standard Helmholtz and the

modified Helmholtz can be obtained, respectively. From these
cases, a family of variations of k(x, y, z) can be generated, as given
in Refs. [263,264]. From an engineering point of view (for appli
cations such as FGMs), material variation in one coordinate is of
practical importance, which include thermal barrier coatings, bone
and dental implants, piezoelectric and thermoelectric devices,
graded cementitious materials, and optical application with graded
refractive indexes.

Boundary conditions:
In order to solve the boundary value problem based on the

modified variable v, the boundary conditions of the original prob
lem have to be incorporated in the modified boundary value prob
lem. Thus, for the modified problem, the Dirichlet and the
Neumann boundary conditions given by Eq. (76) change to the
following:

v ¼ k
p

/ on C1

@v

@n
¼ 1

2k

@k

@n
v

q

k
p on C2

(81)

Notice that the Dirichlet boundary condition of the original prob
lem is affected by the factor k

p
. Moreover, the Neumann bound

ary condition of the original problem changes to a mixed
boundary condition (Robin boundary condition). This later modi
fication is the only significant change on the transformed bound
ary value problem.

A numerical example of an FGM rotor with eight mounting
holes having an eight fold symmetry is presented (Fig. 14). Owing
to the symmetry, only one eighth of the rotor is analyzed. The top
view of the rotor, the analysis region, and the geometry of the
region are illustrated in Fig. 14(a). The grading direction for the
rotor is parallel to its line of symmetry, which is taken as the z
axis. The thermal conductivity for the rotor varies according to
the following expression:

k zð Þ ¼ 20ð1þ 420:7zÞ2 (82)

The BEM mesh employs 1584 elements and 3492 nodes. A
schematic for the thermal boundary conditions and the BEM mesh
employed is shown in Fig. 14(b). Here, the solution of the prob
lem is verified using the commercial software ABAQUS. The
FEM mesh consists of 7600 20 node (quadratic) brick elements

Fig. 13 A 3D RVE with 5832 fibers and with the total DOFs5 10,532,592 [249]
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and 35,514 nodes. Figure 14(c) shows the comparison of the BEM
and FEM results for the temperature around the hole. A contour
plot of the temperature distribution using the BEM is shown in
Fig. 14(d). All the results of the BEM and FEM solutions are in
very good agreement.

4.4 Modeling of Fracture Mechanics Problems. Fracture
mechanics is one of the areas where the BEM has been clearly
shown to be a powerful and effective numerical method when
compared to other computational techniques. Among its advan
tages one may cite that: (1) discretization of only the boundary is
required; thus simplifying preprocessing and remeshing in crack
growth analysis, (2) it shows improved accuracy in stress concen
tration problems, since there are no approximations imposed on
the stress solution at the interior domain points, (3) fracture pa
rameters (stress intensity factors (SIF), energy release rates, etc.)
can be accurately determined from the computed nodal data in a
straightforward manner, and (4) modeling of problems involving
infinite and semi infinite domains (like in wave propagation phe
nomena) is simple and accurate, because the radiation conditions
at infinity are automatically satisfied.

However, the direct application of the displacement BIE to
cracks where the two surfaces coincide leads to a mathematically
degenerate problem. This has been a sticking issue in the BEM for
modeling fracture problems (see, e.g., Ref. [36]). Different
approaches have been adopted in the BEM to tackle fracture prob
lems, such as the displacement discontinuity approach [265,266]
and the use of hypersingular BIEs [267 269].

Other alternative approaches also exist. The first approach is
based on the adoption of a Green’s function derived for an infinite

medium containing a crack with the same geometry and boundary
conditions (generally traction free) as in the problem to be solved.
In this way, there is no need to mesh the crack, since the funda
mental solution already accounts for it. The other approach
divides the domain into several regions via the definition of artifi
cial interfaces that contain the cracks; thus it links the cracks to
the boundary of the resulting subdomains. Equilibrium and com
patibility conditions are further enforced on the nodes of the
newly introduced interfaces to solve the problem.

These two approaches have limited applicability: ad hoc funda
mental solutions are needed in the first case, while the artificial
boundaries required in the second approach are not uniquely
defined and they also increase the number of unknowns. Therefore,
none of them is suitable for large scale BEM models involving a
great number of cracks. Following the works of Hong and Chen
[270], Krishnasamy et al. [267 269], and Portela et al. [271], an
alternative approach is further proposed to overcome these difficul
ties, that is, the dual or hypersingular BIE approach that results in
a single region formulation by applying the displacement BIE on
one of the crack faces and the traction BIE (that follows from dif
ferentiation of the displacement BIE and substitution into the con
stitutive law) on the other.

A review of the major contributions of the BEM in fracture
mechanics between 1972 and 1997 may be found in Ref. [272],
with applications covering from linear elastic fracture mechanics
to SIF computation, dynamics, composite materials and interface
cracks, thermoelastic problems, crack identification techniques,
and nonlinear problems.

Later efforts have focused on applying the BEM to fracture of
multifield materials with coupled piezoelectric and/or elastomagnetic

Fig. 14 Analysis of an FGM rotor part using the BEM [263]
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properties [273 278], crack growth analysis using the BEM alone or
together with FEM [279 281], or addressing fracture phenomena in
composites or at different scales [282 285].

However, when dealing with large scale fracture problems, the
BEM demands great computer memory storage and significant
CPU time unless algorithms to accelerate the solution come into
play. The development of fast BEM approaches in the last 15 years
oriented towards applied mechanics problems has revived the
potential applications of the BEM to fracture mechanics. These
techniques include the fast multipole method [44,170,172,178],
panel clustering method [286], mosaic skeleton approximation
[287] and the methods based on hierarchical matrices and adaptive
cross approximation [198,202]. All these techniques aim at reduc
ing the computational complexity of the matrix vector multiplica
tion, which is the core operation in iterative solvers for linear
systems. FMM and panel clustering address the problem from an
analytical point of view and require the knowledge of some kernel
expansion prior to integration. Meanwhile, mosaic skeleton approx
imations and hierarchical matrices are based on purely algebraic
tools for the approximation of boundary element matrices which
are thus suitable for applications where analytical closed form
expressions of the kernels are not available, as in anisotropic frac
ture applications.

Nishimura et al. [176] applied the original FMM by Rokhlin
[170] to solve crack problems for 3D Laplace’s equation. Yoshida
et al. [288] further improved the procedure by implementing
Greengard and Rokhlin’s diagonal form [289], leading to a CPU
time reduction of about 30% as compared to the original FMM
when a dense array of cracks is distributed in the domain. In addi
tion, Yoshida et al. [253] developed a Galerkin formulation that
took advantage of the improved accuracy of the Galerkin method.

Helsing [290] presented a 2D complex variable formulation
based on an integral equation of Fredholm second kind together
with the FMM. The potential of the resulting approach is illus
trated by accurately computing stress fields in a mechanically
loaded material containing 10,000 randomly oriented cracks.
Wang et al. [291] improved the rate of convergence of fast multi
pole BEM by considering preconditioners based on sparse approx
imate inverse type. Convergence within 10 steps is achieved for a
2D elastic infinite body containing 16,384 cracks with 1,572,864
DOF. Liu [247] developed a new FMM with the dual BEM for 2D
multi domain elasticity based on a complex variable representa
tion of the kernels. The resulting formulation was more compact
and efficient than previous FMM approaches, as shown in tests
involving a large number of crack like inclusions.

For the application of the ACA method in the modeling of
crack problems, Kolk et al. [292] investigated 3D fatigue crack
growth using a dual BEM. In order to accelerate the solution, the
resulting collocation matrix is compressed by a low rank approxi
mation performed by the ACA method. The efficiency of the for
mulation is illustrated with an industrial application in which a
corner crack located at the dedendum of a gear propagates. This
approach was later revisited and improved by minimizing the
computation time of each incremental loop needed to simulate the
crack growth process [293].

