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C. Courtès1, E. Franck2, P. Helluy 2, H. Oberlin 3

November 23, 2016

Abstract

In this article, we detail the construction of a physics-based preconditioner. The Schur
decomposition is the key point of the method which is tested on two hyperbolic systems :
acoustic wave equations and shallow water equations without source term. Some conserved
properties between preconditioner and initial operator are discussed, especially the propaga-
tion speeds of a plane wave.

Introduction
Hyperbolic systems are able to model complex physics through nonlinear conservation laws. How-
ever, describing complex physical phenomena can be difficult, since those problems prove to be
strongly multi-scaled. A good example is the passive advection of pollutant in a river or coastal
areas. The flow is modeled by the shallow water equations :{

∂th+∇ · (hu) = 0, (1a)
∂t (hu) +∇ · (hu⊗ u) +∇p = −gh∇b, (1b)

with g the gravitational constant, h the height of the fluid, p its pressure (defined by p = gh2

2 )
and u its velocity. This hyperbolic system, first obtained by [11], governs morphodynamics flows
caused by the movement of a fluid in contact with the bottom topography b. It can be derived
from the Navier-Stokes equation as proved by Gerbeau and Perthame in [15].
A third equation is considered to take into account the passive transport of the pollutant :

∂tc+ u · ∇c = s, (1)

with c the concentration of the pollutant and s the source term. Without source term in (1b), we
recognize Euler isentropic equations coupled to transport of suspended matter such as volcanic
dust during an eruption or radioactive particles during a nuclear accident.
In one dimension, the system (1)-(1) is hyperbolic with the three eigenvalues u+

√
g h, u−

√
g h

(for Saint-Venant system) and u (for the transport equation), see [1]. If u <<
√
g h (small Froude

number), the characteristic time for flow and pollutant transfert are very different and two time
scales have to be considered. The time step for pollutant is determined thanks to the Courant-
Friedrichs-Lewy condition (|u| +

√
g h)∆t ≤ ∆x whereas gravity waves’ speeds are

√
gh. Arises

then new layers of numerical complications, which are usually dealt with using implicit schemes :
for instance, solving implicitly the Saint-Venant part may be a good option.

Sediment transport problem is a second example of a multi-scale problem, and may be described
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by the shallow water system coupled to Exner equation, as explained in [16] or [18]. In this system,
the topology b of shallow water equations (1) is described by Exner equation

∂tb+ ζ∇ · q = 0, (2)

with q = q(u) the sediment flux and ζ a constant which depends on the sediment coefficient poros-
ity. Again, gravity waves’ whose speeds are

√
gh and sedimentation behaviors range on different

time-scales, which leads Bilanceri et al in [3] to design an implicit time-advancing scheme.

Main purpose To take into account the ill-conditioning of the system, we aim to study the
efficiency of a preconditioned implicit algorithm for hyperbolic systems with Continuous Galerkin
high-order method proposed in [7], [9], [8] and to understand the difficulties associated. In this pa-
per, we focus the study of this method on two simpler models than the complete morphodynamics
system (1). The first one corresponds to the so-called acoustic wave equations (3) and models the
propagation through a material medium of acoustic waves{

∂tp+ c∇ · u = 0,

∂tu+ c∇p = 0,
(3)

where p stands for the pressure, u the velocity and c the sound speed. The second one is composed
of shallow water equations without source term.{

∂th+∇ · (hu) = 0,

∂t (hu) +∇ · (hu⊗ u) +∇p = 0.
(4)

Numerical problem Implicit schemes make use of the inversion of a linear system through
iterative solvers (exact solvers being too greedy for 2D or 3D problems). However, waves’ speeds
may correspond to different scales (for example slow and fast MHD waves) which make the ratio
between the smallest eigenvalue of the implicit matrix and the biggest one blow up. Moreover,
one of the waves’ speeds may converge to zero and so, for large time step, the state may be close
to the stationary one : discrete model has thus eigenvalues near zero (e.g. in low Mach or low
Froude number regime). To explain the second case, we propose to use the wave acoustic equation
(closed to the shallow water or Euler equations in the low Mach or low Froude regime) for a large
time step. The implicit system obtained can be written

p+
1

ε
∇ · u = p0,

u+
1

ε
∇p = u0,

(5)

with a small parameter ε which corresponds to large time step or large sound velocity. When ε is
small, the limit model is given by {

∇ · u = 0,

∇p = 0.
(6)

For this limit system, with standard boundary conditions, there is generally no unique solution.
One of the problems is that, when ε is small, the full system tends to a system which doesn’t have
uniqueness of the solution. Consequently, the condition number increases when ε tends to zero.
This non-uniqueness problem can be highly amplified by a non adapted space discretization. To
illustrate, we consider the hydrostatic mode for the wave problem which corresponds to a station-
ary solution having a constant pressure and a zero velocity. Its existence is due to the fact that
the pressure is determined within an arbitrary constant of integration associated with the solution
of the continuous system. For the continuous mathematical problem, the hydrostatic mode is the
only one present. However, this may not be the case in the discretized problem. For example,
additional numerical modes may occur when the velocity field and the pressure are not discretized
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in the good function spaces. These spurious pressure modes correspond to stationary but non con-
stant (in space) pressures associated with zero velocities. For this family of spurious modes, the
discrete pressure belongs to the null space of the discrete gradient operator and solution uniqueness
is lost since any multiple of a spurious mode can be added to any solution of the discrete equations
and still satisfy them (this problem is explained in[6]). A way of addressing this problem is to use
the compatible finite element spaces given by the Inf-Sup estimation. In this paper we apply our
preconditioner to a standard continuous Galerkin discretization, which does not satisfy the inf-sup
condition. Of course it could also be applied to a smarter space discretization and then would give
even better results. To address the problem (5), we propose the same guidelines as those used
in compressible resistive magnetohydrodynamics model (MHD) in order to derive a physics-based
preconditioner (outlined first in [9]). The idea is to find a problem which approximates the solution
of (5) for a given ε but for which the implicit operator has a condition number independent of ε
and is easy to solve with classical solvers as multi-grids. Using this approximate problem as a pre-
conditioning, we normally obtain at the end an efficient solver. Moreover, for lot of applications,
it is interesting to use high-order spatial method which captures some fine scales. It is known
that high-order methods generate ill-conditioned matrices (see, for example, the Table 5.2 in [2]).
This is why, implicit scheme often works hand-in-hand with efficient preconditioners because of
the ill-conditioning of the multi-scaled (or stiff-) hyperbolic systems with high-order representation.

Outline At the beginning, we gather results on acoustic wave equations (3) in Section 1.
Describing the continuous study model and its propagation wave velocities should be the goal of
Subsection 1.1, whereas Subsection 1.2 condenses time and spatial discretization (i.e.the θ-scheme
and continuous Galerkin method). A significant proportion of the first section is devoted to the
study of the physics-based preconditioner : Subsections 1.3 and 1.4. Eventually, numerical results
are summarized in Subsection 1.5. Shallow water equations (4) is the topic of Section 2. Subsection
2.1 consists in studying standard equations before a linearization and its discretization (Subsection
2.3). Last but not least, Subsections 2.4, 2.5 and 2.6 collect all results on wave propagation for
the Schur complement. Subsection 2.7 gathers numerical results for shallow water equations.

1 Acoustic wave equations
In this section, acoustic wave equations (3) are considered in 2D : the velocity u is defined in
both directions (i.e. u = (u1, u2)). A feature of those equations is that the Schur complement
may be computed either on the velocity or on the pressure, which leads to exhibit two possible
preconditioners. Both will be studied in this section.

