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Abstract

The quantum thermal bath (QTB) has been presented as an alternative to path-

integral based methods to introduce nuclear quantum effects in molecular dynamics

simulations. The method has proved to be efficient, yielding accurate results for various

systems. However, the QTB method is prone to zero-point energy leakage (ZPEL) in

highly anharmonic systems. This is a well known problem in methods based on classical

trajectories where part of the energy of the high frequency modes is transferred to the

low frequency modes leading to a wrong energy distribution. In some cases, the ZPEL

can have dramatic consequences on the properties of the system. Thus, we investigate

the ZPEL by testing the QTB method on selected systems with increasing complexity
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in order to study the conditions and the parameters that influence the leakage. We

also analyze the consequences of the ZPEL on the structural and vibrational properties

of the system. We find that the leakage is particularly dependent on the damping

coefficient and that increasing its value can reduce, and in some cases, completely

remove the ZPEL. When using sufficiently high values for the damping coefficient, the

expected energy distribution among the vibrational modes is ensured. In this case, the

QTB method gives very encouraging results. In particular, the structural properties are

well reproduced. The dynamical properties should be regarded with caution although

valuable information can still be extracted from the vibrational spectrum, even for large

values of the damping term.

1 Introduction

The molecular dynamics (MD) simulation technique is a powerful tool to investigate the

properties of complex atomic systems. At low temperature and/or in systems containing

light elements such as hydrogen, nuclear quantum effects can play a major role on the

behavior of the system. However, it is currently a computational challenge to account for

the quantum nature of nuclei in MD simulations.

Over the past years, several techniques have been proposed to deal with this issue. Among

them, the most common methods are based on the path integral formalism such as path

integral molecular dynamics (PIMD). In this formalism, each quantum nucleus is described

by a ring of classical monomers (or beads) connected through harmonic springs1–3. When

the number of beads is large enough, the statistical averages converge towards the exact

quantum result. However, in order to compute time correlation functions, approximate

methods such as centroid MD4 or ring-polymer MD5,6 are needed. These path-integral

methods are computationally demanding when the number of beads increases, in particular

at low temperature.

Recently, alternative methods based on a modified Langevin equation have been pro-
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posed7,8. Among them, the quantum thermal bath (QTB)7 is an approximate yet efficient

method to include nuclear quantum effects in MD simulations. Although exact only in the

case of a system of harmonic oscillators, the QTB provides satisfactory results in many

anharmonic systems.9–14 A first advantage is its implementation without any additional

computational cost compared to standard MD. Hence, large and complex systems can be in

principle treated by QTB-MD. Moreover, the method can give information about dynamical

properties of the system. Finally, its formulation is not system-dependent, in particular, no

knowledge of the system’s vibrational density of states is needed beforehand. However, the

QTB method has several drawbacks. First, the method can fail when dealing with highly

anharmonic systems.15 Second, the QTB technique is prone to zero-point energy leakage

(ZPEL), like any other method based on classical trajectories.16

The ZPEL is a known problem where a part of the energy of the high-frequency modes is

transferred to the low-frequency ones which is due to the classical nature of MD trajectories.

The ZPEL was observed in many different systems (water clusters and liquid water, Lennard-

Jones systems, ...)17–21; in particular, in the case of the QTB, the ZPEL has been recently

pointed out by Bedoya-Martinez and coworkers.20 However, no systematic or general study

of ZPEL within the QTB framework has been done up to now.

Several solutions to the ZPEL problem within QTB-MD simulations have recently been

suggested. Bedoya-Martinez and coworkers tried to modify the noise power spectrum in

order to obtain the expected energy distribution. However, this solution is system-dependent

and only worked for weakly anharmonic systems.20 Ganeshan and coworkers proposed a

deterministic approach to suppress ZPEL, which unfortunately requires the knowledge of

the vibration normal coordinates prior to the simulation.19

Here, we investigate the conditions leading to the ZPEL within QTB-MD simulations in

various systems in order to get a better understanding of the validity of the QTB method.

More precisely, we focus on the conditions and the parameters that influence the ZPEL and on

the consequences for the system’s properties. After a brief presentation of the QTB method,
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we study selected anharmonic systems with increasing complexity. First, we investigate

two simple models: two coupled harmonic oscillators and a one-dimensional chain of atoms.

Then, we focus on more realistic systems, a Lennard-Jones aluminium crystal and the phase

transitions in BaTiO3. In the last section, we discuss our results and their implications.

2 The Quantum Thermal Bath method

The QTB method is based on a modification of the Langevin thermostat in order to include

nuclear quantum effects in MD simulations. Both in the standard (i.e. classical) Langevin

thermostat and in the QTB method, the equation of motion for one degree of freedom x of

mass m and submitted to the internal force f(x) reads:7

mẍ = f(x)−mγ ẋ+R(t) (1)

The last two terms correspond to the friction and stochastic forces of the thermostat, re-

spectively.