More recently, Benedetti et al. [294] developed a fast solver
based on the use of hierarchical matrices for the representation of
the collocation matrix and implemented it for dual BEM analysis
of 3D anisotropic crack problems. The low rank blocks were com
puted by the ACA. Numerical tests demonstrated that the solver
was rather insensitive to the degree of anisotropy of different
materials, which results in significant savings in memory storage
and assembly and solution time. An order of magnitude improve
ment has been observed for a system of order 104. Benedetti and
Aliabadi [295] further extended the approach to the dynamic anal
ysis of 3D cracked isotropic bodies in the Laplace transform
domain. Based on this approach, Benedetti et al. [296] developed
a model to analyze 3D damaged solids with adhesively bonded
piezoelectric patches used as strain sensors. The cracked structure
was modeled using a fast dual BEM with a hierarchical

ACA solver, which permitted the accurate analysis of crack
parameters.

Figure 15 shows an example of large scale fracture analysis
using the fast multipole BEM. In this case, arrays of 12� 12� 12
penny shaped cracks in an elastic domain were solved using the
BEM. A total of 1,285,632 DOFs is used in this BEM model. The
crack opening displacements were computed and plotted in the
figure [297].

4.5 Acoustic Wave Problems. The BEM has been applied to
solve acoustic and other wave propagation problems for several
decades, due to its features of boundary discretizations and accu
rate handling of radiation conditions at the infinity for exterior
problems. The developments of fast methodologies in the last dec
ade for solving large scale acoustic problems are perhaps the most
important advances in the BEM that have made this method
unmatched by other methods in modeling such problems.

The fast multipole method developed by Rokhlin and Greengard
[170 172] has been extended to solving the Helmholtz equation
governing the acoustic wave problems for quite some time (see
papers in Refs. [183,184,298 309], a review in Ref. [178], and
Chapter 6 of Ref. [44]). Large scale acoustic BEM models with a
total number of DOFs around several millions have been attempted
by the fast multipole BEM on desktop PCs. For example, acoustic
BEM models of entire airplanes [44,309,310], wind turbines [184],
and a submarine [44,310] have been solved for noise predictions.
Coupled structural acoustic problems have also been solved suc
cessfully using the fast multipole BEM with the FEM for analyzing
ship structures [311], and, most interestingly, for computing physi
cally based and realistic sound in computer animations [312,313].

The adaptive cross approximation suited for acoustics has not
found so much attention like the FMM until recently. There are
mathematical studies concerning ACA applied in acoustics which
show that increasing the frequency decreases the efficiency [314].
The counterpart in the FMM is that for higher frequencies, more
terms in the series expansion have to be used. One application of
ACA in acoustics in time domain can be found in [210]. An im
pressive example in determining the noise level in an aircraft can
be found in Ref. [315]. Preliminary comparison studies on the per
formance of the fast multipole BEM and ACA BEM in modeling
acoustic problems are provided in Refs. [315,316]. In the follow
ing, we first review the BIE formulation for solving acoustic wave
problems and then show a couple of applications.

We consider the linear time harmonic acoustic wave problems in
domain E, which can be an interior domain, or an exterior domain

Fig. 15 Arrays of 123 123 12 penny-shaped cracks in an elastic
domain solved by using the fast multipole BEM (total number of
DOFs51,285,632) [297]
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outside a structure with boundary S. The acoustic pressure / is gov
erned by the Helmholtz equation and boundary conditions given on
S, such as pressure or velocity conditions. For exterior (infinite do
main) acoustic wave problems; in addition to the boundary condi
tions on S, the field (radiated or scattered wave) at infinity must
also satisfy the Sommerfeld radiation condition.

Boundary integral equations have been applied in solving
acoustic wave problems for decades [317 320]. In the direct BIE
formulation, the representation integral of the solution / is (for
the derivation, see Refs. [320 322] and Chapter 6 of Ref. [44])

/ðxÞ ¼
ð
S

Gðx; y;xÞqðyÞ Fðx; y;xÞ/ðyÞ½ �dSðyÞ þ /IðxÞ (83)

where x 2 E, q ¼ @/=@n, /IðxÞ is a possible incident wave for an
exterior problem, x the circular frequency, and the two kernels
for 3D are given by

Gðx; y;xÞ ¼ 1

4pr
eikr (84)

Fðx; y;xÞ ¼ @Gðx; y;xÞ
@nðyÞ ¼ 1

4pr2
ikr 1ð Þr;j njðyÞeikr (85)

where k is the wavenumber. Let the source point x approach the
boundary. We obtain the following conventional boundary inte
gral equation (CBIE) [320 322]:

cðxÞ/ðxÞ ¼
ð
S

Gðx; y;xÞqðyÞ Fðx; y;xÞ/ðyÞ½ �dSðyÞ þ /IðxÞ
(86)

where cðxÞ¼ 1/2, if S is smooth around x. This CBIE can be
employed to solve for the unknown / and q on S. The integral
with the G kernel is a weakly singular integral, while the one with
the F kernel is a strongly singular (CPV) integral, as in the poten
tial case. A regularized or weakly singular form of CBIE (Eq.
(86)) exists and can be derived by use of the identities for the
static kernels [44,46,47,323].

It is well known that the CBIE has a major defect for exterior
problems, that is, it has non unique solutions at a set of fictitious
eigenfrequencies associated with the resonate frequencies of the
corresponding interior problems [318]. This difficulty is referred
to as the fictitious eigenfrequency difficulty. A remedy to this
problem is to use the normal derivative BIE in conjunction with
the CBIE. Taking the derivative of integral representation (Eq.
(83)) with respect to the normal at a point x on S and letting x
approach S, we obtain the following hypersingular boundary inte
gral equation (HBIE):

ecðxÞqðxÞ ¼ ð
S

Kðx; y;xÞqðyÞ Hðx; y;xÞ/ðyÞ½ �dSðyÞ þ qIðxÞ
(87)

where ecðxÞ ¼ 1=2 if S is smooth around x. For 3D problems, the
two new kernels are given by

Kðx; y;xÞ ¼ @Gðx; y;xÞ
@nðxÞ ¼ 1

4pr2
ikrðx; yÞ 1½ �r;j njðxÞeikr

(88)

Hðx; y;xÞ ¼ @Fðx; y;xÞ
@nðxÞ ¼ 1

4pr3
1 ikrð ÞnjðyÞ

�
þ k2r2 3 1 ikrð Þ �

r;j r;l nlðyÞ
�
njðxÞeikr (89)

In HBIE (Eq. (87)), the integral with the kernel K is a strongly
singular integral, while the one with the H kernel is a hypersingular
(HFP) integral. HBIE (Eq. (87)) can also be written in a regularized
or weakly singular form [321,322]. For exterior acoustic wave
problems, a dual BIE (or composite BIE [321]) formulation using a
linear combination of CBIE (Eq. (86)) and HBIE (Eq. (87)) can be
written as

CBIEþ b HBIE ¼ 0 (90)

where b is the coupling constant. This formulation is called
Burton Miller formulation [318] for acoustic wave problems and
has been shown to yield unique solutions at all frequencies, if b is
a complex number (which, for example, can be chosen as b¼ i/k,
with i ¼ 1

p
[319]).

As the first example, a submarine model (Fig. 16) is presented
which is solved by use of the fast multipole BEM (FastBEM
AcousticsVR , V.2.2.0). This is an interesting example in solving
large scale underwater acoustic problems, which has been a chal
lenging task for other domain based methods. The Skipjack sub
marine is modeled, which has a length of 76.8 m and a total of
250,220 boundary elements are used in the discretization, with a
typical element size equal to 0.14 m. Velocity BCs are applied to
the propeller and an incident plane wave in the direction (1, 0, 1)
is specified. The model is solved at a non dimensional wavenum
ber ka¼ 384 (frequency f¼ 1233 Hz). The computed sound pres
sure on the surface of the model is shown in Fig. 16. The BEM
model was solved in 85 min on a DellVR PC with IntelVR Duo Core
CPU and with the tolerance for convergence set at10�4.