1.1 Study model for wave equations
Boundary conditions We propose to add some admissible boundary conditions to acoustic wave
equations (3). Three admissible boundary conditions are available :

• case (a) : u · n ≡ 0 on ∂Ω with n the unit normal vector at the boundary,

• case (b) : p ≡ 0 on ∂Ω,

• case (c) : p− u · n = p0 − u0 · n on ∂Ω.

The three cases are studied in this paragraph.

Proposition 1.1. For all the boundary conditions proposed, the wave model admits a unique
solution.

Proof. To prove the uniqueness, we compute the energy estimate associated with the model. We
multiply the first equation of system (3) by p, the second one by u and add both equations to
obtain

1

2
∂t

∫
Ω

(
p2 + u · u

)
dx = −

∫
Ω

c∇ · (pu) dx = −
∫
∂Ω

cpu · ndσ,
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and so is the energy conserved in the cases (a) or (b). For the third case, the previous equation
may be rewritten in the following form

1

2
∂t

∫
Ω

(
p2 + u · u

)
dx = − c

4

∫
∂Ω

(p+ u · n)
2
dσ+

c

4

∫
∂Ω

(p− u · n)
2
dσ ≤ c

4

∫
∂Ω

(p0 − u0 · n)
2
dσ.

(7)
We consider two solutions (p1,u1) and (p2,u2) with the same initial data and the same boundary
conditions and denote p = p1 − p2 and u = u1 − u2. Those variables satisfy the same system (3)
with boundary conditions equal to zero. Using the previous energy estimate, we obtain that

1

2
∂t

∫
Ω

(
p2 + u · u

)
dx ≤ 0.

Since initial energy vanishes, the energy vanishes for all time. Consequently the solution is unique.

Remark 1.2. The existence of a solution is based on the Hille-Yosida theorem [5].

Remark 1.3. The classical boundary conditions consist in imposing a matrix system on ∂Ω and
the aim of this remark is to rewrite boundary conditions in this standard form. Let us define
V = (p, u1, u2)t to rewrite acoustic wave equations (3) on a classical hyperbolic form

∂tV +

0 c 0
c 0 0
0 0 0


︸ ︷︷ ︸

=:A1

∂xV +

0 0 c
0 0 0
c 0 0


︸ ︷︷ ︸

=:A2

∂yV = 0. (8)

According to [10, 4], the suitable boundary conditions are equivalent to the following relation

B
(
p
u

)
= B

(
p0

u0

)
, on ∂Ω, (9)

where the matrix B is chosen such that, for any exterior unit normal vector n = (n1, n2), the matrix
1
2 (n1A1 + n2A2)+B must be non negative, with A1 and A2 defined in the generic hyperbolic form
(8). By adapting computations of [10, 4] to our current problem, the corresponding boundary
conditions matrix is defined such as B = −PD−P−1, where D− is the non positive part of the
diagonal matrix which appears in the diagonalization of n1A1 + n2A2 and P the basis change
matrix (i.e. n1A1 + n2A2 = PD−P−1 + PD+P−1). A straightforward computation gives

B =
1

2

 c −cn1 −cn2

−cn1 cn2
1 cn1n2

−cn2 cn1n2 cn2
2


and thus, combining definition of B and Condition (9) leads to

B
(
p
u

)
=

1

2

 c(p− u · n)
−n1c(p− u · n)
−n2c(p− u · n)

 =
1

2
c(p0 − u0 · n)

 1
−n1

−n2

 .

We recognize the third condition (case (c)) : p− u · n = p0 − u0 · n on ∂Ω. For case (a) and (b)
the boundary conditions matrix B is given by

Bu =

0 0 0
0 cn2

1 cn1n2

0 cn1n2 cn2
2

 and Bp =

1 0 0
0 0 0
0 0 0

 .

Propagation velocities : eigenvalues, Riemann invariants and advection equations
The propagation velocities correspond to advection velocities for Riemann invariants.
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Definition 1.4 (Plane wave). A generic plane wave is defined by

V (t,x) = V 0f (k · x− ωt) , (10)

with k = (k1, k2), x = (x, y) and V 0 a vector independent of t and x.

The idea is to consider the solution of (8) as a plane wave, which leads to the generic system

A(k, ω)V 0 = 0, (11)

where V 0 =
(
p0, u0

1, u
0
2

)t
. A condition to have a non-trivial solution is for the kernel of A(k, ω) to

be non-trivial. Having both an eigenvalue equals to zero (which leads to the dispersion relation)
and the associated eigenvectors (which leads to the Riemann invariants) ensures a non-trivial
kernel.

Proposition 1.5. The Riemann invariants are
(
0,−k2, k1

)t, (1, k1
||k|| ,

k2
||k||

)t
and

(
1,− k1

||k|| ,−
k2
||k||

)t
,

traveling respectively with a null velocity, a velocity equals to c||k|| and a velocity equals to −c||k||.

Before proving Proposition 1.5, we fix the convention for the space-time Fourier transform of
a function v

F (v)(ω,k) =

∫
R3

v(t,x)ei(k·x−ωt)dxdt, ∀(k, ω) ∈ R2 × R.

Proof. From system (3), we apply the Fourier transform in space and time to obtainAwave(k, ω)F (V ) =
0 (equation equivalent to the generic equation (11)) with

Awave(k, ω) =

 iω −ic k1 −ic k2

−ic k1 iω 0
−ic k2 0 iω

 .

and the corresponding spectrum

σ (Awave) =
{
iω, i (ω − c||k||) , i (ω + c||k||)

}
.

The plane wave is not equal to zero if Ker(Awave) 6= {0}. Canceling one of the previous eigenvalues
leads to the following dispersion relations

ω = 0, ω = c||k||, ω = −c||k||

and the associated kernel space of Awave (cf Table 1).

Remark 1.6. Instead of using the Fourier transform, we could have studied directly the jacobian
matrix. However, this method will not work for a second order operator (Subsection 1.4). In order
to simplify the comparison, we have chosen to use the same proof for any operator.

1.2 Time and spatial discretization
Time discretization In low Mach number regime for instance, we would like to define time step
∆t such as |u|∆t ∼ ∆x which implies c∆t >> ∆x. This is why, the classical explicit scheme for
this problem is not adapted for large sound speed because of the restriction on the time step ∆t
for this scheme. Indeed, the time step is constrained by this velocity. Therefore, using an implicit
scheme (and more generally a θ-scheme) is an interesting way to circumvent the problem.
Let us define ∆t (resp. ∆x ) the constant time step (resp. the uniform size mesh) and pn (resp.
un) the pressure (resp. the velocity) at time tn = n∆t . The selected θ-scheme together with the
discretized boundary conditions write as follows, with θ ∈ [0, 1],

pn+1 + θ c∆t∇ · un+1 = pn − (1− θ)c∆t∇ · un, in Ω,

un+1 + θ c∆t∇pn+1 = un − (1− θ)c∆t∇pn, in Ω,

un+1 · n ≡ 0 or pn+1 ≡ 0 or pn+1 − un+1 · n = p0 − u0 · n, on ∂Ω.

(12)
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Dispersion relations Riemann invariants
(canceling the eigenvalue) (basis vector of the eigenspace)

ω = 0 Ker(Awave) = Span


 0
−k2

k1


ω = c||k|| Ker(Awave) = Span


 1

k1
||k||
k2
||k||




ω = −c||k|| Ker(Awave) = Span


 1

− k1
||k||
− k2
||k||




Table 1: [Acoustic wave equations] Dispersion relations and Riemann invariants for the acoustic
wave model

Remark 1.7. A good choice of θ enables us to bypass the problem of a too restrictive CFL
condition. Namely, the Crank-Nicholson scheme (associated to θ = 1

2 ) is unconditionally-stable
and of second-order.