The random force is described by a stationary stochastic process R(t) whose distribution

is Gaussian with zero mean:

< R(t) > = 0 (2)

< R(t)R(t+ τ) > =

∫ +∞

−∞

IR(ω, T ) e−iωτ dω
2π

. (3)

Equation 3 is the Wiener-Khinchin theorem, which relates the autocorrelation function <

R(t)R(t + τ) > of the stochastic process to its power spectral density (PSD) IR(ω, T ) at

temperature T . The dynamical properties obtained using eq. 1 are directly related to this

PSD. The closely related PSD of the position, Ix, is obtained from the fluctuation-dissipation

4



theorem22, which reads in the classical case:

χ̃
′′

(ω) =
ω

2kBT
Ix(ω, T ) (4)

with χ̃
′′

(ω) the imaginary part of the susceptibility χ̃(ω) that connects the Fourier transform

of the position x̃(ω) to the Fourier transform of the random force R̃(ω) within the linear

response theory:

x̃(ω) = χ̃(ω)R̃(ω) (5)

From this expression, we obtain a linear relation between the PSD of the position, Ix, and

the PSD of the stochastic force, IR:

Ix(ω, T ) = |χ̃(ω)|2IR(ω, T ) (6)

and the fluctuation-dissipation theorem can be rewritten as follows:

IR(ω, T ) =
2kBT

ω

χ̃
′′

(ω)

|χ̃(ω)|2 . (7)

In the case of an harmonic oscillator with an angular frequency ω0, using eq. 1 and 5 the

susceptibility writes

χ̃(ω) =
1

m [ω2
0 − ω2 + iγω]

. (8)

By introducing this expression in eq. 7, the PSD of the random force is obtained in the

classical case as a white noise:

IR(ω, T ) = 2mγ kBT ∀ω. (9)

By using this expression and the Wiener-Khinchin theorem (eq. 3) in eq. 1, the standard

Langevin dynamics is obtained. In this case, the equipartition of the energy is ensured, and

all harmonic vibrational modes have the same average energy (kBT ), which is independent
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of the angular frequency ω.

In the quantum case, the average energy of a vibrational mode is given by

θ(ω, T ) = ~ω





1

2
+

1

exp
(

~ω
kBT

)

− 1



 (10)

in the harmonic approximation. The main idea of the QTB method is to replace the PSD

of the classical random force (9) by the one corresponding to the energy distribution of eq.

10. This is done, in practice, by using the quantum version of the fluctuation-dissipation

theorem as developed by Callen and Welton23 and reviewed by Kubo22, which gives:

χ̃
′′

(ω) =
ω

2θ(ω, T )
Ix(ω, T ) (11)

and, through the Wiener-Khinchin theorem, leads to the PSD of the colored noise R(t) as

used in the QTB method:

IR(ω, T ) = 2mγ θ(ω, T ) (12)

In contrast to the Langevin thermostat, IR is ω dependent and the random force R(t) is

obtained using the procedure24,25 described in Appendix A.

The use of an angular frequency cut-off ωcut is necessary during the generation of these

random forces26 because the average energy of a harmonic oscillator diverges at high frequen-

cies. Thus, the QTB method contains two free parameters : the friction coefficient γ and

the angular frequency cut-off ωcut. The values of these parameters must be carefully chosen.

When using the Langevin thermostat, it is generally assumed that the friction coefficient γ

has to be small enough so that the forces associated with the thermostat do not significantly

perturb the dynamics of the system.27 Moreover, as already stated by Barrat and Rodney26,

ωcut must be chosen of the order of a few times the highest angular frequency observed in

the system to prevent the inclusion of non-physical high frequency modes. Too high values

for ωcut and γ could lead to the divergence of the total energy.26 In the simulations that are
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presented in this work, we found that a reasonable value for ωcut is approximately 2ωmax

with ωmax being the highest angular frequency in the system. In the following, we focus on

the results of QTB-MD simulations when increasing the friction coefficient γ in eq.1 and,

consistently, in the power spectrum of the stochastic force (eqs. 9 and 12).

3 Model systems

3.1 Coupled harmonic oscillators

In this section, we study the behaviour of QTB-MD on a simple model consisting of two

coupled one-dimensional harmonic oscillators. Thanks to the small number of degrees of

freedom, we can directly compare the QTB-MD results with the numerical solution of the

time-independent Schrödinger equation here. The system is described by the Hamiltonian

H :

H =
1

2
mẋ2

1 +
1

2
mω2

1x
2
1 +

1

2
mẋ2

2 +
1

2
mω2

2x
2
2 + C3(x1 − x2)

3 + C4(x1 − x2)
4 (13)

where x1 and x2 are the positions of the two oscillators, ω1 and ω2 are their angular fre-

quencies, m is their mass and C3 and C4 are coupling constants. The Hamiltonian H can be

written in a dimensionless form, H̃ = H/~ω1, so that:

H̃ =
q̇21
2

+
q21
2

+
q̇22
2
+ Ω2 q

2
2

2
+ c3(q1 − q2)

3 + c4(q1 − q2)
4 (14)

where the following variables are used:

Ω =
ω2

ω1
, ξ =

√

~

mω1
, qi =

xi

ξ
, c3 =

C3ξ
3

~ω1
, c4 =

C4ξ
4

~ω1
, t∗ = ω1t, q̇i =

dqi
dt∗

. (15)

q1 and q2 are the reduced positions of the two oscillators and Ω is the ratio of the frequencies of

the two oscillators (we set ω1 > ω2). The non-linear coupling terms introduce a controllable

degree of anharmonicity in the system which in turn leads to a clear illustration of the
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Figure 1: Average energies, ǫ1 and ǫ2, of the two oscillators, and average coupling energy ǫc
computed by QTB-MD as a function of the intensity of the coupling constants c3 and c4.
Top panel: cubic coupling (c3 6= 0, c4 = 0) with Ω = 0.5. Lower panel: quartic coupling
(c4 6= 0, c3 = 0) with Ω = 0.25. By symmetry, ǫc = 0 in the cubic case.

ZPEL within the QTB method and allows for the analysis of the conditions leading to this

phenomenon. In particular, we study here the influence of cubic and quartic coupling terms

on the energies of the oscillators ǫ1 and ǫ2, that are:

ǫ1 =

〈

q̇21
2

〉

+

〈

q21
2

〉

, ǫ2 =

〈

q̇22
2

〉

+ Ω2

〈

q22
2

〉

. (16)

The QTB-MD simulations were performed with a friction coefficient γ = 4 × 10−4 ω1, a

cut-off frequency ωcut = 2ω1 and a time step δt = 0.05ω−1
1 . Average values are computed

using at least 30 independent trajectories that are 107 time steps long each. The ratio Ω is

varied in the 0.05–0.8 range and the parameters c3 and c4 are varied in the 0–25× 10−4 and

0–40 × 10−4 ranges respectively, so that we cover a large range of coupling energies (figure

1). The temperature is set to kBT = 0.03 ~ω1 (e.g. T ∼ 60 K if ω1 = 2π × 40 THz) so that

the thermal energy contribution to the energies of the oscillators is negligible with respect

to their zero-point energies.

The exact quantum calculation shows that the energies of the oscillators are almost

independent of the anharmonic coupling intensities for the range of coupling values studied
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Figure 2: Zero-point energy leakage quantified through the deviation factor ζ (eq. 17) as a
function of the ratio of frequencies Ω (eq. (15)). Top panel: cubic coupling (c3 6= 0, c4 = 0).
Lower panel: quartic coupling (c4 6= 0, c3 = 0).

here and are equal to their zero-point energies; hence, in reduced units, ǫ1 = 0.5 and ǫ2 = Ω/2.

Figure 1 shows the average energies obtained with the QTB method in two distinct cases:

Ω = 0.5 with only a cubic coupling and Ω = 0.25 with only a quartic coupling. As expected,

in the uncoupled case, i.e. c3 = 0 and c4 = 0, the QTB method gives the expected quantum

energies for the two oscillators, corresponding to their zero-point energies. In contrast, when

the coupling constants c3 or c4 are increased, the QTB-MD energies diverge from the exact

results: part of the energy of oscillator 1 is transferred into oscillator 2, hence, ZPEL occurs.

In the following, we investigate how the ZPEL depends on the three parameters (Ω,c3,c4)

that define the Hamiltonian.

First, we adopt the following deviation factor ζ in order to quantify the ZPEL:

ζ =
∆ǫexact −∆ǫQTB

∆ǫexact
=

(ǫexact
1 − ǫexact

2 )− (ǫQTB
1 − ǫQTB

2 )

ǫexact
1 − ǫexact

2

(17)

With this definition, the leakage is maximum when ζ = 1, i.e. when the system has reached

an equipartition of the energy: ǫQTB
1 = ǫQTB

2 . In contrast, there is no leakage when ζ = 0,
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Figure 3: Vibrational spectra (in logarithmic scale) of oscillators 1 and 2 obtained by QTB-
MD simulation in the case of a cubic coupling (top panel) with Ω = 0.5 and c3 = 2.4× 10−4,
and in the case of a quartic coupling (lower panel) with Ω = 0.2 and c4 = 15.4× 10−4. The
spectra are computed for two selected values of the friction coefficient: γ = 4 × 10−4ω1 and
γ = 4× 10−3ω1.

i.e. when ǫQTB
1,2 = ǫexact

1,2 . In figure 2, the results obtained for ζ as a function of Ω for different

values of c3 and c4 are presented. One can note that the ZPEL strongly depends on the ratio

of frequencies and is present only for certain values of Ω. In the cubic case, it occurs only

near Ω = 0.5 (figure 2.a). Indeed, cubic terms in the potential are known to be responsible

for frequency doubling, that is the second harmonic generation (2ω). This is confirmed by

the vibrational spectrum of the two oscillators computed from QTB-MD in the cubic case