Next, we show an example using the ACA BEM for solving
large scale 3D acoustic problems. Figure 17 shows a BEM model
of five wind turbines discretized with 557,470 boundary elements.
The wind turbines have the same height of 29 m and are spaced

Fig. 16 A BEMmodel of the Skipjack submarine impinged upon by an incident wave
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50 m apart in the x and y directions. The ground is modeled as a
rigid infinite plane where no elements are applied because of the
use of the half space Green’s function. The sound pressure on the
surfaces of the turbines and a field surface of the size 200� 200
m2 on the ground are computed at the non dimensional wavenum
ber ka¼ 5 (representing a rotating speed of 3 cycles/s for the
blades). This large BEM model (with more than 500,000
complex valued DOFs) was solved in 210 min using the ACA
BEM on a Dell PC with an IntelVR Duo Core CPU. For compari
son, the same large scale acoustic model was solved on the same
PC in 108 min using the fast multipole BEM [184]. At present,
the fast multipole BEM is faster than the ACA BEM for models
with more than about 100,000 DOFs and the fast multipole BEM
also uses smaller memory for storage. However, the ACA BEM
has the kernel independent advantage and is easier to implement.

4.6 Elastic Wave Problems. Boundary element methods in
elastodynamics have a long history. Actually, they date back to
1930s or 1940s where Kupradze [324] started his theoretical work
on singular integral equations for elastodynamics. Kupradze’s
[324] contributions are not restricted to theoretical works. Indeed,
his numerical method known as Kupradze’s functional equation
method (collocate direct BIEs in the exterior of the domain under
consideration) is not just well known, but also has been rediscov
ered by many authors!

It is noteworthy that Cruse and Rizzo, who are usually considered
to be the founders of BEM (called boundary integral equation meth
ods by these authors), investigated the use of the BEM in elastody
namics [6] soon after their first work in elastostatics. It is probable
that these pioneers were aware of the potential of the BEM in elasto
dynamics since it can deal with exterior problems easily. Indeed, the
BEM in wave problems gives highly accurate results which are not
polluted by reflections from artificial boundaries, while many other
numerical methods require special techniques to avoid such reflec
tions. Subsequent developments of the BEM in elastodynamics
were quite rich with many applications in areas such as non
destructive testing or evaluation, earthquake engineering and others,
as one can see in the review article by Kobayashi [325].

As in other branches of the BEM, however, the O(N2) complexity
of the algorithm turned out to be a serious problem. With this prob
lem, ordinary BEMs were found to be inefficient in solving large
problems in spite of the boundary only nature of the approaches.

This problem, however, is now almost solved with the develop
ment of the so called fast BEMs. Indeed, the fast methodologies
are undoubtedly among the most important developments in
BEMs in elastodynamics in the last decade, which will be the sub
ject of the following subsection. This will be followed by another
subsection devoted to stability issues and inverse problems.

4.6.1 Fast BEMs in Elastodynamics

Frequency domain. Fast methods in elastodynamics are usually
obtained from certain fast methods for Helmholtz equation in fre
quency domain or from those for the scalar wave equation in time

domain. In frequency domain; for example, one notes that the fun
damental solution Cij for elastodynamics is written as

Cijðx; yÞ ¼ 1

k2Tl
@

@xi

@

@yi
GkLðx; yÞ þ eiprejqr

@

@xp

@

@yq
GkT ðx; yÞ

� �
(91)

where Gk and kL;T are the fundamental solution of Helmholtz
equation and the wave numbers of P and S waves given by

Gkðx; yÞ ¼ 1

4p x yj j e
ik x�yj j; kL ¼ q

kþ 2l

r
x; kT ¼ q

l

r
x

and q, ðk;lÞ and x are the density, Lamé’s constants, and fre
quency, respectively. This shows that one may formulate fast
methods for elastodynamics simply by differentiating those for
the Helmholtz equation.

The first fast method used with the BEM in elastodynamics
seems to be the fast multipole method. Indeed, Chew’s group
[326] presented a 2D FMM formulation extending the high
frequency FMM (diagonal form) in Helmholtz proposed by Rokh
lin [298]. They also showed an example of the scattering from a
rough interface between two elastic materials. Fukui [327] pro
posed a low frequency FMM in 2D with which they solved scat
tering problems for many holes. Fujiwara [328] also proposed a
low frequency FMM in 2D and solved scattering problems for
many cavities and cracks.

In 3D, Fujiwara [329] presented a diagonal form FMM, but he
solved low frequency problems related to earthquakes. Yoshida
et al. [330,331] considered low frequency crack problems in 3D,
which they solved with a low frequency FMM utilizing a decompo
sition of the kernel in Eq. (91). Yoshida et al. [332] also proposed a
diagonal form version of the elastodynamic crack analysis.
Unfortunately, their error control scheme was immature. As a mat
ter of fact, the use of the diagonal form is effective only when the
wavenumber times the cell (box) size used for FMM is above a cer
tain threshold. In problems where the smaller cells do not satisfy
this criterion, one has to switch to the low frequency FMM in order
to maintain the accuracy. Namely, one may have to use both diago
nal forms and low frequency FMM in one problem. This type of
FMM formulation is called a wideband FMM [309,332].

Subsequent developments in elastodynamic FMMs were rather
slow until 2007 where Chaillat et al. [334,335] reconsidered diag
onal forms in elastodynamics. Sanz et al. [336] utilized several
techniques including SPAI preconditioners. Tong and Chew [337]
applied techniques developed for Maxwell’s equations to the S
wave part in their diagonal form formulation. Chaillat et al. [338]
considered half space and multi domain problems for seismologi
cal applications. Isakari et al. [339] presented a low frequency
FMM for periodic inclusion problems in elastodynamics which
may be used in applications related to phononic crystals. These

Fig. 17 Sound field from five wind turbines evaluated using the ACA and fast multipole
BEM
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authors also considered pre conditioners based on Calderon’s for
mulae [340].

FMMs are not the only acceleration methodology useful in elasto
dynamic BEMs. Indeed, one may mention the use of pre corrected
FFT approach by Yan et al. [197], and the H matrix (ACA)
approach in crack problems by Benedetti and Aliabadi [295].

4.6.1.2 Time domain. As we have seen, papers on fast meth
ods in elastodynamics in frequency domain are scarce in spite of
the importance of the subject in applications. Still more scarce are
the time domain counterparts. Takahashi et al. [341] extended the
so called PWTD (plane wave time domain) approach developed
by Ergin et al. [342] for the wave equation to elastodynamics in
3D. Roughly speaking, this approach is the time domain counter
part of the diagonal forms in the frequency domain with the Han
kel functions in the translation operators replaced by Bessel
functions. This approach has been parallelized and extended to
the anisotropic case by Otani et al. [343]. Figure 18 shows a typi
cal example from this investigation, i.e., the response of 1152
spherical cavities in an infinite isotropic elastic solid subject to a
plane P wave. Yoshikawa et al. [344] applied this approach to a
simple inverse problem of crack determination.

Another fast approach in time domain has been proposed by
Fukui’s group [345], in which these authors accelerated a convo
lution quadrature formulation in 2D elastodynamics with a low
frequency FMM.