Continuous Galerkin scheme and spatial discretization This paragraph is devoted to
the spatial discretization used : the Continuous Galerkin scheme, which is based on a polynomial
approximation of the weak formulation of the equations.
Let us take two test functions νp, νu = (νu1

, νu2
), smooth enough to obtain weak form of the

problem by multiplying each equation of (12) by the corresponding test function and performing
integrations by part. Eventually, the weak form yields
∫

Ω

pn+1νp − c θ∆t

(∫
Ω

un+1 · ∇νp −
∫
∂Ω

(un+1 · n)νp

)
=

∫
Ω

pnνp + (1− θ)c∆t

(∫
Ω

un · ∇νp −
∫
∂Ω

(un · n)νp

)
,∫

Ω

un+1 · νu − c θ∆t

(∫
Ω

pn+1∇ · νu −
∫
∂Ω

(νu · n)pn+1

)
=

∫
Ω

un · νu + (1− θ)c∆t

(∫
Ω

pn∇ · νu −
∫
∂Ω

(νu · n)pn
)
.

To this weak formulation, we join the boundary term associated with the matrix B. Since we are
enforcing these boundaries through penalization, we multiply this term by a large coefficient 1

ε .
Let us define the spatial degree of freedom j as Gauss-Lobatto grid point xj (i.e. the endpoints
of the spatial interval are included in the set of {xj}j∈J1,JK). We denote Φj the associated basis
function. The approximate pressure decomposes on this basis thanks to pn =

∑J
j=1 p

n
j Φj(x), and

the same holds true for the velocity. To simplify the notations, we denote pn∆ the vector of size
J defined by pn∆ = (pn1 , ..., p

n
J) and so does the same for un∆ = (un1,∆, u

n
2,∆). Lastly, test functions

are defined such as νp = νu1
= νu2

= Φi, for i ∈ J1, JK, to obtain the following matrix system,
JacV

n+1
∆ = BV n∆+Bondary Conditions, given by M 0 θ(D1 +Bp(n1))

0 M θ(D2 +Bp(n2))
θ(D1 +Bu(n1)) θ(D2 +Bu(n2)) M

+
1

ε
B∆

un+1
1,∆

un+1
2,∆

pn+1
∆


=

 M 0 −(1− θ)(D1 +Bp(n1))
0 M −(1− θ)(D2 +Bp(n2))

−(1− θ)(D1 +Bu(n1)) −(1− θ)(D2 +Bu(n2)) M

un
1,∆

un
2,∆

pn∆

+
1

ε
B∆

u0
1,∆

u0
2,∆

p0
∆


(13)

with the matrices’ definitions : M the mass matrixMi,j =
∫

Ω
ΦiΦj , (D1)i,j = −c∆t

(∫
Ω

Φj∂xΦi
)
,

(D2)i,j = −c∆t
(∫

Ω
Φj∂yΦi

)
, (Bp(nk))i,j = c∆t

(∫
∂Ω

ΦiΦjnk
)
and (Bu(nk))i,j = c∆t

(∫
∂Ω
nkΦiΦj

)
and Bh =

(
Bk1k2h

)
k1,k2

with
(
Bk1k2h

)
i,j

=
∫
∂Ω

Bk1,k2ΦiΦj .
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Remark 1.8. Using Gauss-Lobatto points is an appropriate choice to simplify computations,
because it converts the mass matrix to a diagonal matrix, easy to invert. Moreover, Gauss-
Lobatto quadrature rule is accurate for polynomials up to degree 2J − 1 ( however the integration
is not exact for these polynomial), where J is the number of grid points [12].

1.3 Preconditioning for the wave equation
According to the inf-sup condition for Friedrichs’ systems [13, 14], the time-discrete variational
formulation of the wave equation is well-posed for u in H(div,Ω) and p in H1 (Ω). The space
H(div,Ω) stands for

{
v ∈ L2 (Ω) , such that ∇ · v ∈ L2 (Ω)

}
. The well-posedness ensures the ex-

istence and the uniqueness of the solution and thus the jacobian matrix inversion. However, in
practice, this uniqueness may be lost for ∆t and ∆x asymptotically large, but we will not go into
details.

In this subsection,instead of inverting directly the jacobian matrix Jac in equation (13), we
plan on constructing a preconditioning for the acoustic wave equations (3). The main idea here is
to treat the stiffness of our problem by designing a preconditioner using a simplified form of the
equations. We adjust the guidelines used by Chacon for the resistive MHD model [7] : we design
a diffusive operator which is time-consistent with a second order hyperbolic operator. According
to Chacon’s terminology, those operator will be called "parabolic".

This new parabolic equation provides us with the preconditioner and can be solved easily with
multi-grid methods or preconditioning conjugate gradient [7]. As explained earlier, this precondi-
tioner may be determined for the pressure or for the velocity.

Schur complement on the pressure To find relative parabolic form of the equations, we
start off from a semi-discrete scheme (Equation (12)) summarized in the compact form

(
D2 L
U D1

)(
un+1

pn+1

)
=

(
Ru

Rp

)
, in Ω, (14)

un+1 · n ≡ 0 or pn+1 ≡ 0 or pn+1 − un+1 · n = p0 − u0 · n, on ∂Ω, (15)

withD1 = I1, D2 =

(
I1 0
0 I1

)
, U = θ c∆t∇·I2, L = θ c∆t∇I1 and

(
Ru

Rp

)
=

(
un − (1− θ)c∆t∇pn
pn − (1− θ)c∆t∇ · un

)
.

In the previous equation, Id stands for the d× d-identity matrix. We have denoted ∇I1 =

(
∂x
∂y

)
the gradient operator, ∆I1 = ∂2

x + ∂2
y the Laplacien operator and ∇ · I2 = tr

(
∂x 0
0 ∂y

)
the diver-

gence operator (with tr the trace of the matrix).
Let us first focus on the first system (14). The so-called Schur block decomposition applies and
the previous matrix system turns into(

I2 0
UD−1

2 I1

)(
D2 0
0 Pp,schur

)(
I2 D−1

2 L
0 I1

)(
un+1

pn+1

)
=

(
Ru

Rp

)
,

where
Pp,schur = D1 − UD−1

2 L = I1 − c2θ2 ∆t2∆I1 (16)

stands for the so-called Schur complement on the pressure. Solving the system (14) with this
decomposition is equivalent to the following algorithm

(Pressure algorithm)


Predictor : D2u

∗ = Ru,

Potential evolution : Pp,schurpn+1 = −Uu∗ +Rp,

Corrector : D2u
n+1 = D2u

∗ − Lpn+1.
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Now it is necessary to add boundary conditions for each operator. Using the second equation of
(3) we obtain that ∂t(u · n) = −c(∇p · n)

• case (a) : u ·n ≡ 0 on ∂Ω : Dirichlet boundary condition (u ·n) = 0 on D2 and homogeneous
Neumann (∇pn+1 · n) = 0 for Pp,schur,

• case (b) : p ≡ 0 on ∂Ω : no boundary condition on D2 and homogeneous Dirichlet for Pp,schur,

• case (c) : p − u · n = g on ∂Ω with g constant in time : Dirichlet boundary condition
(u∗ · n) = pn − g (prediction) and (un+1 · n) = pn+1 − g (correction) and Robin boundary
condition
c∆t (∇pn+1 · n) + pn+1 = pn for Pp,schur.