(figure 3.a): harmonics at 2ω2, ω1 − ω2, and ω1 + ω2 are visible. Therefore, at Ω = 0.5,

there is a resonance between the couple of modes (ω1; 2ω2) and (ω2;ω1 − ω2). Similarly,

the quartic terms are responsible for the generation of modes with frequency 3ω; ZPEL

is indeed observed near the resonance at Ω = 1/3 (figure 2.b). With increasing quartic

coupling, significant ZPEL also occurs for smaller values of Ω. Figure 3.b shows, in the case

of Ω = 0.2 and c4 = 15.4 × 10−4, that many other modes than ω1 and ω2 also appear in

the spectrum. Hence, multiple resonances are likely to occur leading to significant ZPEL for
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Figure 4: Effect of the damping coefficient γ (given in units of ω1) on the energies of the
two oscillators (eq. 16) as a function of the coupling constants. Top panel: cubic coupling
(c3 6= 0, c4 = 0) and Ω = 0.5. Lower panel: quartic coupling (c4 6= 0, c3 = 0) and Ω = 0.25.
The solid line and symbols represent the results obtained from QTB-MD and the grey dashed
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values of Ω < 1/3.

Influence of the friction coefficient γ The damping coefficient is now varied from

4 × 10−4ω1 to 2 × 10−2ω1. We focus on the frequency range where the ZPEL is important:

Ω = 0.5 for cubic coupling and Ω = 0.25 for quartic coupling (see figure 2). Figure 4

shows that the ZPEL strongly depends on γ. Increasing γ can limit the leakage and even

practically remove it in the case of the cubic coupling. In particular, for c3 = 2.4 × 10−4,

a value of γ equal to 4 × 10−3ω1 is sufficient to remove the ZPEL (ζ = 0.08). Figure 3.c

shows the vibrational spectra obtained in this case with the larger γ: while the ZPEL has

been suppressed, the peaks corresponding to the resonances (2ω2, ω1 − ω2 and ω1 + ω2)

have disappeared. This further illustrates the relation between the mode resonances and the

ZPEL. Moreover, increasing γ also leads to a broadening of the peaks of the oscillators in

the spectra, consistently with the fact that the full width at half maximum in the case of a

harmonic oscillator is γ/2π in a Langevin dynamics and for a spectrum in frequency. The

case of the quartic coupling is more complicated and even for large values of γ, the ZPEL is
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not completely suppressed (figure 4). Figure 3 also shows that increasing γ in the case of a

quartic coupling with Ω = 0.2 and c4 = 15.5 × 10−4 is not sufficient to suppress all of the

resonances between the different modes.

In order to estimate the characteristic time ttr of the energy transfer between the two

oscillators, we performed NVE calculations where only oscillator 1 is initially excited. ttr

can then be roughly estimated by calculating the typical time at which oscillator 2 starts

to get excited. Figure 5 shows the evolution of ttr for Ω = 0.5 as a function of the cubic

coupling constant c3. As expected, the characteristic time for transfer is directly related to

the strength of the coupling. To remove the ZPEL, we need to choose a value for γ that

is greater than the typical transfer frequency ωleakage = 1/ttr. For example, in the case of

c3 = 4 × 10−4, we find that ttr ∼ 400ω−1
1 and thus ωleakage ∼ 2.5 × 10−3ω1. Accordingly,

figure 4 shows that a value of γ = 10−2ω1 or higher is necessary to remove the leakage i.e.

the ZPEL is removed if γ ≫ ωleakage.

 500

 1000

 1500

 1  1.5  2  2.5  3  3.5  4

t tr
 (

ω
1-1

)

10-4 x c3

Ω=0.5

Figure 5: Energy transfer time between the two oscillators ttr (in units of ω−1
1 ) as a function

of the cubic coupling constant c3 for Ω = 0.5 estimated from NVE simulations where only
one oscillator is initially excited. Here, c4 = 0.

In conclusion, this simple model raises several important issues: the role of resonances

and the possibility to remove or at least significantly reduce the effects of the ZPEL by

increasing γ beyond the typical frequencies for energy transfer between the modes. We now

address these issues on a more complex model.
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3.2 One-dimensional chain of atoms

We consider a one-dimensional chain of atoms, consisting of 3 oxygen atoms interspaced

with 3 hydrogen atoms, with periodic boundary conditions. The interactions between the

atoms are described by two interatomic potentials. On the one hand, the O–H interaction

is a Morse-type potential derived by Johannsen for hydrogen-bonded systems:28

VOH(r) =
u0

a + bea(r−r0)

[

a
(

e−b(r−r0) − 1
)

+ b
(

ea(r−r0) − 1
)]

− u0 (18)

where r is the O–H distance, u0 is the height of the potential barrier, r0 the equilibrium O–H

distance, a and b are two parameters. The values of the parameters are set so that: r0 = 0.96