4.6.2 Other Developments in Elastodynamic BEM

Stability issues. Stability in the time domain approach still
seems to be an issue, as can be seen from the continuing publica
tions on this subject. See, for example, the work by Soares and
Mansur [346] and a very recent paper by Panagiotopoulos and
Manolis [347]. The former approach works as a filtering to the
recent in time convolution operation and is related to similar efforts
in electromagnetics (e.g., Rynne and Smith [348]). We also note
that mathematical proofs of the stability of some variational
approaches are available (e.g., the work by Ha Duong et al. [349]),
although collocation methods are of more interests to engineers.

Convolution quadrature method (CQM) is a new approach for
the time domain BEM which improves the stability of the method.
It also extends the applicability of the BEM in the time domain
because CQM needs only the Laplace transforms of the funda
mental solutions with respect to time, which may be easier to
obtain than their time domain counterparts. We here mention
Kielhorn and Schanz [350] in addition to Fukui’s contribution

[345]. See the section on time domain approaches for more
references.

Inverse problems. Applications to problems related to ultra
sonic non destructive evaluation have been among major motiva
tions of developing BEMs for elastodynamics. The past decade
has seen many interesting applications of BEMs to inverse prob
lems of determining defects in structures, of which we cite just a
few in the rest of this section.

Solution techniques of inverse problems of determining
unknown defects in an elastic structure by BEMs can be classified
into two categories, namely, those which require successive solu
tions of direct problems and those which do not. Methods of the
first category typically determine the unknown defects by mini
mizing cost functions which represent the difference between the
experimental data and the computed value of certain physical
quantities. Approaches of this type are considered suitable for
determining the detail of the defects, although they may not nec
essarily be effective for obtaining global information such as the
location or the number of defects. For methods of this category,
one needs effective ways of evaluating the sensitivities of the cost
functions with respect to parameters which characterize the
defects. Adjoint variable (field) methods are known to be effective
for such a purpose particularly when one has many parameters to
identify the defects. For example, Bonnet et al. [351] considered
shape sensitivities for cavities and cracks using the time domain
BEM. Bonnet and Guzina [352] discussed similar problems for
inclusions in the frequency domain.

As examples of inverse techniques of the second category, we
mention topological derivatives and linear sampling methods.
Topological derivatives are essentially the rates of changes of a
certain cost function when an infinitesimal cavity is produced at a
given position in a structure. This concept turned out to be useful
as a “void indicator” which can be used in order to obtain a rough
idea about the defects, as we can see in Bonnet and Guzina [353].
In the near field linear sampling method discussed in Fata and
Guzina [354], these authors consider an elastic half space with
unknown defects. To determine the defects, they excite a part of
the plane boundary and measure the response on another part
of the plane boundary. They can delineate the defects by examin
ing the blow up of solutions of certain integral equations whose
kernel functions are determined from the experimental data. An
adjoint of this formulation is easier to use when one has only a
small number of excitations (sources), as has been discussed in
Fata and Guzina [355].

4.7 Electromagnetic Wave and Periodic Problems. Elec
tromagnetics (EM) is undoubtedly one of academic/industrial
areas where the BEM is used widely. This is partly because there
are many good applications where the BEM is quite effective. For
example, propagation of electromagnetic waves often takes place
in an open air, which is a loss less homogeneous exterior domain.
The BEM is considered to be one of ideal tools for solving such
problems and Maxwell’s equations describe the phenomenon per
fectly. It is therefore not surprising that the BEM and related
methods are accepted enthusiastically in the EM community.
Indeed, BEM software for EM applications including those accel
erated with FMM are now available commercially or even freely.

There are many techniques common to the BEM in EM and in
mechanics, and the mechanical community has a lot to learn from
developments in EM community. It is therefore deemed worth the
efforts for those from mechanics to have some knowledge on the
BEM for Maxwell’s equations. The first part of this section is thus
intended as a quick introduction to the BEM for Maxwell’s equa
tions for those who are familiar with the BEM in mechanics. The
interested reader is referred to Chew et al. [356] for further details.
We then discuss more recent topics on the periodic FMM for
Maxwell’s equations, which have many interesting applications
such as photonic crystals and metamaterials. Finally we review

Fig. 18 BEM model of 1152 spherical cavities in an infinite
elastic solid [343]. The spatial DOF is 1,105,290 and the number
of time steps is 200. The CPU time is 10 h 47 min and the
memory requirement is 152.8 GB.
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periodic boundary value problems in mechanics and the BEM to
solve them.

4.7.1 BEM and MoM for Maxwell’s Equations. We consider
an exterior domain D 2 R3 in which Maxwell’s equations are
satisfied:

r� E ¼ ixlH; r� H ¼ ixeE; in D

where E and H are the electric and magnetic fields, x is the fre
quency (with e�ixt time dependence), and e and l are the dielec
tric constant and the magnetic permeability for the material
occupying D, respectively. We may combine these equations to
have

r� r� Eð Þ ¼ k2E; k ¼ el
p

x (92)

In addition, we have an incident wave denoted by (Einc, Hinc) in D
and scattered waves Esca ¼ E Einc and Hsca ¼ H Hinc which
satisfy radiation conditions.

The fundamental solutions Cip for Maxwell’s equations in Eq.
(92) have the following form:

Cip ¼ 1

k2
@

@xi

@

@xp
þ dip

	 

G; Gðx; yÞ ¼ eik x�yj j

4p x yj j

Note that Cij has stronger singularity than its counterparts in
mechanics. Also noteworthy is the fact that the curl of Cij is less
singular than Cij and that the double curl of Cij is proportional to
Cij modulo Dirac delta. We have the following integral represen
tations for E and H:

EðxÞ ¼ EincðxÞ þ
ð
S

m� ryG
� �

ixljGþ i

xe
ryG divSj

� �
dSðyÞ;

x 2 D (93)

HðxÞ¼HincðxÞþ
ð
S

j� ryG
� �

ixemGþ i

xl
ryGdivSm

� �
dSðyÞ;

x2D (94)

In these formulae, j and m are the surface electric and magnetic
current vectors defined by

jðyÞ ¼ nðyÞ � HðyÞ; mðyÞ ¼ EðyÞ � nðyÞ

where n stands for the outward unit normal vector on the surface
of the domain D, and divS indicates the surface divergence. From
Eqs. (93) and (94), we have

mðxÞ=2¼mincðxÞ nðxÞ

�
ð
S

m� ryG
� �

ixljGþ i

xe
ryG divSj

� �
dSðyÞ; x2S

(95)

jðxÞ=2¼ jincðxÞþnðxÞ

�
ð
S

j� ryG
� �

ixemGþ i

xl
ryGdivSm

� �
dSðyÞ; x2S

(96)

where minc and jinc are defined in an obvious manner. Equations
(95) and (96) are called EFIE (electric field integral equation) and
MFIE (magnetic field integral equation). Conceptually, EFIE
(MFIE) corresponds to the displacement (traction) BIE in
mechanics or vice versa. Note, however, that EFIE and MFIE
have essentially the same structure, which is in contrast to BIEs in
mechanics in which hypersingularity appears only in traction

BIEs. Boundary value problems for Maxwell’s equations are
solved as one solves either EFIE or MFIE for unknown boundary
densities j and/or m. These density functions have two independ
ent components in 3D problems since they are tangential to the
boundary, while their mechanical counterparts have three inde
pendent components. A typical boundary condition is m¼ 0 on S
for perfect electric conducting scatterers. As in mechanics, solu
tions of EFIE or MFIE may not be unique for particular values of
x called irregular frequencies. In that case, one may consider a
linear combination of EFIE and MFIE called CFIE to obtain
uniquely solvable integral equations as in Burton and Miller’s
method [318] in acoustics. Numerical approaches based on these
integral equations and collocation method are called the BEM in
the EM community.