Remark 1.9. By splitting the second equation of the semi-discrete scheme (12), we recover the
same result as Schur’s theory

u∗ − un

∆t
= −(1− θ)c∇pn,

pn+1 − pn

∆t
+ c θ∇ · un+1 = −(1− θ)c∇ · un,

un+1 − u∗

∆t
+ c θ∇pn+1 = 0.

(17)

Plugging the third equation into the second one provides
u∗ = un − ∆t (1− θ)c∇pn,
pn+1 − ∆t2c2θ2∆pn+1 = −c∆t θ∇ · u∗ + pn − ∆t (1− θ)c∇ · un,
un+1 = u∗ − c∆t θ∇pn+1,

which is exactly the (Pressure algorithm).

Schur complement on the velocity The same guidelines can be followed to obtain a Schur
complement on the velocity u instead of the pressure in order to anticipate the Schur complement
for shallow water equations.

Equation (12) turns into
(
D1 U
L D2

)(
pn+1

un+1

)
=

(
Rp
Ru

)
, in Ω,

un+1 · n ≡ 0 or pn+1 ≡ 0 or pn+1 − un+1 · n = p0 − u0 · n, on ∂Ω,

where D1, D2, L, U , Ru and Rp are introduced in Equation (14). Applying Schur theory enables
the following equation to be derived(

I1 0
LD−1

1 I2

)(
D1 0
0 Pu,schur

)(
I1 D−1

1 U
0 I2

)(
pn+1

un+1

)
=

(
Ru

Rp

)
.

The operator
Pu,schur = D2 − LD−1

1 U = I2 − c2θ2 ∆t2∇ (∇ · I2) (18)

corresponds to the Schur complement on the velocity and leads to the following algorithm

(Velocity algorithm)


Predictor : D1p

∗ = Rp, in Ω,

Propagation step : Pu,schuru
n+1 = −Lp∗ +Ru, in Ω,

Corrector : D1p
n+1 = D1p

∗ − Uun+1, in Ω.

As previously, for the Schur complement on the pressure, we need to write the boundary conditions
for each operator. Using the first equation of (3) we obtain that ∂tp = −c∇ · u,

8



• case (a) : u ·n ≡ 0 on ∂Ω : no boundary condition for D1, homogeneous Dirichlet boundary
condition (u · n) = 0 for Pu,schur,

• case (b) : p ≡ 0 on ∂Ω : homogeneous Dirichlet for D1 and homogenous Neumann boundary
condition ∇ · u = 0 for Pu,schur,

• case (c) : p − u · n = g on ∂Ω with g constant in time : Dirichlet boundary condition
p∗ = un · n + g (prediction) and pn+1 = (un+1 · n) + g (correction) and Robin boundary
condition
c∆t (∇ · un+1) + (un+1 · n) = (un · n) for Pu,schur.

Remark 1.10. Without any Schur complement, splitting the time discretization (12) with respect
to 

p∗ = pn − (1− θ)c∆t∇ · un, in Ω,

un+1 + θ c∆t∇pn+1 = un − (1− θ)c∆t∇pn, in Ω,

pn+1 + θ c∆t∇ · un+1 = p∗, in Ω,

and plugging the third equation in the second one brings the same velocity algorithm
p∗ = pn − (1− θ)c∆t∇ · un, in Ω,

un+1 − θ2c2 ∆t2∇
(
∇ · un+1

)
= −θ c∆t∇p∗ + un − (1− θ)c∆t∇pn, in Ω,

pn+1 = p∗ − θ c∆t∇ · un+1, in Ω.

1.4 Plane wave study for the different preconditioners
To retrieve from those systems of equations the underlying physics, preconditioning has to follow
some properties : the preconditioned system should keep as most physical properties from the
original problem as possible. For instance, for both systems to be equivalent at the spectral level,
preconditioning should have the same propagation speeds as the full model. More precisely, the
same method used for proposition 1.5 is performed here, in addition, the wave model and the
preconditioners have the same propagation properties provided they have the same dispersion
relations and the same associated kernel. We propose to compare the wave model to the two
preconditioners in the homogeneous case. The preconditioners based on Schur complement on the
pressure and Schur complement on the velocity are consistent with the two following models when
the time step ∆t is small{

∂tp+ c∇ · u = 0,

∂ttu− c2∇ (∇ · u) = 0,
and

{
∂ttp− c2∆p = 0,

∂tu+ c∇p = 0.
(19)

Proposition 1.11. The models (19) associated with the preconditioners have exactly the same
propagation properties as the wave operator. They both are spectrally equivalent.

Proof. Once again, we apply the space-and time-Fourier transform to the two preconditioners. We
obtain Equation (11) with

Au =

iω −ik1c −ik2c
0 −ω2 + c2k2

1 c2k1k2

0 c2k1k2 −ω2 + c2k2
2

 , Ap =

−w2 + c2(k2
1 + k2

2) 0 0
−ik1c iw 0
−ik2c 0 iw

 .

The spectrum of the matrices are given by

σ (Au) =
{
iω,−ω2,−ω2 + c2||k||2

}
, σ (Ap) =

{
iω, iω,−ω2 + c2||k||2

}
and so are the dispersion relations (same for the two models) and the corresponding kernels
summarized in Table 2. The dispersion relations are exactly the same as those of the wave operator.
The kernel associated with the velocity preconditioner has an additional constant pressure solution,
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Dispersion relations Kernel for velocity-preconditioner Kernel for pressure-preconditioner

ω = 0 Ker(Au) = Span


1

0
0

 ,

 0
−k2

k1

 Ker(Ap) = Span


 0
k1

k2

 ,

 0
−k2

k1


ω = c||k|| Ker(Au) = Span


 1

k1
||k||
k2
||k||


 Ker(Ap) = Span


 1

k1
||k||
k2
||k||




ω = −c||k|| Ker(Au) = Span


 1

− k1
||k||
− k2
||k||


 Ker(Ap) = Span


 1

− k1
||k||
− k2
||k||




Table 2: [Acoustic wave equations] Dispersion relations and Riemann invariants for the velocity-
and the pressure-preconditioner

which corresponds to the basis vector (1, 0, 0)
t in the eigenspace associated to ω = 0. However,

this additional solution is killed by the boundary conditions when we impose the pressure at the
boundary for the equation ∂tp + c∇ · u = 0. Following the same line of thought, the kernel
associated with the pressure preconditioner has an additional solution too which corresponds to
the basis vector (0, k1, k2)

t in the eigenspace associated to ω = 0. However, this additional solution
is killed by the boundary conditions when we impose the normal velocity at the boundary in the
equation ∂tu+ c∇p = 0.

1.5 Numerical results
First of all, we propose to compare the classical GMRES method with and without preconditioning
for the two physics-based preconditioners. Our test case consists in studying the following solution
of the wave equations on Ω = [0, 1]

2
p(t, x, y) = −2

√
2π sin(2

√
2πc t) cos(2πx) cos(2πy),

u1(t, x, y) = 2π cos(2
√

2πc t) sin(2πx) cos(2πy),

u2(t, x, y) = 2π cos(2
√

2πc t) cos(2πx) sin(2πy).