Å (which corresponds to the length of the covalent bond in the OH− ion), a ≃ 7.11 Å−1,

b ≃ 2.00 Å−1 and u0 = 2.73 eV so that the O–H stretching frequency (νOH) in the harmonic

approximation of the potential VOH approximately equals 100 THz. On the other hand, the

O–O interaction is described by a standard Morse potential:

VOO(R) = C0

(

1− e−α0(R−R0)
)2 − C0 (19)

where C0 and α0 are the depth and the width of the potential respectively and R0 the O–O

equilibrium distance. The parameters are the following: C0 = 3.81 eV, R0 = 2.88 Å and

α0 varies so that the value of the O–O frequency (νOO) lies between 10 and 60 THz. The

QTB-MD simulations are performed with a 0.1 fs time step and equilibrium averaged values

were obtained using 12 independent trajectories of 3 ns each.

The potential energy of an hydrogen atom is given by VOH(r) + VOH(R − r) which is a

double-well potential. Within this model, we can define short "covalent" O–H bonds (∼ 1 Å)

and longer "hydrogen bonds" (∼ 1.9 Å). Although this model cannot represent a real physical

system such as an ice cluster, it is characterized by realistic O-H frequencies and mode

couplings and is useful to assess the nature and effects of ZPEL in realistic hydrogen-bonded
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systems. A normal mode analysis of the system yields one low-frequency, ν2, corresponding

to the O–O lattice mode, and two very similar optical high-frequencies, ν1, corresponding

to the O–H stretching modes. In analogy with the previous model, the O–H stretching

modes roughly play the role of the high-frequency oscillator while the O–O lattice mode

corresponds to the low frequency oscillator. In the following, we show the influence of the

parameter Ω = ν2/ν1 and the friction coefficient γ on the ZPEL at T = 600 K. The frequency

ν2 is varied through the parameter α0 (eq. (19)) while νOH is fixed at 100 THz (thus, the

frequency ν1 is almost constant). The QTB-MD results are compared with those from PIMD

simulations, using a Trotter number P = 20 which ensures a good convergence of all the

physical quantities in all cases studied here. For each QTB-MD simulation, we checked that

the total energy of the system, as well as the kinetic and potential energies, are in good

agreement with the reference values given by PIMD.

In order to evaluate the leakage, we compare the kinetic energy of the light atoms,

significantly involved in the high-frequency modes, to that of the heavier atoms, mainly

involved in the low-frequency modes. Thus, the effective temperatures TH and TO of H and

O atoms are defined from the kinetic energies:

kBTH

2
=

1

NH

NH
∑

i=1

〈E(i)
k 〉, kBTO

2
=

1

NO

NO
∑

i=1

〈E(i)
k 〉 (20)

where NH = 3 and NO = 3 are the numbers of H and O atoms respectively, and 〈E(i)
k 〉 the

average kinetic energy of atom i. In a classical system, equipartition ensures that the kinetic

energy is equally distributed among all degrees of freedom: they all have the same effective

temperature. This is not true in the quantum case: high-frequency modes have more kinetic

energy and their effective temperature is therefore greater. This is the case for the QTB

method and for PIMD, which serves as a reference here. From figure 6, one sees that, as

expected, the leakage tends to increase the effective temperature of light atoms and decrease
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that of heavier atoms. In this case, the ZPEL can be quantified through the deviation factor:

ζ =
(TH − TO)

(PIMD) − (TH − TO)
(QTB)

(TH − TO)
(PIMD)

. (21)

ζ = 0 if there is no leakage and 0 < ζ < 1 if leakage occurs and its dependence on Ω is shown

in figure 7. Similarly to the coupled harmonic oscillators’ model (section 3), ZPEL occurs

mostly for Ω ∼ 1/2. Figure 7 also shows that the ZPEL can be substantially decreased by

increasing γ, as in the previous model. On the other hand, important ZPEL is observed

for Ω < 0.2: this corresponds to a highly anharmonic regime where a structural transition

occurs and therefore corresponds to a different physical situation than the other values of Ω.

ZPEL effects on structural properties Figure 8 shows the distributions of interatomic

distances, dOH and dOO for the case Ω = 0.5 computed from QTB-MD, PIMD and standard-

MD simulations. In figure 8.a, one can see that the dOH distribution is almost not affected

by the ZPEL. On the other hand, the dOO distribution is more sensitive to the ZPEL: the

QTB-MD distribution is too broad, which is consistent with the excess of kinetic energy for

the oxygen atoms that comes from the ZPEL. However, when the ZPEL is suppressed, by
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increasing γ, the QTB-MD dOO distribution coincides with the PIMD one.

