
HAL Id: hal-01401501
https://hal.science/hal-01401501v1

Preprint submitted on 23 Nov 2016 (v1), last revised 14 Jun 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Image Rendering Pipeline for Focused Plenoptic
Cameras

Matthieu Hog, Neus Sabater, Benoît Vandame, Valter Drazic

To cite this version:
Matthieu Hog, Neus Sabater, Benoît Vandame, Valter Drazic. An Image Rendering Pipeline for
Focused Plenoptic Cameras. 2016. �hal-01401501v1�

https://hal.science/hal-01401501v1
https://hal.archives-ouvertes.fr


IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 14, NO. 8, AUGUST 2015 1

An Image Rendering Pipeline for Focused Plenoptic
Cameras

Matthieu Hog, Neus Sabater, Benoı̂t Vandame, Valter Drazic

Abstract—In this paper, we present a complete processing
pipeline for focused plenoptic cameras. In particular, we propose
(i) a new algorithm for microlens center calibration fully in the
Fourier domain, (ii) a novel algorithm for depth map computation
using a stereo focal stack and (iii) a depth-based rendering
algorithm that is able to refocus at a particular depth or to
create all-in-focus images. The proposed algorithms are fast,
accurate and do not need to generate Subaperture Images (SAIs)
or Epipolar Plane Images (EPIs) which is capital for focused
plenoptic cameras. Also, the resolution of the resulting depth
map is the same as the rendered image. We show results of our
pipeline on the Georgiev’s dataset and real images captured with
different Raytrix cameras.

Index Terms—Plenoptic cameras, calibration, depth estima-
tion, refocusing

I. INTRODUCTION

UNLIKE conventional cameras, plenoptic cameras are able
to capture the Light Field (LF), thanks to a microlens

array placed between the main lens and the sensor. Depending
on the position of this microlens array, plenoptic cameras are
divided into type 1 or basic cameras as presented in [1] (e.g.
Lytro [2]) and type 2 or focused cameras as presented in [3]
(e.g. Raytrix [4]). In this work we focus on the second type.

The task of processing the microlens images captured by
a plenoptic camera in order to generate an image (as with a
conventional camera) is called rendering. During this process,
it is possible to modify the virtual focus plane (digital refo-
cusing [1], [5]) or render images with a greater depth of field
compared to the main lens optics capabilities [6]. Besides, a LF
contains both angular and spatial information of the incoming
light rays, allowing to estimate the depth of the captured scene,
which is one major benefit of the LF technology.

In this paper we will address the plenoptic depth estimation
problem and we will propose a rendering method that relies on
depth in order to improve the image quality. The main asset of
our approach is that SAIs or EPIs are not computed neither for
depth estimation nor rendering, avoiding aliasing artifacts as
pointed out by [7]. Instead, captured data in the sensor plane
is projected into the rendering planes directly. This strategy is
of particular interest for type 2 plenoptic cameras for which
SAIs are not as simple to estimate [8] as in type 1.

In addition to depth estimation and rendering, we have also
tackled the calibration problem. Indeed, knowing the microlens
images centers is an essential step for any plenoptic image
processing. We have designed a calibration algorithm, entirely
in the Fourier domain, that has proved to be fast, insensitive
to noise and robust to different microlens array configurations.

Furthermore, our experiments tend to show that the calibration
could be used on natural images as well.

To sum up, our contributions are (see Fig. 1 for an overview
of our pipeline):

1) A calibration algorithm in the Fourier domain for fast
and accurate microlens images center estimation.

2) A novel depth estimation algorithm operating in the
refocused image domain that exploits the relationship
between the focus planes and the disparities on each
slice of what we define as a stereo focal stack.

3) A depth-based rendering algorithm that is able to pro-
duce accurate results for image refocusing and all-in-
focus imaging.

II. RELATED WORK

Regarding plenoptic camera calibration several solutions
have already been explored either in the spatial domain [9],
or using a combination of Fourier and spatial analysis [10],
[11]. However our algorithm estimates all parameters on the
frequency domain which has the advantage of being fast and
accurate.

In the literature, plenoptic depth estimation has aroused
great interest and many research works have been published.
We classify them in four different approaches depending on
the image type they consider as input: SAIs, microlens images,
EPIs or refocused images.