For the comparison, we choose the following parameters : a tolerance of the GMRES method of
10−9 and 5 time iterations to compute the implicit problem. The results are gathered in Table
3. For each time iteration (i.e. iteration to compute variables at tn+1 from variables at time
tn), we compare the average number of sub-iterations (grey columns of Table 3). Other columns
correspond to the average time for each time iteration. Those results are computed for high or-
der polynomial method in space. Indeed, for small order polynomial method in space (and so,
few Gauss-Lobatto points), the classical preconditioners of the GMRES method (e.g Jacobi) are
sufficient. Contrariwise, the method developed here is suitable for large and not-sparse jacobian
matrices, which result from high order polynomial methods. For this reason, we consider the
4-order in the following test (Table 3).
Firstly, we remark that the GMRES method is not able to solve this problem: an additional pre-
conditioning is clearly needed. The bad-conditonin can be explained by the high order discretiza-
tion and the hyperbolic structure. Secondly, for the most complex problems (which correspond to
large c∆t and fine spatial grids), the physics-based preconditioners are able to treat the test with
a better efficiency than the classical Jacobi preconditioning.
Let us now compare both of the two physics-based preconditioners (PC). We observe that both
physics-based PC converge quickly (the velocity-PC begin a little bit quicker than the pressure-
PC) but the pressure-PC is more efficient in time than the velocity-PC. There are two reasons to
explain this difference :
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Cells c∆t = 0.1 c∆t = 1 c∆t = 10 c∆t = 100
Time Sub-iter Time Sub-iter Time Sub-iter Time Sub-iter

GMRES 24× 24 - nc - nc - nc - nc
32× 32 - nc - nc - nc - nc
48× 48 - nc - nc - nc - nc

GMRES+
Jacobi

24× 24 1.0E+0 27 1.2E+1 324 1.8E+2 4130 - nc
32× 32 3.7E+0 45 5.8E+1 530 3.8E+2 6070 - nc
48× 48 1.5E+1 38 3.8E+2 1100 - nc - nc

GMRES+
pressure-
PC

24× 24 4.6E+0 2 1.1E+1 4 1.9E+1 6 2.3E+1 7
32× 32 1.3E+1 2 1.6E+1 3 3.1E+1 6 3.5E+1 8
48× 48 2.6E+1 2 3.4E+1 3 5.3E+1 6 7.1E+1 8

GMRES+
velocity-
PC

24× 24 9.5E+0 2 3.2 E+1 2 7.5E+1 2 1.4 E+2 3
32× 32 2.5E+1 2 5.6E+1 2 2.4E+2 2 7.0E+2 3
48× 48 1.2E+2 2 1.5E+2 2 7.7E+2 2 - nc

Table 3: Average sub-iterations number to converge, in one time iteration, and average time for
one time iteration. When the method fails to converge, we note "nc" in the iteration column.

• For small c∆t , the prediction and correction matrices are diagonal and so directly inverted
: only the matrix associated to the Schur complement needs to be inverted. The size of
this matrix is more important for the velocity-PC than for the pressure-PC, which explains
the additional cost of the velocity-PC. However, for shallow water equations (Section 2),
the prediction-correction matrices are both advection matrices, and consequently, the cost
between the two methods will be the same in this case.

• For large c∆t, the big additional cost and the non-convergence in one test for the velocity-
PC come from the conditioning of the Schur complement. For the pressure-PC, the Schur
complement writes Pp,schur = I1−c2 ∆t2 ∆I1 and this operator is coercive. When c∆t >> 1,
the limit operator is also coercive and well-conditioned. For the velocity-PC, the Schur
complement is Pu,schur = I2 − c2 ∆t2∇(∇ · I2) and this operator is also coercive. But
when c∆t >> 1, the limit operator is not coercive and it is ill-conditioned. Indeed, the
kernel of −∇(∇ · I2) contains all the curl-free vector fields and the plane wave analysis
(Subsection 1.4) shows that the limit operator is a multi-scale operator with two propagation
velocities 0 << |c∆t |, which leads to an ill-conditioning. In short, the additional cost or
non-convergence come from the large time necessary to invert the Schur complement inside
the velocity-PC. Nevertheless, this problem can be solved by finding a good algebraic PC
for this operator (multi-grid methods, approximation based on the scale separation etc.)

Remark 1.12. Remarks about the implementation and the method

• The method depends on the compatibility of the boundary conditions between the Schur
complement and the model. It is necessary to write correctly the boundary conditions on
the sub model. The implementation is also important : if the boundary conditions are
imposed weakly, the method is less efficient.

• The high-order Lagrangian polynomial matrices with Gauss-Lobatto points are not that ill-
conditioned. The method has already been extensively tested, using a different code and
discretization. It shows that the results with classical preconditioners like Jacobi are still
worth.

• The implementation is clearly not optimal (Matrix storage, linkage with the libraries "Par-
alution" used etc) and after optimizing the implementation and finding the good solver for
each sub-step, better results can be obtained.
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Secondly, we propose to compare explicit and implicit methods for long time computation.
We consider the same test case with the final time Tf = 10 and the results are detailed in Table
4. The sound-speed c is set to 1, the mesh to 32 × 32, the polynomials are degree three and the
explicit scheme is time-order two.

Scheme / results ∆t nb time iter time
Explicit 0.0005 10000 740 sec
Implicit I 1 10 90 sec
Implicit II 2 5 55 sec

Table 4: We use GMRES+velocity-PC for the implicit method. The time in the third column is
the total time of the simulation. The explicit time step is maximal to have stability.

2 Shallow Water equations
The second studied system (4) is a simplification of shallow water+Exner system (1) which de-
scribes the movement of the flow between a free surface of an incompressible fluid and the topogra-
phy of the ground, in an area where vertical dimension is neglected with respect to the horizontal
scale. Equations (4) becomes in non-conservation form

∂th+∇ · (hu) = 0, (20a)

h∂tu+ h (u · ∇)u+∇
(
gh2

2

)
= 0. (20b)

In this section, we adapt for shallow water equations (20), the method developed previously.

2.1 Standard equations
Boundary conditions We propose to add some admissible boundary conditions to shallow water
model (20). We consider the simple case u · n ≡ 0 on ∂Ω with n the unit normal vector at the
boundary.

Dissipation of the total energy Shallow water equations (4) (without topography source
term) together with those homogeneous boundary conditions conserve energy, as epitomized in
the following proposition.

Proposition 2.1. The total energy, defined by E =
∫

Ω

[
h ||u||

2

2 + p
]
dx, is conserved by homoge-

neous boundary conditions.

Proof. The proof of D.D.Schnack in [17] about Ideal MHD is adapted here to non-conservative
form of shallow water equations (20). Applying a dot product by u to Equation (20b), multiplying
Equation (20a) by ||u||

2

2 , we obtain

∂t

(
h
||u||2

2

)
+ hu · (u · ∇)u+ u · ∇p+

||u||2

2
∇ · (hu) = 0,

∂t

(
h
||u||2

2

)
+∇ ·

(
hu
||u||2

2

)
+ u · ∇p = 0.

Afterwards, let us deal with the term u ·∇p. We multiply Equation (20a) by gh and noticing that
the pressure is p = gh2

2 appear

∂t

(
gh2

2

)
+ u · ∇

(
gh2

2

)
+ gh2∇ · u = 0,

12



thus
∂t p+ u · ∇p+ 2p∇ · u = 0.

Adding this equation to the equation on the kinetic energy, we obtain

∂t

(
h
||u||2

2
+ p

)
+∇ ·

(
hu
||u||2

2

)
+ 2∇ · (pu) = 0.

Now we integrate and apply the flux-divergence theorem to obtain

∂t

∫
Ω

(
h
||u||2

2
+ p

)
dx = −

∫
∂Ω

(
h
||u||2

2
+ 2p

)
(u · n)dσ = −

∫
∂Ω

(√
p

2g
||u||2 + 2p

)
(u · n)dσ.

The considered boundary conditions allow to obtain the energy conservation.