ZPEL effects on vibrational properties We have seen in the case of the two coupled

harmonic oscillators that increasing γ has consequences on the vibrational spectrum of the

system; in particular, the peaks are broadened and the peaks corresponding to the mode

resonances disappear when γ is large enough (see figure 3). Figure 9 shows the vibrational

spectrum of the one-dimensional chain of atoms for Ω = 0.5 and for two different values

of γ (0.2 and 10 THz). For γ = 0.2 THz, ZPEL occurs while for γ = 10 THz, the ZPEL

is almost fully removed (see figure 7). We can see that increasing the friction coefficient

leads to broader peaks as expected. However, the positions of these peaks hence the mode

frequencies, are not modified by the large value of γ. Even with a large damping term, the

vibrational spectrum still yields useful information about the mode frequencies in this case.

In conclusion, in a system containing different chemical elements, the kinetic energy

ratio between them can be used as an indicator of the ZPEL. As in the case of two coupled

harmonic oscillators, the ZPEL is intrinsically related to resonances between vibrational

modes. Correlatively, increasing the friction coefficient allows to remove the ZPEL. In this

case, the quantum structural properties are well reproduced; the dynamical properties should
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be regarded with caution but the vibrational spectrum still contains useful information.

4 Applications to realistic systems

We now investigate the effect of the friction coefficient γ on the ZPEL for systems with many

degrees of freedom.

4.1 Lennard-Jones Aluminium

Using QTB-MD simulations, Bedoya-Martínez et al.20 have evidenced the ZPEL at T = 10 K

in a crystal of aluminium modeled by a Lennard-Jones potential (ǫ/kB = 1450.6 K, σ = 2.54

Å, cutoff = 1.37σ = 3.49 Å). In their paper, they showed that the energy is transferred from

the high-energy modes to the low-energy modes because the QTB method is unable to fully
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counterbalance this leakage. We carried out QTB-MD simulations using a 1 fs time step

and different values of γ. We confirm that, with γ = 0.9 THz, QTB-MD fails to give the

correct quantum energy distribution, as illustrated by the full circles in figure 10. Indeed, the

resulting distribution is intermediate between the quantum and the classical homogeneous

distributions. However, with a higher value of γ (10 THz), the energy distribution from

QTB-MD is very close to the expected quantum distribution θ(ν, T ) (eq. 10), as given by

the open circles in figure 10. Therefore, for large enough damping, the ZPEL is neutralized by

the QTB. The inset of figure 10 provides the evolution of the slope of the energy distribution,

normalized by that of the quantum distribution, as a function of γ. The larger the friction

coefficient, the lower the ZPEL, up to γ = 9 THz for which a plateau value is reached. From

this value of γ upwards, the leakage is satisfactorily reduced and the energy distribution

obtained by QTB-MD is the one initially introduced in the colored noise.

The disadvantage of any thermostat involving a damping term, as in the QTB or the

Langevin thermostat, is the possible broadening of the vibrational peaks and the possible

occurrence of a spurious high-frequency tail in the phonon density of states (DOS). For small

values of γ, i.e. when γ is lower than the full width at half maximum (∆ω) of the peaks of the

DOS, increasing γ does not significantly perturb the spectrum. Conversely, for large values of

γ, the broadening induced by the damping term is of the order of ∆ν = ∆ω/2π = γ/2π. This
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issue is shown in figure 11. In the case of standard MD with a Langevin thermostat, the DOS

is obtained by normalizing the Fourier transform of the velocity autocorrelation function by

kBT . In the case of QTB-MD, kBT must be replaced by θ(ω, T ) (eq. 10). Figure 11.a) shows

that, when the ZPEL is removed, the DOS obtained from QTB-MD trajectories is close to

that derived from standard-MD. In contrast, figure 11.b) shows that, when ZPEL occurs, the

DOS cannot be obtained from the QTB-MD trajectories, since the number of high-frequency

modes or low-frequency modes are underestimated and overestimated, respectively.

4.2 Barium titanate

BaTiO3 (BTO) is a strongly anharmonic ferroelectric crystal characterized by a complex

energy landscape. Moreover, quantum effects have been shown to influence its structural

properties.29,30 It undergoes a complex sequence of structural phase-transitions31 as tem-

perature increases: from rhombohedral (R), to orthorhombic (O), tetragonal (T), and cubic

(C) structures. Each of these phase transitions coincides with the temperature at which the

local modes (dipoles) move out of the potential wells in which they were confined, and visit

a new potential energy minimum, giving rise to a new value and direction of the macroscopic
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polarization. Such a behavior is a challenge for the QTB approach because of the intrinsic

anharmonicity of the system.