One may alternatively solve these integral equations with the
Galerkin method. In the special case of perfect electric conducting
scatterers, one hasð
S

j0ðxÞ �EincðxÞdSðxÞ ¼
ð
S

ð
S

�
ixlj0ðxÞ �Gðx;yÞjðyÞ

i

xe
divSj

0ðxÞGðx;yÞdivSjðyÞ
�
dSðyÞdSðxÞ

(97)

where j0 is the basis function used for the discretization for j.
Galerkin approaches based on Eq. (97) are usually called method
of moments (MoM) in the EM community. We note that the basis
functions for j have to satisfy the continuity of normal compo
nents across the edges of elements, or “divergence conforming,”
for the use of the integration by parts to be justifiable. RWG func
tions [357] are among the most popular choices of divergence
conforming basis functions used in MoM. These functions are
vector valued and have degrees of freedom on edges of elements.
Use of RWG functions for both of j and m, however, may not be a
good choice for problems with dielectric scatterers since it may
lead to ill conditioned systems. Use of dual [358] (or Buffa
Christiansen [359]) basis function is a possible solution to this
problem.

4.7.2 Fast Methods for Maxwell’s Equations. Fast methods
for equations of the Helmholtz type seem to be investigated most
vigorously in the EM community because of many important
applications such as radars, etc. Examples of very large problems
solved with fast solvers of integral equations are found in papers
such as Taboada et al. [360] (150� 106 unknowns), Ergul and
Gurel [361] (more than 200� 106 unknowns), etc. Not surpris
ingly, there are overwhelming amount of publications devoted to
the subject of fast integral equation solvers which make it impos
sible to cover even just the main developments in a review article
of this size. The reader may find it more informative to refer to a
book [356] or to introductory or review articles by specialists
[362 365].

4.7.3 Periodic Problems in Maxwell’s Equations. As a recent
progress in computational electromagnetics, we can mention peri
odic FMM. Periodic boundary value problems for Maxwell’s equa
tions are increasingly important these days because there are new
micro and nano devices which utilize periodic structures, such as
photonic crystals and metamaterials. Photonic crystals are a class of
periodic structures of dielectric materials having a periodicity com
parable to the wavelength of light [366]. Photonic crystals are
known for their peculiar properties such as frequency selectivity,
etc., and are said to guide and store the light quite freely. Metama
terials are a class of composite materials with subwavelength peri
odic metallic structures. They exhibit curious behaviors such as
negative apparent refractive indices for a certain frequency range.
Applications of metamaterials are being sought in optical fibers, in
the so called “super lens” [367] with extremely high resolution, etc.
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BEMs for periodic boundary value problems are obtained easily
as one replaces fundamental solutions by periodic Green’s func
tions in the BIEs. Periodic Green’s functions for wave problems
usually take the form of lattice sums of fundamental solutions.
This means that a solution of a periodic boundary value problem
can be viewed as an infinite repetition of the solution in the unit
cell. This structure of the solution matches well with the tree
structure of FMM. Indeed, one may identify the unit cell with the
level 0 box of FMM to formulate a periodic version of FMM. The
effects from far replicas of the unit cell are then computed as an
infinite sum of M2L formulae between the unit cell and its repli
cas. An attempt of this type for 3D doubly periodic problems in
Maxwell’s equations is found in Otani and Nishimura [368] where
they considered the case of a cubic unit cell. This approach has
been extended to the case of a parallelepiped unit cell in [369] and
to a tall unit cell case in [370]. Figure 19 shows an example from
Ref. [370] where layers of glass fibers in water are considered.
This is supposed to be a model of the skin of worms, which is
known to look blue if viewed from a certain angle: an example of
the so called structural color.

Figure 19(b) shows the energy transmittance when the wave
length of the incident wave is 475 nm (blue). This result shows
that one will observe a strong reflection of blue light when the
incident angle is 30, which is in agreement with experiments. Per
iodic problems are characterized by anomalous behaviors of solu
tions related to the existence of guided modes. The performance
of the periodic FMM for Maxwell’s equations near anomalies are
examined in Ref. [371].

It is also possible to formulate FMMs for periodic boundary
value problems without using periodic Green’s functions or lattice
sums. Barnett and Greengard [372] presented well conditioned in
tegral equations with layer potentials distributed not just on the
surface of the scatterers but on the boundary of the unit cell as
well. Their efforts of this type in 2D Helmholtz equation are found

in Ref. [372] for doubly periodic problems and in Ref. [373] for
singly periodic problems. They also proposed a novel approach to
compute lattice sums accurately [372].

4.7.4 Periodic Problems in Mechanics. Periodic problems
are found in mechanics also. Actually, the seminal paper by
Greengard and Rokhlin [171] already includes discussions on per
iodic boundary conditions in many body Coulomb systems. Also,
periodic boundary value problems appear in microscopic analyses
in the homogenization theory which is used in estimating macro
scopic moduli of composite materials. Houzaki et al. [374] and
Otani and Nishimura [375] considered periodic boundary value
problems for rigid inclusion problems in 2D antiplane problems
and 3D problems of elastostatics. We note that static periodic
problems are delicate mathematically because the periodic
Green’s functions do not exist. However, their numerical treat
ment is easier than the corresponding dynamic problems once the
mathematical problem is resolved.

In regard to dynamic problems, we mention Otani and Nishi
mura [376] for singly periodic crack problems in 2D for Helm
holtz equation and Isakari et al. [339,377] for elastodynamic
scattering problems in 3D by doubly periodic inclusions.

4.8 Time-Domain Problems. The BEM in the time domain
is based on the representation formula of the underlying time
dependent partial differential equation. A BIE in time domain can
be deduced either with partial integration or based on reciprocal
theorems. In the case of acoustic problems, the acoustic pressure
/ x; tð Þ can be written as

cðxÞ/ x; tð Þ ¼
ðt
0

ð
S

Gðx; y; t sÞ qðy; sÞ Fðx; y; t sÞ/ðy; sÞ½ �

� dSðyÞds 8ðx; tÞ 2 S� 0;T½ � (98)

Different to the integral equation in Eq. (86) is the convolution in
tegral in time and the fundamental solutions are those in Eqs. (84)
and (85) transformed to time domain. Fortunately, for most physi
cal problems, the singular behavior of the time dependent funda
mental solutions with respect to space is the same as in the
respective static counterparts. A second hypersingular BIE as
counterpart to Eq. (87) can be as well deduced by applying the
gradient operator on the first integral equation. Details from a
mathematical point of view can be found in [378], where an engi
neering representation may be found in [41,379].

To obtain a boundary element formulation, the domain as well
as the time (T¼MDt) is discretized and the shape functions in
space and time have to be chosen. For the acoustic example this is

/ y; sð Þ ¼
X
j

X
i

up
i yð Þhpj sð Þ/j

i; q y; sð Þ ¼
X
j

X
i

uq
i yð Þhqj sð Þqji

(99)

with the nodal values in space and time /j
i and qji. Note, the sum

mation over i is the spatial counter, whereas the summation over j
is the counter in time. This approach is different from time
dependent (standard) finite element approaches where the time
discretization is applied on the PDE. Such approaches applied in
BEM would result in domain integrals. The last step is the integra
tion in space and time which yields the following matrix formula:

C0km ¼ bm þ
Xm�1

k 0

Gm�kqk Fm�k/k½ � m ¼ 0; 1; …;M (100)

In Eq. (100), km and bm have the same meaning as in Eq. (13),
however, with changing values in each time step. The convolution
integral produces the summation over the past time steps. Hence,
a standard implementation has a complexity of O(N2M) for MFig. 19 Skin of worm: (a) model; (b) energy transmittance
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time steps and N DOFs. An efficient implementation to reduce
this effort can be found in Ref. [380].