First, SAI-based depth estimation methods rely on the fact
that computed SAIs from plenoptic cameras are well rectified
images with constant baseline. Among these techniques, we
can find local block-matching [12]–[14] and global matching
methods [15]–[17]. Then, microlens-based depth estimation
methods consider each microlens image as separated camera
images with a very small baseline. For this type of methods
local and global approaches are also adapted to the plenoptic
framework. In [18]–[20] a block-matching algorithm for mi-
crolens images is used, and [21]–[23] formalize the problem
as an energy minimization task in which cost volumes are
computed for each microlens. Another type of method for
plenoptic depth-estimation uses EPIs [24]–[28]. Indeed, the
slope of the line composed of corresponding pixel in an EPI
is proportional to the depth of the pixel [29].

Finally, other approaches use refocused images or images in
a focal stack to perform depth computation [30], [31]. How-
ever, when defocus cues are used they are usually combined
with other measures [15], [26] because of their poor accuracy.

Among plenoptic depth estimation methods we would like
to highlight some recent approaches that explicitly estimate
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Fig. 1: Proposed pipeline to process a raw LF captured with a focused plenoptic camera. Microlens centers are first estimated.
Then a stereo focal stack is computed projecting directly the data from the sensor. The stereo focal stack allows to estimate a
focus map, which is used in the final rendering step.

occlusions and seem to give the best results. Occlusions can be
detected by studying the variance of the pixel re-projections on
several views as in [32] or an occlusion coefficient can be used
in a regularisation framework. For instance, [33] statistically
computes the probability of a pixel to be in an occlusion
boundary, [34] uses the log likelihood of the probability of the
pixel color to appear in the projected views and [35] compare
depth and variance of occluding candidates normalized by the
region mean (to handle uniform areas). It is also possible to
learn occlusion and depth simultaneously as in [36].

While plenty of contributions on plenoptic depth estimation
significantly improving the state-of-the-art have been pub-
lished the last years, very rare are the papers addressing the
problem for type 2 plenoptic setup. This may be due to the
fact that most of the available data come from Lytro (type
1) cameras. Moreover, the proposed approaches almost all
rely on re-sampling the captured LF to a traditional SAI-
based representation. Yet, SAIs or EPIs are not well adapted
to focused plenoptic cameras. Indeed, it has been proved
[7] that SAIs suffer from strong aliasing artifacts (even with
antialiasing filters) which affects depth estimation, but above
all, estimating SAIs or EPIs for focused plenoptic cameras
is a complex process not without error [8] (see Fig. 2) since
an accurate depth estimate of the scene would be necessary
(chicken-egg problem).

Microlens-based methods [18] can be a good alternative for
focused plenoptic cameras provided the size of the microlens
are big enough as it happens to be with the Georgiev’s
prototype, but this is not always the case.

In this context, our motivation is to provide a depth esti-
mation method that works with arbitrarily sized microlenses
and operates in the refocusing image domain without the need
of SAIs or EPIs. This approach has the advantage of creating
depth maps of the resolution of the final rendered image and
that are not affected by SAI rendering artifacts.

Concerning plenoptic image rendering, many algorithms
have been proposed since the pioneer work of [1] using the
Fourier Slice Theorem. On the one hand, there are approaches
using SAIs (shift and add) [11], [37] and on the other hand,
the approaches using the projection rendering algorithm [10],
[38] which are the closer works to ours.

Fig. 2: SAI from a focused plenoptic camera estimated with
the approach in [8]. Note the microlens artifacts on the two
zoom-ins that may be detrimental to depth estimation (please
see on the electronic version). Unlike type 1, type 2 plenoptic
cameras require the depth to be know to render SAIs without
errors. Our approach circumvents this problem estimating
depth without SAIs.

III. PLENOPTIC IMAGE CALIBRATION

In this work, plenoptic calibration refers to estimating the
microlens image centers (see [39] for a complete plenoptic
camera calibration method). More precisely, in our calibration,
we compute the microlens image diameter D, the translation
offset o = (ox, oy) and the rotation α with respect to the
coordinate system given by the sensor array (see Fig. 3).



IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 14, NO. 8, AUGUST 2015 3

So, the microlens image center coordinates (cx, cy) in the
pixel coordinates are computed as:[
cx
cy

]
=

[
ox
oy

]
+

D√
3

[
1 1/2

0
√

3/2

] [
cos(α) −sin(α)
sin(α) cos(α)

] [
x
y

]
,

(1)
where (x, y) ∈ Z2 are the elements of an integer grid.