2.2 Riemann invariants and propagation
We perform the same weft as the one followed in Section 1 and compute the wave velocities of
the original problem (4) to compare it with wave velocities of preconditioner in Subsections 2.5
and 2.6. We first linearize non conservative shallow water equations (20) around constant state
(hn,un) to obtain {

∂tδh+ hn∇ · δu+ un · ∇δh = 0,

hn∂tδu+ hn (un · ∇) δu+ ghn∇δh = 0.
(1)

Proposition 2.2. The Riemann invariants for linearized shallow water equations are (0,−k2, k1)
t,(√

ghn, g k1
||k|| , g

k2
||k||

)t
and

(√
ghn,−g k1

||k|| ,−g
k2
||k||

)t
, traveling with respectively the velocity k ·un,

the velocity k · un + c||k|| and the velocity k · un − c||k|| with the gravity waves speed c =
√
ghn.

Remark 2.3. The sound velocity c for the acoustic wave equations is replaced by the surface
wave velocity

√
ghn.

Proof. Applying the space-and time-Fourier transform to the linearized shallow water equations
(1), we obtain the equation (11) with V 0 = (F (δh) ,F (δu1) ,F (δu2))

t and

Ash =

iω − ik · un −ihnk1 −ihnk2

−ighnk1 ihn(ω − k · un) 0
−ighnk2 0 ihn(ω − k · un)

 .

After calculating the eigenvalues and the corresponding eigenvectors, we summarize the results in
Table 5.

2.3 Discretization and linearization
Time discretization The same notation as in Subsection 1.2 are kept : ∆t for time step, ∆x
for size mesh, un and hn always stand for velocity and height at time tn = n∆t. As explained
in Introduction, time multi-scales cohabit for shallow water equations (4) and create several diffi-
culties. For instance, the simulation time T , given by the sedimentation behavior, must be much
greater than the time step ∆t. Thus, to take into account problems due to those time multi-scales,
the following semi-discrete θ-scheme is computed with the boundary conditions and θ ∈ [0, 1]
hn+1 − hn

∆t
+ θ∇ ·

(
hn+1un+1

)
+ (1− θ)∇ · (hnun) = 0, in Ω,

hn
un+1 − un

∆t
+ θhn+1

(
un+1 · ∇

)
un+1 + (1− θ)hn (un · ∇)un + θ ghn+1∇hn+1 + (1− θ)ghn∇hn = 0, in Ω,

un+1 · n ≡ 0, on ∂Ω,
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Dispersion relations Riemann invariants
(canceling the eignevalues) (basis vectors of the eigenspaces)

ω = k · un Ker(Ash) = Span


 0
−k2

k1


ω = k · un +

√
ghn||k|| Ker(Ash) = Span



√
ghn

g k1
||k||
g k2
||k||




ω = k · un −
√
ghn||k|| Ker(Ash) = Span



√
ghn

−g k1
||k||

−g k2
||k||




Table 5: [Shallow water equations] Dispersion relations and Riemann invariants for the shallow
water model

which can be rewritten in the form
G

(
hn+1

un+1

)
= E

(
hn

un

)
, in Ω,

B
(
hn+1

un+1

)
= 0 on ∂Ω.

with
G :

(
h
u

)
7→
(

h+ θ∆t∇ · (hu)
hn u+ θ∆t h (u · ∇)u+ θ∆t hg∇h

)
and

E :

(
h
u

)
7→
(

h− (1− θ) ∆t∇ · (hu)
hu− (1− θ) ∆t h (u · ∇)u− (1− θ) ∆t hg∇h

)
.

In order to design a preconditioner, we would like to follow the same method as in Section 1
i.e. using the Schur theory. Hence, the studied system needs to be a matrix system for Schur
complement to be computed. A linearization of equations is then necessary to introduce the
associated linearized matrix system.
Linearization Neglecting the second order terms yields the linearized system

G

(
hn

un

)
+ JnacG

(
δhn+1

δun+1

)
= E

(
hn

un

)
where JnacG is the Jacobian matrix of G at time n and δhn+1 (resp. δun+1) stands for the difference
hn+1 − hn (resp. un+1 − un). The Jacobian matrix is decomposed in four blocs

JnacG =

(
D1 U
L D2

)
with an advection term for hn

D1 = I1 + θ∆t∇ · (unI1) ,

an advection-convection term for un

D2 = hnI2 + θ∆t hn (un · ∇) I2 + θ∆t hn
(
∂xu

n
1 ∂yu

n
1

∂xu
n
2 ∂yu

n
2

)
I2

and some coupling terms

U = θ∆t∇ · (hnI2) , L = θ g∆t∇ (hnI1) + θ∆t I1 (un · ∇)un.
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In the previous relations Id stands for the d× d-Identity matrix. Here, the operators U and L are
a generalization of those defined in the acoustic wave equation (Equation (14)).
Hence, the linearized semi-discrete system becomes(

D1 U
L D2

)(
δhn+1

δun+1

)
=

(
−∆t∇ · (hnun)

−∆t hn (un · ∇)un − ∆t ghn∇hn
)
. (2)

2.4 Preconditioning for the shallow water equations
As for the wave equations, we propose in this subsection to write the preconditioner based on the
Schur complement on the velocity. We focalize our study on the case where the Schur complement
is computed on the velocity because this is the most interesting case where we want to extend the
method to more complicate fluid model (Euler equation, MHD). Indeed for more complex models,
the coupling between all the equations is ensured by the velocity equation. The Schur complement
allows to simplify some terms. When we apply the Schur complement to the velocity we obtain a
"parabolization" of the coupling terms (in Chacon’s terminology) which are the stiff terms in the
equation. The algorithm which is deduced writes

(Velocity preconditioner)


Predictor : D1δh

∗ = −∆t∇ · (hnun) , in Ω,

Propagation : Puδu
n+1 = −Lδh∗ − ∆t hn (un · ∇)un − ∆t ghn∇hn, in Ω,

Corrector : D1δh
n+1 = D1δh

∗ − Uδun+1, in Ω,

where D1 and D2 are introduced in (2) and with

Pu = D2 − LD−1
1 U,

the Schur complement on the velocity. We introduce the boundary conditions for each operator :
no boundary condition for D1 and Dirichlet boundary condition u · n = 0 for Pu.

Remark 2.4. As denoted for the acoustic wave equations, using a splitting operator instead of
the Schur theory produces the same result. In deed, splitting Equations (2) in the following form

D1δh
∗ = −∆t∇ (hnun) ,

Lδhn+1 + D2δu
n+1 = −∆t hn (un · ∇)un − ∆t ghn∇hn,

D1δh
n+1 −D1δh

∗ + Uδun+1 = 0.

and injecting the third equation in the second one gives the same algorithm.

Remark 2.5. The Schur complement Pu requests the inversion of the advection term D1. Some
approximations have to be found to compute easily this invert while keeping physics-based charac-
teristics such as wave propagation speeds close to those of the initial operator. In the two following
subsections, we suggest two approximations to compute Pu, adapted from magnetohydrodynamics
in [7] : the first approximation is especially for the low Froude number whereas the second one is
more general.
The following hypothesis is assumed throughout the two next subsections

(H1) (hn,un) are constants.

Remark 2.6. The hypothesis (H1) is a classical hypothesis used frequently in studies of physic
waves. In deed, the overall model would be too difficult to analyse. However, our preconditioners
can operate without (H1) and that restriction is only needed in Fourier analysis (Subsections 2.5
and 2.6).
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2.5 Schur complement for small flow approximation (low Froude num-
ber)

In this section, we propose to design a Schur complement in the low Froude number case by
adapting the results of [7]. The small flow regime corresponds to the low Froude number Fr << 1
where the Froude number corresponds to the Mach number (ratio between acoustic and advection
phenomena) and is equal to

Fr =
un · k√
ghn||k||

.