An alternative approach to the above sketched procedure is the
transformation to Laplace or Fourier domain and to solve the
elliptic problem. This avoids the high storage but requires a nu
merical inverse transformation with all its difficulties (see, e.g.,
Refs. [381,382]). Furthermore, at each frequency the equation sys
tem must be solved in contrast to Eq. (100) where only one equa
tion solution is necessary. An overview on dynamic BEM
formulation until the year 1996 can be found in Refs. [383,384].

4.8.1 Analytical Integration in Time. The integration in time
is mostly performed analytically. This is due to the structure of
several time domain fundamental solutions used up to now. In
acoustics the fundamental solution is a Dirac distribution in time
and, hence, the time integral is reduced to the function at the re
tarded time t r=c. In elastodynamics, the integration can as well
be done analytically, but in this case first the shape functions (Eq.
(99)) have to be chosen (mostly linear for the displacements and
constant for the tractions) and then the integration is performed
within each time step. This procedure has been published initially
by Mansur [385]. In three dimensions, due to Huygens principle,
there exists a cut off time at which the system matrices in Eq.
(100) becomes zero. However, this is not true in two dimensions
and for any problem with damping.

4.8.2 Convolution Quadrature Method. An alternative meth
odology which also extends the time domain formulations to prob
lems where the time domain fundamental solution is not known is
the so called convolution quadrature method (CQM) based BEM.
In this formulation, the convolution integral is approximated
numerically by the formulaðt
0

ð
suppðup

j Þ
Gðx; y; t sÞ qjðsÞup

j ðyÞ dSðyÞds

�
Xn
k 0

xn�k
j ðĜ;DtÞ qjðkDtÞ with

xn
j ðĜ;DtÞ ¼

R�n

L

XL�1

‘ 0

ð
suppðup

j Þ
Ĝðx; y; s‘Þ f�n‘up

j ðyÞ dSðyÞ

s‘ ¼ cðf‘RÞ
Dt

; f ¼ e
2pi
L (101)

The CQM has been developed by Lubich [386] and is applied to
elastodynamics in Ref. [387]. In Eq. (101), R is a parameter to be
chosen (often R ¼ 10�

5
2M) and c(z) denotes an A and L stable

multistep method. The second order backward differential for
mula is a good choice [388] and A and L stable Runge Kutta
methods can be used [389]. The essential advantage of this for
mula is that both the time dependent fundamental solution and
its Laplace transform Ĝðx; y; sÞ can be used. For many time
dependent problems, especially if damping is included, only the
transformed fundamental solutions are available. The applications
to visco and poroelasticity can be found in Refs. [390,391].
Beside this advantage, the stability of the algorithm is improved
compared to the analytical integration. Finally, the same recursion
formula (Eq. (100)) is obtained where the matrix entries are now
the integration weights xn

j which present the time integrated fun
damental solutions.

As an example, the computed sound pressure level on the
boundary of an amphitheatre using the time domain BEM are
depicted in Fig. 20 at the times t¼ 0.00625 s, t¼ 0.046875 s, and
t¼ 0.078125 s. The amphitheatre is discretized with 3474 linear
triangles with 1761 nodes and a time step size of Dt¼ 0.003125 s
is used. Sound reflecting boundary conditions are considered and
the sound propagates in the air with a speed of c ¼ 346m=s. The
sound field is excited by a prescribed sound flux of q ¼ 1 N=m2

in
the middle of the stage. Looking on the lowest sound pressure

level, it is observed that there are high negative values. Recalling
the definition of the sound pressure level, those values denote
sound below the auditory threshold. At all areas which cannot be
reached by the sound wave at the observation time such low val
ues are obvious. Also, after some time nothing more can be heard.

4.8.3 Numerical Instabilities and Weak Formulations. The
classical space collocation approach based on Eq. (98) suffers, in
some cases, from the numerical instability of the time marching
scheme which has been put into evidence, e.g., in Refs.
[392 395]. This instability is often called intermittent owing to
the often unpredictable way in which it appears upon variation of
the time step adopted in the analysis.

It has been shown that weak formulations can be very beneficial
with respect to this issue. A first proposal in the time domain was
put forward and implemented by Ha Duong [396] for acoustics; it
couples the weak version both in time and space of the integral
representation Eq. (98) with the weak gradient BIE which is
obtained from Eq. (98) by applying the gradient operator with
respect to x. Recently, Aimi et al. [397,398] have proposed an al
ternative direct space time Galerkin BEM which leads to uncondi
tionally stable schemes. Instead of exploiting the gradient BIE,

Fig. 20 Sound pressure Level (dB) at the boundary of the
amphitheatre
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this latter formulation makes use of the velocity BIE obtained by
applying to Eq. (98) the time derivative with respect to t.

4.8.4 Fast Methodologies. One of the first approaches for a
fast evaluation of the retarded potentials related to scattering prob
lems was published in Ergin et al. [342]. The main idea is a plane
wave expansion of the respective integral kernel. This idea has
been extended to elastodynamics in Refs. [341,343]. Another
approach has been proposed by Hackbusch [399] for acoustics
using the panel clustering technique to sparsify each matrix per
time step. An improvement of this approach can be found in Ref.
[400]. For the heat equation, an approach based on a Chebyshev
interpolation of the kernel has been proposed by Tausch [401]. An
FMM approach in viscoelasticity has been proposed in Zhu et al.
[402]. Beside the above mentioned approaches, the reformulation
of the CQM by Banjai and Sauter [403] allows the application of
fast techniques developed for elliptic problems. In Ref. [404] this
reformulated CQM is discussed as well for collocation
approaches. In combination with ACA, a fast elastodynamic BEM
has been proposed by Messner and Schanz [210]. The CQM in
combination with an FMM has been studied by Saitoh et al. [405].

Finally, we mention related but different use of fast BEM in
time domain problems in fluid mechanics in which the governing
equations are integro differential equations. Solution methods for
such equations require evaluations of integrals, which are acceler
ated with fast methods. Examples of approaches of this type are
found in vortex methods (e.g., Ref. [406]) and in vesicular flow
problems (e.g., Ref. [407]), to mention just a few.

4.9 Coupling of the BEM with the FEM. Even if the finite
element method has a dominant status in the field of computa
tional methods in engineering, mostly because of its great flexibil
ity and wide range of applicability, approaches based on integral
equations are clearly superior for certain classes of problems. In
fact, the FEM and the BEM have relative benefits and limitations
depending on the problems to be solved. Hence, there are many
applications where a coupling between the two approaches is in
principle very attractive. For example, different parts of a struc
ture can be modeled independently by the FEM and the BEM in
order to exploit the advantages of both techniques.

4.9.1 Methodologies. The first investigations on this idea
dated back to 1977 with the pioneering work of Zienkiewicz,
Kelly and Bettes [408] based on the collocation non symmetric
BEM. A symmetric coupling of the BEM and FEM was proposed
later by Costabel and Stephan [409] followed by the variationally
based coupling procedure between the FEM and an indirect ver
sion of the Galerkin BEM developed by Polizzotto and Zito [410].
In many papers, the BEM subdomains, see for instance the work
by Haas and Kuhn [411] and by Ganguly, Layton and Balakrishna
[412], or the FEM subdomains, e.g., the work by Ganguly, Layton
and Balakrishna [413], are handled as equivalent finite or bound
ary macro elements, respectively. In recent years, however, the
idea of adapting one of the two techniques to the other in a sort of
master slave technique with macroelements has been gradually
abandoned for a more balanced approach.