Our approach leans on the observation that a white plenoptic
image Iw can be modeled as a sum of three 2D cosines (see
Fig. 4), oscillating at different angles:

Iw(x, y) =
1

3

2∑
d=0

cos
(2π

D
cd(x, y)

)
, (2)

cd(x, y) = cos
(dπ

3
+α
)

(x−ox) + sin
(dπ

3
+α
)

(y−oy).

Consequently, its Fourier transform F (Iw) is a Dirac comb
function (Fig. 5). In this work we propose to estimate all
calibration parameters α, D and o directly from F (Iw). Let
Fm and F p be the magnitude and phase of F (Iw).

Let ξ0i ∈ Z2 be the pixel coordinates of the i-th peak (local
maxima) of Fm obtained by thresholding. In practice our
threshold is fixed to 100 ·Variance(Fm). Note however, that
the peaks of the Dirac comb in the frequency domain need to
be evaluated with great accuracy (much below the pixel size)
in order to obtain precise microlens image centers. Inspired
by [40], the final peak locations ξi = ξ0i + ∆ξ0i ∈ R2 are
estimated with sub-pixel accuracy.

More precisely, each component of ∆ξ0 = (∆ξ0u,∆ξ
0
v) is

computed as

sign
(
Fm(ξ−)− Fm(ξ+)

) M

M + Fm(ξ0)
,

where M = max
{
Fm(ξ+), Fm(ξ−)

}
) , (3)

and ξ+ = (ξ0u+1, ξ0v), ξ− = (ξ0u−1, ξ0v) when estimating ∆ξ0u
and ξ+ = (ξ0u, ξ

0
v+1), ξ− = (ξ0u, ξ

0
v−1) when estimating ∆ξ0v .

The number of peaks, card(i), is equal to six in the ideal
case of the white image being a sum of pure cosines (Eq.
2) but many replicas appear on real images. In that case, we
select the six peak locations with most energy and at the same
distance from the center (Fig 5).

The microlens images diameter and the rotation are then
computed as

D =
N

1
6

∑6
i=1 ρi

, (4)

α =
1

6

6∑
i=1

mod
(
θi,

π

3

)
, (5)

where θi and ρi are the polar coordinates of ξi, N is the size
of the white input image and mod is the modulo function.

Finally, the lines along which the three cosines oscillate
(color lines in Fig. 4), intersect at the offset phase o. Consid-
ering only three peaks among the six not being symmetric, we
define the oscillation lines as

Li=1,2,3(x) :=

x sin
(
θi +

π

2

)
− y cos

(
θi +

π

2

)
+
F p(ξi)

2π
= 0 , (6)

D

ox

oy

α

Sensor Array

Microlens Array

Fig. 3: Microlens images (of diameter D) are arranged in a
hexagonal grid and pixels in a squared grid. Microlens images
are misaligned with respect to the pixel grid. There is a rotation
of angle α and a translation offset (ox, oy) between the origins
of both grids placed at the most top-left pixel and microlens
image respectively.

Fig. 4: An ideal white plenoptic image is a sum of three 2D
cosine images. The intersection of the lines along which the
3 cosines oscillate defines the offset o of the white image.

Fig. 5: Peaks in the (log) frequency spectrum of a real white
image. Each peak has its symmetrical. The Fourier transform
of an ideal white image is a perfect Dirac comb but many
replicas appear on real white images. The six concentric peaks
with highest energy are selected.

where x = (x, y). We write the three line equations as Ax =
B and its solution o = (ATA)−1ATB is estimated by least
squares.
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In order to validate our method, we have tested our algo-
rithm with synthetic white plenoptic images (generated using
Eq. 2). We have verified its robustness with many parameter
values for o, α and D simulating different plenoptic camera
configurations. We have also added Gaussian noise of vari-
ance V and simulated different camera apertures by Gamma-
correcting the white image by a factor Γ in order to study the
performance of our algorithm in more complicated situations.
For the sake of comparison, we have also estimated in all of
our tested synthetic images the microlens images centers with
the method of [9], a full spatial calibration method. Complete
results can be found on Tab. I. In average, both methods
are comparable but we have observed a larger robustness in
our solution (smaller variance) when changing the parameters.
Also the algorithm in [9] has failed in two cases.