Assuming the flow is small means that the characteristic speed of the fluid is smaller than the
gravity waves’ speed. Moreover, we impose the time step to be of the same order than the gravity
waves’ speed, which leads to (with a rescaling with respect to gravity waves) ∆t ∼

√
g hn = O(1)

and to the approximation
(H2) D1 ≈ I1.

Remark 2.7. The aim of our study is to design a preconditioner for any Froude number. We
begin with the small flow approximation because of the simplicity of the Schur inversion in this
case. However, we do not apply all simplifications linked to this approximation : only those
indispensable for the Schur inversion are made in order to anticipate the study of any Froude
number case.

The previous hypothesis (H2) makes the operator LD−1
1 U which appears in Pu to be easier to

compute. Thanks to the relation

Lδh = (θ∆t (un · ∇)un) δh+ θ∆t g∇ (hnδh) ,

and the choice δh = Uδu = θ∆t∇ · (hnδu), this operator becomes

LU (δu) = (θ∆t (un · ∇)un) (θ∆t∇ · (hnδu)) + θ2 ∆t2 g∇(hn∇ · (hnδu)). (3)

Eventually, Pu is approximated by

P low
u δu = hnδu+ θ∆t hn (un · ∇) δu+ θ∆t hn(δu · ∇)un

− (θ∆t (un · ∇)un) (θ∆t∇ · (hnδu))︸ ︷︷ ︸
advection term (A)

−θ2 ∆t2 g∇(hn∇ · (hnδu)). (4)

Proposition 2.8. Assume that un is constant (hypothesis (H1)), then the low flow approximate
Schur complement has propagation properties very close to those of the initial shallow water oper-
ator. For a low Froude number, they both are spectrally equivalent.

Proof. When the time step tends to zero, the low Froude number preconditioner (4) is consistent
with the following model{

∂tδh+ hn∇ · δu+ un · ∇δh = 0,

hn∂ttδu
n + hn (un · ∇) ∂tδu− g (hn)

2∇ (∇ · δu) = 0.

Thanks to space-and time-Fourier transform, the matrix of Equation (11) is

Alow
u (k, ω) =

i (ω − k · un) −ihnk1 −ihnk2

0 −hnω (ω − un · k) + g (hn)
2
k2

1 g (hn)
2
k1k2

0 g (hn)
2
k1k2 −hnω (ω − k · un) + g (hn)

2
k2

2

 .

Imposing one of the eigenvalues to be equal to zero and thus the corresponding eigenspace to
be equal to the kernel enables us to compute the propagation properties (cf Table 6, where the
dispersion relations and the Riemann invariants are computed with respect to the Froude number
Fr.)
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Dispersion relations Riemann invariants

ω = un · k Ker
(
Alow

u

)
= Span


1

0
0

 ,

 0
−k2

k1


ω = un·k

2 +

√
(un·k)2

4 + ghn||k||2 Ker
(
Alow

u

)
= Span




√
ghn

√
g

(
−un·k

2 +

√
(un·k)2

4 +ghn||k||2
)

√
hn

k1
||k||2

√
g

(
−un·k

2 +

√
(un·k)2

4 +ghn||k||2
)

√
hn

k2
||k||2




= un · k +
√
ghn||k||

(
1 +

√
F 2

r

4 + 1−
(
1 + Fr

2

))
= Span




√
ghn

g

(√
F 2

r

4 + 1− Fr

2

)
k1
||k||

g

(√
F 2

r

4 + 1− Fr

2

)
k2
||k||




ω = un·k
2 −

√
(un·k)2

4 + ghn||k||2 Ker
(
Alow

u

)
= Span




√
ghn

−
√
g

(
un·k

2 +

√
(un·k)2

4 +ghn||k||2
)

√
hn

k1
||k||2

−
√
g

(
un·k

2 +

√
(un·k)2

4 +ghn||k||2
)

√
hn

k2
||k||2




= un · k −
√
ghn||k||

(
1 +

√
F 2

r

4 + 1−
(
1− Fr

2

))
= Span




√
ghn

−g
(√

F 2
r

4 + 1 + Fr

2

)
k1
||k||

−g
(√

F 2
r

4 + 1 + Fr

2

)
k2
||k||




Table 6: [Shallow water equations] Dispersion relations and Riemann invariants for low Froude
number velocity-preconditioner without advection terms

17



To conclude, the propagation speeds for the models corresponding to the low Froude number
preconditioner are close to the propagation speeds of the shallow water if and only if the Froude
number is small. Moreover, the kernel associated with the dispersion relations are close to the
results given by the shallow water model only in the small Froude regime. Therefore, as expected,
the models corresponding to the preconditioners have the same propagation properties as the full
model only in the small Froude regime.

Remark 2.9. For a Froude number asymptotically small (u = 0), we recognise the accoustic
wave equation with c =

√
g h.

2.6 Schur complement for arbitrary flow approximation (any Froude
number)

In this subsection, we compute an approximation of the Schur complement Pu proposed in [8]
valid for an arbitrary Froude number i.e.without any hypothesis on the flow. Since hypothesis
(H2) is not required, an other method to compute easily the invert of D1 has to be found.
Computation of the Schur complement for any flow The idea is to construct an operator
M such that UM≈ D1U , to obtain accordingly the following approximation

P any flow
u = (D2M− LU)M−1.

Therefore, δu is in the kernel of P any flow
u if and only if there exists δu∗ such that{
(D2M− LU) δu∗ = 0,

δu =Mδu∗.

The previous system prevents us from computing the invert ofM. Let us define

M = I2 + θ∆t
un

hn
(∇ · (hnI2)) , (5)

to obtain D1Uδu = UMδu. Definition (5) of the operatorM leads to

D2Mδu = hnδu+ θ∆t [hnun · ∇δu+ hn(δu · ∇un) + un∇ · (hnδu)]

+ θ2∆t2
[
(un · ∇un)∇ · (hnδu) + hnun · ∇

(
un

hn
∇ · (hnδu)

)]
The approximate Schur complement P any flow

u is given by the operator D2M, the LU low Froude
operator (3) :

P any flow
u δu∗ = hnδu∗ + θ∆t [hnun · ∇δu∗ + hn(δu∗ · ∇un) + un∇ · (hnδu∗)]

+ θ2∆t2
[
hnun · ∇

(
un

hn
∇ · (hnδu∗)

)
− g∇ (hn∇ · (hnδu∗))

]
,

δu = δu∗ + θ∆t
un

hn
(∇ · (hnδu∗)) .

Study of the wave propagation associated to P any flow
u

Proposition 2.10. Assuming un and hn constant (Hypothesis (H1)) then the Schur operator and
the shallow water model have the same wave propagation properties.

Proof. The arbitrary Froude number preconditioner when the time step tends to zero is consistent
with the following model{
∂t (δh) + hn∇ · δu+ un · ∇δh = 0,

hn∂ttδu
∗ + hn (∇ · ∂tδu∗)un + hn (un · ∇) ∂tδu

∗ + hnun (un · ∇) (∇ · δu∗)− g (hn)
2∇∇ · δu∗ = 0,

(6)

18



Dispersion relations Riemann invariants

ω = un · k Ker
(
Aany flow

u

)
= Span


1

0
0

 ,

 0
−k2

k1


ω = un · k +

√
ghn||k|| Ker

(
Aany flow

u

)
= Span




k·un

||k|| +
√
ghn

g k1
||k||
g k2
||k||




ω = un · k −
√
ghn||k|| Ker

(
Aany flow

u

)
= Span


−

k·un

||k|| +
√
ghn

−g k1
||k||

−g k2
||k||




Table 7: [Shallow water equations] Dispersion relations and Riemann invariants for arbitrary
Froude number velocity-preconditioner

with the following relation, which results from the operatorM

∂ttδu = ∂ttδu
∗ + un∇ · ∂tδu∗.