The need to maintain the different subdomains as independent
as possible has become a crucial point for different reasons. First,
this aims at preserving the structure of the system matrices which
are sparse positive definite for the FEM and full, possibly non
symmetric and not definite for the BEM. Second, the computa
tional cost and memory requirements of the BEM part must be
imperatively reduced by means of algorithms such as fast multi
pole methods, panel clustering and ACA; this entails that the sys
tem matrix is actually never available. Third, different
subdomains might require different discretizations (both in time
and space) resulting in non conforming meshes and interpolations.
This last point is closely related to the enforcement of the match
ing conditions (e.g., continuity of displacements and tractions in
solid mechanics) at the interface between the subdomains. When

displacement continuity is enforced in strong form, the BEs at the
interface and the sides of the FEs adjacent to the interface should
coincide, together with their nodes. On the other hand, if the kine
matic continuity condition is enforced in weak form, the matching
of the two discretizations at the interface is no longer necessary,
with an evident flexibility gained in the meshing process. This
permits the integration of independently discretized models possi
bly coming from different sources.

A non matching node coupling of SGBEM and FEM is devel
oped by Ganguly, Layton and Balakrishna [413] in the context of
a BE based approach. In fracture mechanics, a coupling approach
which preserves the independence of the FE and BE meshes is the
so called hybrid surface integral finite element technique, see the
works by Keat, Annigeri and Cleary [414], Han and Atluri [415]
and Forth and Staroselsky [280]. Springhetti et al. [416] address a
SGBEM FEM coupling procedure in elastostatics characterized
by a weak enforcement of the both matching conditions at the
interface.

Two different families of approaches seem to guarantee, at
best, the complete independence of the various subdomains: itera
tive (or alternating) techniques and Lagrange multiplier techni
ques. The former type of approach could be in principle applied to
any kind of coupling. The individual subdomains are treated inde
pendently by either method based on an initial guess of the inter
face unknowns. Then, the newly computed interface variables are
synchronized and exploiting these updated values in another sub
domain solution yields enhanced results. The procedure is
repeated until convergence is achieved. A comprehensive over
view of such methods is given by von Estorff and Hagen [417].
Within the iteration procedure, a relaxation operator is applied to
the interface boundary conditions in order to enable and speed up
convergence. In this sense, the iterative coupling approaches are
better called interface relaxation FEM BEM. Although the itera
tive coupling is very attractive from the point view of software
design, the convergence commonly depends on the relaxation pa
rameters which are rather empirical (see Refs. [418 421].

In the Lagrange multiplier approach matrix entries are never
mixed from the different subdomains and the interface conditions
are posed in a weighted sense such that nonconforming interfaces
can be handled. The largest family in this category, represented
by the FETI BETI approaches [422,423], can be formulated as
follows. At the subdomain level, Dirichlet to Neumann maps are
realized by means of each discretization method. In elastostatics,
for instance, this amounts to generating a Steklov Poincaré opera
tor expressing surface tractions in terms of surface displacements
t ¼ Su. The realization of this operator for FEM and BEM is dis
cussed at length, e.g., in Refs. [422 424]. Then, tractions along
the interface are treated as Lagrange multipliers k and the equilib
rium and continuity conditions are enforced in a weak manner
along the interfaces in terms of u and k. Interface displacements
and Lagrange multipliers are the unknowns of the reduced prob
lem which can be solved by means, e.g., of a conjugate gradient
method [425]. The overall approach can be interpreted as a pre
conditioned conjugate gradient solver [422].

As far as evolving problems are concerned, one additional rea
son for avoiding the solution of the global coupled system of
equations is that the use of different time steps for the subdomains
becomes possible. This is an important advantage, especially in
the BEM, where the range of applicable time step lengths, result
ing in a stable and accurate solution, is limited. In the staggered
solution approach, the equations for each subdomain are solved
once at each time step. However, the stability and accuracy of
both the BEM itself and the staggered coupling approach impose
requirements on the choice of the time step durations, which may
be contradictory. Therefore, it is desirable to use a coupling proce
dure that is stable and accurate for a wide range of time steps.
This can be obtained by introducing corrective iterations into the
staggered algorithm [421]. Within the iteration procedure, a relax
ation operator may be applied to the interface boundary conditions
in order to speed up convergence. An overview of a variety of
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such techniques involving FEM BEM as well as BEM BEM cou
pling, is given by Refs. [417 419].

4.9.2 Applications. A rich literature on applications of
coupled FEM BEM approaches has flourished in recent years
combining and exploiting at best the potentials of both the FEM
and BEM techniques. The FEM is the standard method of choice
for the analysis of complex structural parts and, more in general,
of structural mechanics in the presence of shells, plates and
beams. It allows for an easy handling of general constitutive laws
(encompassing nonlinearities and anisotropy) and is widely used
in the industry. However, the BEM is clearly superior in the pres
ence of domains of infinite extension featuring linear isotropic
constitutive behaviors, evolving domains, strong gradients and
singularities. When both situations occur in a single analysis, then
a coupled approach turns out to be very promising.

A typical application with these requirements is represented by
3D linear fracture mechanics, especially in the presence of propa
gating fractures in complex structures. The FEM is inefficient in
the modeling of singular stress fields (or regions with strong gra
dients) and in the presence of evolving domains. Such difficulties
have been elegantly circumvented by a coupling procedure (with
the symmetric Galerkin BEM in particular), e.g., by Frangi and
Novati [426], Forth and Staroselsky [280], Aour, et al. [427], and
Lucht [428].

In elastoplastic analyses with a limited spread of plastic defor
mations, the FEM is utilized where the plastic material behavior is
expected to develop. The remaining bounded/unbounded linear
elastic regions are best approximated by the BEM [409]. A central
aspect of coupling approaches is that they require the user to pre
define and manually localize the FEM and BEM sub domains
prior to the analysis. Recently, Elleithy [429], Elleithy and Grzhi
bovskis [430] focused on the development of an adaptive FEM
BEM coupling algorithm in which they provide fast and helpful
estimation of the FEM and BEM sub domains.

Soil structure interaction in statics and dynamics has stimulated
intensive research in coupled approaches where the BEM is
employed for the infinite (or semi infinite) and possibly layered
soil, while the FEM is adopted for the finite structure and struc
tural elements like piles [431 436]. Recently, applications in
vibration analysis of transport systems have been addressed by
similar techniques [437 439].

In magnetostatics industrial applications, the BEM FEM cou
pling is often applied to the analysis of finite metallic parts of a
mechanism (like a relay) excited by coils. The surrounding air is
considered as an isotropic and linear medium addressed by the
BEM with total or reduced scalar potential approaches. The nonlin
ear constitutive behavior of the metallic parts and their high sur
face to volume ratio call, on the contrary, for the application of the
FEM. This approach also allows performing coupled analyses
encompassing large displacements and rotations of the pivoting
lamina. Investigations along these guidelines have been presented,
e.g., by Kuhn [440], Balac and Caloz [441], Kuhn and Steinbach
[442], Frangi et al. [443,444], Salgado and Selgas [445], Pusch and
Ostrowski [446]. The simulation of eddy currents can also be con
veniently addressed with similar approaches [447].

BEM FEM techniques have a dominant status in the simulation
of elasto acoustic coupling. While the FEM is the preferred tool in
the field of structural vibrations, using the BEM for the unbounded
linear domain has the additional benefit that the Sommerfeld radia
tion condition for exterior domains is inherently fulfilled. Advanced
applications have been presented by Chen et al. [448], Czygan and
von Estorff [449], Gaul and Wenzel [450], Langer and Antes [451],
Fischer and Gaul [425], and Soares [452].

Although the above categories have attracted most of the
research effort, fluid structure interaction is also emerging as
promising. For example, Wang et al. [453] focused on the simula
tion of cell motion in a biological fluid flow. The membrane of a
moving cell is represented by a thin shell composed of incompres
sible neo Hookean elastic materials and the movement of liquids

around the membrane are approximated as incompressible Newto
nian flows with low Reynolds numbers. Seghir et al. [454] present
a numerical model coupling boundary and finite elements suitable
for dynamic dam reservoir interaction employing a standard finite
element idealization of the dam structure and a symmetric bound
ary element formulation for the unbounded reservoir domain.
Other important applications include diffuse optical tomography
by Elisee et al. [455] and modeling of photonic crystals for semi
conductor laser beams by Jerez Hanckes et al. [456].