IV. PROPOSED DEPTH ESTIMATION METHOD

In this section we present our method for depth estimation.
Unlike other methods we compute a focus map which gives
the in-focus value of each pixel without using defocus cues
but stereo matching. The novelty of our method is that we first
compute a so-called stereo focal stack, then stereo matching
is performed for each of the pairs of images of the stereo
focal stack and, finally, the obtained disparities are combined
to obtain a focus map.

A. Stereo Focal Stack Computation

A focal stack is a collection of photographs focused at
different depths. In order to render each image (slice) of the
focal stack Ig , refocused at the focal value g, we use the
projection algorithm as in [10], [38]. This is, each pixel (x, y)
of the raw LF Rlf belonging to the microlens with center
coordinates (cx, cy), is projected at position

(X,Y ) =
(
s(g(x− cx) + cx), s(g(y − cy) + cy)

)
, (7)

where s controls the size of the rendered image. Formally, the
refocused image is computed as

Ig(m,n) =
1

W (m,n)

∑
x,y

K(X −m,Y − n)Rlf (x, y) ,

where W (m,n) =
∑
x,y

K(X −m,Y − n) ,

and K(u, v) =

{
1

u2+v2 , if ||(u, v)|| < 0.5

0 , otherwise.
(8)

K being a fixed kernel with a very small support (4 closest
pixels from the projected coordinates).

Now, a stereo focal stack is rendered using Eq. 7 and Eq.
8 but separately for pixels (x, y) belonging to the left part
and the right part of the microlens images (see Fig. 6). This
strategy creates a stereo pair of images Igl and Igr for each
focus value g.

Note that the stereo pairs suffer from aliased blur and may
contain missing channel values. Indeed, given a fixed size s
for the rendered images the spatial resolution of the projected

TABLE I: Comparison of the calibration error between our
approach and the one proposed in [9], across several parameter
variations.

Parameters Mean Error
D α ox, oy Γ V (10−2 ) Ours [9]

10.1 0.03 -5 0 1.7 0.01 0.0821 0.0365
10.2 // // // // 0.1357 0.3741
10.5 // // // // 0.3139 0.3150
10.8 // // // // 0.1886 0.0209
10 0.01 -5 0 1.7 0.01 0.0887 0.0817
// 0.04 // // // 0.0923 0.0355
// 0.05 // // // 0.0929 0.3288
// 0.1 // // // 0.0937 0.0349
10 0.03 -5.1 0 1.7 0.01 0.0911 0.0280
// // -5.5 0 // // 0.0982 0.3165
// // -5 0.1 // // 0.0905 0.0379
// // -5 0.5 // // 0.1168 0.3489
10 0.03 -5 0 2 0.01 0.0882 0.0590
// // // 1.5 // 0.0916 0.3580
// // // 1 // 0.0954 0.4166
// // // 0.7 // 0.0972 Fail
10 0.03 -5 0 1.7 0.015 0.0900 0.0410
// // // // 0.03 0.0893 0.0776
// // // // 1 0.0905 0.3749
// // // // 10 0.0904 Fail
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t

Igl. . .

Igr. . .R
ef

oc
us
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g

Fig. 6: Stereo focal stack computation. Points in the raw LF
are projected separately depending on their positions on the
microlens. Points belonging to the left (resp. right) side of the
microlens are projected into Igl (resp. Igr ). For each g, Igl and
Igr is a rectified pair of stereo images such that points at the
focus plane g appear sharp.

points (X,Y ) on the refocus plane depends on the depth of
the scene as pointed out in [38]. Inspired by this same work,
demosaicking is done during the rendering step and we project
with Eq. 7 the color channels separately.

B. Focus Map Estimation from the Stereo Focal Stack

Proposition 1. Let gf be the g value for which a certain
point on the scene is in-focus. Then, for any focus value g,
the difference between g and gf is proportional to the disparity
∆g of this point in the stereo pair of images Igl and Igr . Also,
a point appears in-focus in the refocused images Igl and Igr
(i.e. g = gf ) if and only if its corresponding disparity is null
(∆g = 0).
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Proof. Let us consider a point in the scene that is seen by two
microlenses (Fig. 7). The same reasoning is valid for more
microlenses but we consider only two for the sake of clarity.
Let x1 and x2 be the x-coordinates in Rlf of this point and
δ the distance between them. Using Eq. 7 we know that for
each g, the disparity ∆g of the corresponding points in Igl and
Igr is

∆g = X2 −X1 = s(g(x2−c2)+c2)− s(g(x1−c1)+c1)

= s(g(δ −D) +D) .
(9)

Now ∆g = 0 if and only if

g =
D

D − δ
, (10)

which turns out to be the the value gf that allows a point to be
in-focus (i.e. image points of a same scene point are projected
at the same position).