QTB-MD simulations were performed for temperatures ranging from 1 K to 270 K, using

a Langevin barostat29 whose equations are given in Appendix B. The ferroelectric properties

of BTO were modeled by an effective Hamiltonian32,33 derived from first-principles density-

functional calculations. The degrees of freedom of this Hamiltonian are the local modes and

the (homogeneous) strain tensor. The friction coefficient γ was varied from 0.5 to 16 THz,

while the cut-off frequency νcut is chosen equal to four times the maximum frequency in the

system (5 THz). Here, we investigate the convergence, with respect to γ, of the values of

the three phase-transition temperatures (R-O, O-T, T-C). Figure 12 displays the reduced
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Figure 12: Temperature evolution of the reduced polarization associated with the ferroelec-
tric transition in BaTiO3, as obtained by QTB-MD (γ = 16 THz) and PIMD (P = 16)
simulations. Vertical dashed lines show the transition temperatures obtained for the R-O,
O-T, and T-C transitions. The inset provides the convergence of the transition temperatures
with the frictional coefficient, γ, of the QTB method. The horizontal grey dashed lines give
the temperatures obtained by PIMD.

polarization (see reference29) as a function of the temperature obtained by QTB-MD with

γ = 16 THz. For this damping value, the QTB-MD simulation (full circles) gives the expected

sequence of phase transitions: R-O-T-C, in agreement with the converged PIMD result with

a Trotter number P = 16 (open circles). The three consecutive transition temperatures:

160 K, 190 K, and 255 K are similar to those obtained by PIMD (163 K, 198 K, and 258 K,

respectively). The inset in figure 12 shows the convergence of the transition temperatures

as a function of γ within QTB-MD. For low γ values, the rhombohedral and orthorhombic
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phases are missed. It is worth noting that for large γ values, the QTB method yields the

correct series of phase transitions: the effects of the ZPEL have been suppressed.

5 Conclusion and practical consequences

We have performed a systematic and quantitative study of zero-point energy leakage (ZPEL)

in QTB-MD simulations. The aim here is to assess the reliability of the QTB method on

various systems with different degrees of complexity. We have found that the ZPEL is

intrinsically related to resonances between vibrational modes and, as in realistic systems

many modes can resonate, this is hardly avoidable in practice. However, increasing the

damping term γ significantly reduces the leakage and can even, in some cases, remove it

entirely. A striking example is provided by our results on BTO, as with small damping

term, the phase diagram obtained by the QTB method is wrong, while for larger damping,

one recovers the complete sequence of phase transitions at the correct temperatures.

This effect can be explained as follows. The QTB method connects a classical system to

a thermal bath which follows the quantum fluctuation-dissipation theorem. Therefore, there

is no equipartition of the energy since the QTB pumps more energy into high-frequency

modes than low-frequency ones. The ZPEL results from the transfer of energy from high-

frequency to low-frequency modes: the obtained energy distribution is therefore the result of

the balance between QTB pumping and damping on the one hand and energy transfer within

the system on the other hand. Increasing the damping term will increase the pumping rate

with respect to the internal equilibration and the QTB energy distribution becomes closer

to the quantum one. Moreover, when γ is larger than the characteristic frequency of the

energy transfer between vibrational modes, the effects of the resonances between these modes

are hindered. Hence, a simple and effective way to prevent ZPEL to occur in QTB-MD

simulations is to increase the damping term γ.

This raises the issue that within the frame of a Langevin simulation, one should decrease,
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not increase, the damping term in order not to alter the dynamics of the system too dramat-

ically. Careful analysis of the effect of damping on both structural and dynamical properties

tends to show that this question should be addressed with care in each specific case, but

that QTB-MD simulations turn out to be relatively robust and yield excellent results as

long as one keeps in mind the physics of the problem. Indeed, we have seen that the mode

frequencies obtained from QTB-MD vibrational spectra are not dramatically altered by the

increase of γ, even though a large γ implies a broadening of the peaks. This allows us, for

example, to study the O-H stretching or bending modes in hydrogen-bonded materials since

the corresponding frequencies are usually much larger than γ. On the contrary, we expect

the low frequency part of the spectrum to be substantially affected by a large damping term.

Therefore, the QTB method is an efficient tool to study a large variety of anharmonic

systems provided that the value of the friction coefficient is large enough to ensure that

the ZPEL remains negligible. In this case, the QTB method presents several advantages

compared to path integral methods : its computational cost is similar to that of standard

MD simulations, enabling the study of large and complex systems, and dynamical properties

are directly accessible making possible the confrontation of QTB-MD results to spectroscopic

measurements for example.
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A Generation of the random force

This part presents the technique used to generate the fluctuating force R(t) which is a random

gaussian variable. This technique has been proposed by Dammak et al.7 and is based on a

procedure proposed by Maradudin et al. to generate random surfaces of specific roughness24.