5 Future Directions

In this closing section, we discuss some future directions of the
BEM and related research topics. The views expressed herein are
not meant to be exclusive. They are merely those of the authors of
this review article, aiming to shed some light on the research
efforts to be made in the coming years. All these efforts should
further improve the formulations, implementations, solutions, and
applications of the BEM to make it an even more effective and ef
ficient numerical method in the fields of computational science
and engineering.

5.1 Multi-scale, Multi-physics, and Nonlinear Problems.
Multi scale and multi physics applications of the BEM should be
a productive area of research for the BEM in the coming years.
Many of the multi physics and multi scale problems involve com
plicated geometries and large scale numerical models, such as
modeling of nanomaterials [250], biomaterials, and MEMS, that
can be solved efficiently now by the BEM. Any new development
of the BEM to solve realistic models in these areas will further
demonstrate the unique capabilities of the BEM and benefit
industry.

The authors believe that the BEM is ready to solve some non
linear problems on a larger scale as compared with the conven
tional BEM used in the past. Because of the new formulations
(symmetric Galerkin, various preconditioning techniques, etc.)
which offer more stable solutions and fast solution methods
(FMM, pFFT, ACA, etc.) with iterative solvers for large scale
problems, the BEM and the related methods should be able to han
dle effectively nonlinear problems with elastic plastic materials
[35], large deformation [39,457,458], and moving boundary prob
lems [38] such as in hydrodynamics [459].

5.2 More Efficient Fast Solution Methods. The BEM
accelerated with the FMM, pFFT, or ACA can now solve large
scale BEM models of several million DOFs very efficiently, if
they work. In some cases, the convergence of the FMM, pFFT, or
ACA with iterative solvers may not be achieved within reasonable
time limits. Therefore, developing better pre conditioners for the
BEM systems of equations has been, and will continue to be, a
focus for improving the fast multipole, pFFT, and ACA BEMs.
Wavelet methods [460,461] can also be used to compress the
BEM matrices to yield better conditioned systems of equations for
solving large scale BEM models. To make kernel independent
fast multipole BEM, the black box, or generalized fast multipole
method (bbFMM) [462] can be further explored.

5.3 Applications in Urgent Engineering Fields. The BEM
is uniquely positioned to address some of the urgent problems in
biomedical engineering, alternative energy and environmental en
gineering. For example, the computer image based BEM can be
applied to study thermal and electrical responses of bones or
brains [44,463], which are difficult to model using other methods
due to the complicated domains. The fluid structure interaction
problem of red blood cells in Stokes flow can also be attempted
by the BEM [44,464]. This is currently an active research topic.

We believe that the BEM can play a significant role in the devel
opment of the next generation, more efficient and environment
friendly energy harvesting systems in the next decade to tackle
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urgent energy related problems. For example, the BEM can be
applied to predict thermal, electrical, fluid flow, and other mechani
cal responses, fatigue life and noise levels of arrays of solar panels
and wind turbines, which are often in open spaces and in large
scales. With full scale and large scale models of solar panels and
wind turbines, we will be able to study their interactions with the
environment and evaluate their impacts on human beings and other
species.

In other areas of environmental engineering, the BEM can be
applied to predict noise along a highway stretch caused by cars or
in a city block caused by high speed trains or explosives, to track
the distribution and propagation of pollutants over a city, or to
evaluate manmade noise in the ocean and the negative impacts on
marine lives.

5.4 Software Development. The transition of research codes
to commercial software for the BEM has been lagging for the last
three decades as compared with those for other numerical meth
ods. This is not easy for researchers who are not familiar with the
marketplace. However, for the BEM to be useful and to be rele
vant in computational science and engineering, researchers on the
BEM have to be aware of this issue. BEM researchers should
solve large scale, realistic, industry relevant problems with their
developed BEM approaches and codes, moving beyond the aca
demic problems they are used to solve. They should interact more
often with engineers to be aware of the type of the problems that
they can solve with the BEM and thus contribute to industry
research and development efforts.

In fact, there are many advantages of the BEM regarding the
development of a software package, as compared with the FEM.
The data structure for a BEM model is simpler and requires much
less storage space due to the use of boundary elements. The
required geometric (CAD) model of a problem can also be less
stringent. For example, only the surface data are required in the
BEM, and that surface data need not to be perfect (or “air tight”).
Meshing surfaces for the BEM are straightforward and there are
many codes for meshing available in the public domain. There
fore, optimizing and integrating a BEM research code with other
software components to develop a BEM software package is rela
tively straightforward.

There have been some efforts by researchers in the BEM to de
velop commercial BEM software for industrial applications.
Among the commercial BEM software available, we mention the
packages GPBEST by BEST Corporation, BEASYTM by Computa
tional Mechanics Inc., COMET BEAT by Comet Technology Cor
poration, Virtual.Lab by LMS International, and FastBEM
AcousticsVR by Advanced CAE Research. A list of free educational
computer codes developed at several universities for solving vari
ous problems using the BEM can also be found at the Boundary
Element Resources Network (BENET) [465]. BEM source codes
for education can also be found in textbooks, such as the code for
Galerkin BEM in Ref. [43] and the code for fast multipole BEM
in Ref. [44].

More coordination among the BEM researchers and collabora
tions with industries are urgently needed in order to develop the
next generation BEM software that will be unique, efficient, and
user friendly, and to add more valuable computational tools in the
computational toolbox for engineers. Establishing an open source
platform for the BEM, where researchers and developers can con
tribute and share their BEM source codes and work together to
ward an integrated BEM software system, may be a first step
towards achieving these goals.

5.5 Education. Education of a new generation of students
who are interested in conducting research and development of the
BEM will be crucial for further advances in the BEM. Educators
need to consider more innovative ways to teach the subjects of the
BEM that have sometimes been abstract and theoretical in the
past. Developing new course materials on the BEM, that include

the BIE theory, element formulations, programming, and real
world applications, is needed. Integration of the BEM with other
computational methods in a course on computational science and
engineering may be a better way to introduce the BEM to
students.

There have been several conference series dedicated to the
BEM in the last decade, such as the International Conference on
Boundary Elements and other Mesh Reduction Methods (BEM/
MRM), International Conference on Boundary Element Techni
ques (BETeq), International Association for Boundary Element
Methods (IABEM) Conference, and numerous minisymposia at
the World Congress on Computational Mechanics and US
National Congress on Computational Mechanics. In addition, two
workshops on the fast multipole BEM were conducted, one in Los
Angeles in 2006 and one in Kyoto in 2007. There were also two
GF related workshops earlier in the 1990s. The first workshop was
on “Green’s functions and boundary element analysis for model
ing the mechanical behavior of advanced materials” which was
held in 1994 in Boulder, Colorado and sponsored by the National
Institute of Standards and Technology (NIST). In 1998, another
workshop titled “Library of Green’s Functions and Its Industrial
Applications” was held at Gaithersburg, Maryland. This work
shop, also sponsored by NIST, was to demonstrate the idea and
application of a library of discretized GFs to industrial problems.
There were two GF related educational projects supported by
NSF: One was the GREEN Project (Green’s Functions Research
& Education Enhancement Network), the other was an extension
of the GREEN project “NSF NSDL GREEN Project: A Digital
Library Partnership of Academia, Government, and Industry.”

Nationwide and worldwide annual or biannual conferences,
workshops, and symposia on the BEM and related methods should
continue so that more students and young researchers can have a
chance to learn the BEM, develop interests in the BEM and other
computational methods, and eventually help to advance BEM
research and development in the future.
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