From Eq. 9 and 10 we get the relationship between the
refocusing parameter g used for rendering and gf the value at
which the point is in-focus

g =
1

s(δ −D)
∆g + gf . (11)

From the previous proposition we know that there is a linear
relationship between g and ∆g and estimating the focus gf
is equivalent to estimating the value g such that ∆g = 0.
In practice, gf is estimated as the root of the line passing
through two points (g1,∆

g
1) and (g2,∆

g
2) for two particular

focus values g1 and g2. Precisely,

gf = ∆g
2 − g2

g1 − g2
∆g

1 −∆g
2

. (12)

In order to compute Eq. 12, it is sufficient to render two
pairs of stereo images at g1 and g2 and to estimate the
corresponding disparities ∆g1 and ∆g2 . Notice, however, that
it is possible to estimate the corresponding disparity ∆g for
each slice of the focal stack. In that case gf is the root of the
regression line of all (g,∆g). This solution produces slightly
more accurate results at the expense of greatly increasing the
computational cost. This is why in our algorithm the focus
map at each point is estimated using Eq. 12 which is a good
trade-off between accuracy and complexity.

Note that, our algorithm does not compute SAIs but projects
the information into the refocusing plane. Also, our focus map
has the same size than the rendered images (same s value).
Besides, it is interesting to point out that since the projection
is done in a stereo focal stack it creates a parallax at each
slice g. Thanks to this parallax, any binocular stereo algorithm
can be exploited for evaluating ∆g . Depending on the desired
accuracy and complexity one algorithm or another can be used.
In this work we have used the algorithm presented in [41]
because it is real-time and accurate.

c1

x1

c2

x2δ

D

(a) Raw LF

X1 = X2

(b) Point in-focus in the
refocused image

X1 X2
∆

(c) Point out-of-focus in the refocused image. The left (green)
and right (orange) parts of the microlenses form the left and
right slices of the focal stack respectively.

Fig. 7: Projection of a scene point visible on two microlens
images. Both points are projected at the same position (∆g =
0) when the point is in-focus (g = gf ) and there is a shift
∆g 6= 0 when the point is not in-focus.

V. RENDERING USING A FOCUS MAP

A. Adaptive Splatting for Refocusing

Inspired by [7], [10] we define a splatting kernel K ′ to be
used instead of K in Eq. 8. K ′ adaptively changes for each
point of the scene. In particular, we exploit the focus map
obtained previously to define a Gaussian splatting kernel

K ′(u, v) = exp
(
−
√

(X − u)2 + (Y − v)2

λ |gf (u, v)− g|+ ε

)
, (13)

where ε is a very small value to avoid dividing by zero and λ
controls the ratio among the spatial distance to (X,Y ) and the
g focus difference. The Gaussian kernel K ′ aims to penalize
distant points from (X,Y ) while its standard deviation results
from the difference in absolute value between the refocusing
value g and the in-focus value of the point gf (u, v).

The idea behind the weighting is that the kernel K ′ has a
small support when the point is in-focus (i.e. g = gf (u, v)). On
the contrary, the farther g is from gf , the bigger the support of
K ′ which increases blurriness at that particular point. Besides,
the splatting strategy also helps to densify the rendered image.
Indeed, we know that in particular cases several values of
(x, y) are projected to the same point (X,Y ) or different
values of (X,Y ) but very close from each other creating areas
with few, or no pixel contributions [38].

One problem that rises, when using splatting is the spread-
ing of background out-of-focus pixels intensities on fore-
ground pixels, creating unwanted artifacts around edges of
foreground objects. To overcome this issue we use a bilat-
eral filtering strategy. We alter the kernel in such way that
background pixel values are not propagated on the kernel area
where the depth is inferior to the depth of the splatted pixel.

The depth reshaped kernel is defined as K ′′ = K ′◦S where

S(u, v) =

{
1 , if gf ([X], [Y ]) > gf (u, v),

0 , otherwise.
(14)
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Thus, S is not null when the point (u, v) is behind ([X], [Y ]).
The refocusing is performed as in Eq. 8, replacing K with
K ′′.