Here, we want to generate the stationary Gaussian process R(t) with the following properties:

〈R(t)〉 = 0 (22)

〈R(t)R(t+ τ)〉 =
∫ +∞

−∞

IR(ω, T )e−iωτ dω
2π

(23)

The second equation is the Wiener-Khinchin theorem that relates the autocorrelation of R(t)

to its power spectral density, IR(ω, T ). In QTB-MD simulations, IR is given by eq. 12. The

value of the random noise at a time tn = nδt is a Gaussian random variable that can be

written as a sum of independent Gaussian random variables Xj with weights Wj as

Rn ≡ R(tn) =
+∞
∑

j=−∞

WjXj+n (24)

The variables Xj have zero mean and a standard deviation of unity. From eqs. 23 and 24,

the weights Wj obey the following relation:

+∞
∑

j=−∞

WjWj−l =

∫ +∞

−∞

IR(ω, T )e−iωtl
dω
2π

(25)

with tl = lδt. W̃ (ω) is defined as the Fourier transform of W (t):

Wj ≡ W (tj) =

∫ +∞

−∞

W̃ (ω)e−iωtj
dω
2π

(26)
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Using expression (26), in the continuous limit (δt → 0):

+∞
∑

j=−∞

WjWj−l =
1

δt

∫

∞

−∞

W̃ (ω)W̃ (−ω)e−iωtl
dω
2π

(27)

Considering W (t) as even and real, the function W̃ (ω), also even and real, is obtained using

eq. 25 and 27:

W̃ (ω) =
√

δtIR(ω, T ) (28)

and:

Wj =
√
δt

∫ +∞

−∞

√

IR(ω, T )e−iωtj
dω
2π

(29)

In practice, the time and the pulsations are discretized. The Fourier transform are expressed

so that

Wj =
1√
N

N/2
∑

l=−N/2+1

W̃le−i2πjl/N (30)

Xj =
1√
N

N/2
∑

l=−N/2+1

X̃le−i2πjl/N (31)

with N the total number of MD steps. By comparing eq. 29 with the integral form of eq.

30:

Wj =
1√
Nδω

∫ +∞

−∞

W̃ (ω)e−iωtjdω (32)

and using Nδtδω = 2π, we obtain that

W̃l =
1√
Nδt

√

IR(ωl) (33)

with ωl = lδω. From eq. 30 and 31, Rn writes

Rn =

N/2
∑

l=−N/2+1

W̃−lX̃le−i2πnl/N (34)
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and using eq. 33, Rn finally is:

Rn =
1√
Nδt

N/2
∑

l=−N/2+1

√

IR(ωl)X̃le−i2πnl/N (35)

Let us define the discrete Fourier transform R̃l such that

Rn =
1√
N

N/2
∑

l=−N/2+1

R̃le−i2πnl/N (36)

and then obtain that

R̃l =

√

IR(ωl)

δt
X̃l (37)

the Gaussian random variables X̃l can be rewritten as

X̃l =
M̃l + iÑl√

2
(38)

with M̃l and Ñl independent Gaussian random variables with zero mean and a standard

deviation of unity. Moreover, to ensure that the variables X̃l are real, M̃l = M̃−l and

Ñl = −Ñ−l are required. Finally:

R̃l =

√

IR(ωl)

2δt

(

M̃l + iÑl

)

(39)

In practice, the random forces Rn are obtained using the following steps:

1. Generation of independent Gaussian random numbers M̃l and Ñl for l = 1, .., N/2− 1

2. Computation of R̃l using expression (39)

3. Symmetrization of R̃l : R̃l = R̃N−l for l = N/2 + 1, .., N − 1

4. Cancellation (R̃l = 0) for l = 0 and N/2

5. Computation of Rn from eq. 36
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B Langevin barostat

This section gives the equations of the Langevin barostat used to fix the hydrostatic pressure

in BTO. The extension of the Langevin method to the isothermal-isobaric ensemble has

been achieved by Quigley and Probert34,35, giving rise to an algorithm in which random and

friction forces are applied, not only on the atomic coordinates, but also on the supercell

vectors. In the following expressions, second-rank tensors are written in bold. The equations

of motion on the local mode i (with mass m) using the Langevin barostat are:

d~pi
dt

= ~fi − γ~pi + ~Ri −
pG

Wg
~pi −

1

Nf
.
T r(pG)

Wg
~pi (40)

with ~fi = −~∇~ui
Φ(~u1, ..., ~uN) the internal force. The terms −γ~pi and ~Ri correspond to the

friction and the random forces of the thermostat (Langevin or QTB). The momentum ~pi is

related to the position ~ui by
d~ui

dt
=

~pi
m

+
pG

Wg
~ui (41)

while the matrix of the supercell vectors h and its conjugate momentum pG evolve according

to
dh

dt
=

pGh

Wg
(42)

and
dpG

dt
= V (t)(X− PextId) +

1

Nf

∑

i

~p2i
m
Id− γGpG + LG (43)

in which V (t) is the supercell volume, Wg is the "mass" associated to the barostat, Nf is the

number of degrees of freedom, Pext is the external pressure, Id is the identity tensor and X is

the internal pressure tensor34. In the right member of Eq. 43, one recognizes a friction force

on the supercell −γGpG (γG is a friction coefficient for the barostat) and a random force LG,

a 3 × 3 matrix whose components are randomly drawn at each time step in a gaussian with

variance
√

2γGWgkBT
δt

. This random force on the barostat is symmetrized at each time step

to avoid global rotation of the supercell during the simulation.
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