System (6) leads to Equation (11) with the matrix

Aδu∗ =

i (ω − k · un) −ik1h
n −ik2h

n

0 hn (un1k1 − ω) (ω − k · un) + g (hn)
2
k2

1 hnun1k2 (ω − k · un) + g (hn)
2
k1k2

0 hnun2k1 (ω − k · un) + g (hn)
2
k1k2 hn (un2k2 − ω) (ω − k · un) + g (hn)

2
k2

2

 ,

and the operatorM becomes due to the Fourier transform, −ω2F (δu) =

[
−ω2I2 + ω

(
un1k1 un1k2

un2k1 un2k2

)]
F (δu∗) ,

thus F (δu∗) =

(
ω−k2un

2

ω−k·un

k2u
n
1

ω−k·un

k1u
n
2

ω−k·un

ω−k1un
1

ω−k·un

)
F (δu) .Hence, it becomes with the three unknowns (F (δh) ,F (δu1) ,F (δu2))

t

F (δh)
F (δu∗1)
F (δu∗2)

 =

1 0 0

0
ω−k2un

2

ω−k·un

k2u
n
1

ω−k·un

0
k1u

n
2

ω−k·un

ω−k1un
1

ω−k·un


︸ ︷︷ ︸

=AM

F (δh)
F (δu1)
F (δu2)

 .

Then, Equation (11) for the unknowns δu writes with the matrix

Aany flow
u = Aδu∗AM =

i (ω − k · un) − ik1h
nω

ω−k·un − ik2h
nω

ω−k·un

0 −hnω (ω − un · k) +
g(hn)2k21ω
ω−un·k

g(hn)2k1k2ω
ω−un·k

0 g(hn)2k1k2ω
ω−un·k −hnω (ω − k · un) +

g(hn)2k22ω
ω−un·k


and the associated eigenvalues and eigenspaces are synthesized in Table 7, which concludes the
proof.

2.7 Numerical results
In this subsection, hypothesis (H1) is no longer applied. As previously for the linear case (Subsec-
tion 1.5), our first numerical test is a comparison for different time steps between our method and
the classical GMRES method with and without Jacobi preconditioner. In addition, we propose
to study the effect of the Froude number on the results. We consider the following solution on
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Ω = [0, 1]
2 

h(t, x, y) = 1.0 + x2(1− x2)y2(1− y2),

u1(t, x, y) = αx(1− x)(1− 2y) + ε sin(2πx) sin(2πy),

u2(t, x, y) = −αy(1− y)(1− 2x) + ε sin(2πx) sin(2πy),

which satisfies u ·n = 0 at the boundary and corresponds to a steady state when ε = 0 of shallow
water equations with source terms. The coefficient α allows to reduce the Froude number and ε
enables us to study the perturbation (ε = 10−5) of a steady state in low Froude regime (α = 10−5).
The parameters used in Subsection 1.5 are chosen : a tolerance of the GMRES method of 10−9 and
5 time iterations to compute the implicit problem. Eventually, the gravity waves’ speed c =

√
gh

verifies c = O(1). We compare two time steps ∆t = 0.1 and ∆t = 1. The results are gathered
in Table 8 and correspond to the expected outcomes. Indeed, the method is efficient in the low

Cells ∆t = 0.1 ∆t = 1
Time Sub-iter Time Sub-iter

GMRES 24× 24 - nc - nc
32× 32 - nc - nc
48× 48 - nc - nc

GMRES
Jacobi

24× 24 1.2E+1 255 - nc
32× 32 6.8E+1 720 - nc
48× 48 - nc - nc

GMRES
Low
Froude

24× 24 3.1E+1 3 3.9E+2 5
32× 32 9.1E+1 3 1.0E+3 5
48× 48 4.4E+2 3 4.5E+3 5

Table 8: Number of sub-iterations to converge in one time iteration and CPU time by time iteration
for different solvers and different time steps.

Froude regime and converges with few iterations even when the classical Jacobi preconditioner
is ineffective. As for the linear case, a large part of the CPU cost comes from solving the Schur
complement. Indeed, when ∆t is large and the acoustic outweighs (i.e. in low Froude regime), the
dominant operator in the Schur complement is −θ2 ∆t2 g∇(hn∇ · (hnδu)) which is not coercive
and admit two scales associated with 0 and c =

√
hng. Finding a method to treat efficiently this

operator is clearly an important question.
As second test case, we propose to compare the low-Froude preconditioner for different low-Froude
numbers when the time step (∆t = 1.0) and the spatial mesh size (32x32) are fixed. Each step is
solved thanks to an exact solver in order to avoid the problem linked to the inversion of the Schur
complement and we focus the study on the global convergence of the method. According to the

Froude Number Fr = O(1−5) Fr = O(10−3) Fr = O(10−2) Fr = O(10−1) Fr = O(1) Fr = O(10)
Low Froude PC 5 5 5 6 23 nc
Any Froude PC 5 5 5 6 20 nc

Table 9: Number of iterations for the convergence of the GMRES + low-Froude preconditioner.

results in Table 9, the convergence of the GMRES + low-Froude preconditioner is very effective
in the low-Froude regime and slower when the Froude number is close to one. These results
correspond to assumptions used to construct the Schur complement and match the conclusions
obtained with the plane waves’ study. They justify also the new method proposed in [8] if the
Froude number is around one or larger (this method does not converge for a Froude number around
10). A less expected result is that the Any-Froude preconditioner is not better for Froude number
close to one. These results are compatible with the previous result on the propagation property
of the any Froude preconditioner. Indeed the wave velocities are good but not the eigenvectors.
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Conclusion
In this paper, we have studied the "physics-based" preconditioning methods for hyperbolic systems.
This method approximates the Jacobian matrix by a suitable succession of simpler problems and
as expected, this technique is efficient if we have a relevant algorithm to solve each sub-systems
(which are purely advection-diffusion operators). The approximation between the preconditioner
and the model comes from the approximation of the physics (in the nonlinear case) and a time
splitting.
We have aimed to analyze the physical approximation by a study based on plane waves. This
study allows to verify formally if the preconditioning has the same propagation properties that
the model and if it is not the case, we have computed an estimation of the error of the wave
velocities. This analysis would be used to find how to correct or to simplify the operators of the
preconditioning method for more complex physical models.
Additionally, we have shown three difficulties. Firstly, as expected the classical method is valid
only in the Low-Mach (low Froude) regime. The plane wave study shows that the correction
proposed in [8] allows to solve partially the problem. The second problem comes from the velocity
Schur complement which is non coercive in the high time step limit. Consequently, it will be
interesting to find a way to split the two scale linked to the two velocity waves 0 and ±c and to
solve each scale. This problem is not detailed in the previous works. Thirdly, we have noticed
that the implementation of the boundary conditions is important since when we impose weakly
the boundary conditions the results are worse. We assume that imposing by penalization the
boundary conditions allows to reduce the time splitting errors.
In the future, it will be interesting to extend the method to the shallow water + Exner model
and also use the preconditioner with compatible finit element spaces. The compatible spaces
given the Inf-Sup theory allows to avoid the spurious pressure mods and allow to design good
preconditioning for the Schur operator (the good space to work and design preconditioning is the
H(div) space).
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