B. Gathering for All-in-Focus Rendering

Splatting can also be seen backwards. Instead of spreading
the ray values around the splatting coordinates, it is possible
for a pixel (m,n) in the refocused image, knowing gf , to
compute the corresponding set of coordinates (x, y) of pixels
in the raw LF that see (m,n):

(x, y) =

( u
s − cx
gf (u, v)

+ cx ,
v
s − cy
gf (u, v)

+ cy

)
. (15)

We call this approach gathering, in the sense that we seek
to fetch and integrate ray-pixels from the raw LF rather than
projecting them into a refocused image. Doing so, we integrate
only the pixel describing the same scene point, creating an
image that is sharp everywhere. This is similar to the approach
proposed in [19], but in our case, the depth information is
contained directly in the refocused image domain, not in the
raw LF domain. Formally, the all in-focus image is computed
as

I(m,n) =
1

W (m,n)

∑
cx,cy

Kcx,cy (m,n)Rlf ([x], [y])

where W (m,n) =
∑
cx,cy

Kcx,cy (m,n) and

Kcx,cy (m,n)=

{
1

{x}2+{y}2 , if ||(x, y)−(cx, cy)||< D
2 ,

0, otherwise
(16)

where {a} is the decimal part of a and K checks if the
back-projected pixel is visible on a microlens image of center
(cx, cy) (i.e. it is null if the back-projected pixel coordinates
(x, y) is outside of the microlens image) and otherwise,
weights the pixel contribution according to its distance from
the (non-integer) back-projected image coordinates. Carrying
the microlens image visibility test for all microlens images
can be extremely heavy. However, a pixel (m,n) can only be
seen within a small radius around (m/s, n/s) in the raw LF.
That is why, in practice, the search for the microlens images
can be bounded to few microlenses.

Note that depending on its depth, one pixel may receive
incomplete color channel information. In that case, we inter-
polate with the neighbourhood pixels in the raw LF.

VI. EXPERIMENTAL RESULTS

In this section we show the results of our depth estimation
and rendering algorithms. We show experiments on Raytrix
R5 data we have captured, on a Raytrix R11 dataset1 and on
the Georgiev’s dataset2 for comparison purposes. As far as we
know these are the only available type 2 plenoptic datasets
providing raw data which is the input of our pipeline.

1Available online : https://www.raytrix.de
2Available online : http://www.tgeorgiev.net

(a) Focus map (b) All-in-focus image

(c) Image refocused at g = 2.6 (d) Image refocused at g = 4

Fig. 8: Donkey experiment. Data captured with a Raytrix R5
camera. We invite the reader to zoom-in to see details. Sup-
plementary material includes more results of our R5 dataset.

In our experiments we divide the raw LF by its correspond-
ing white image to correct vignetting, and we fix s = 0.5. Our
focus map is neither filtered nor regularized.

Fig. 8a shows the focus map of one of the images of
the Raytrix R5 dataset. The two focus slices are rendered at
g = 2.5 and g = 5.5. The corresponding all-in-focus image
in Fig. 8b is entirely sharp, attesting on the validity of the
focus map. Fig. 8c and Fig. 8d compare two images refocused
using adaptive splatting, refocused on the background and
the donkey flank respectively. We notice that adapting the
kernel allows to recover the details of the objects in-focus
while showing a uniform blur in the out-of-focus areas.
Supplementary material includes the raw data and calibration,
as well as more examples of depth estimation and rendering
of our R5 dataset.

Fig. 9 compares the obtained focus maps with the manu-
facturer depth map for a Raytrix R11 camera. We notice that
the errors introduced by our method are fairly different than
Raytrix’s. Indeed our algorithm performs better in uniform
areas (e.g. region between the arm and head of the pilot).
However our algorithm is more sensitive to the reflexion halos
(e.g. specularities into the ship’s wheel). Also, our algorithm
generally has a better edge preservation while Raytrix depth
maps suffer from fattening (e.g. branches of the forest). Fig.11
compares an all-in-focus image provided by Raytrix with ours.
In general, our refocused images are comparable to Raytrix
quality.
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Fig. 9: Comparison with R11 test images provided by Raytrix. In general, our method deals better with objects borders and
poor textured region but it provides erroneous disparities in specular regions.
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Fig. 10: Comparison with [42] and [25] using the Georgiev’s dataset. Our approach is able to discern more depths and is more
accurate. See the level of detail in the backgournd of ’Zhengyun1’ or the faces in ’Sergio’.
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On Fig. 10, we compare our depth maps with the results
in [25], [42]. We can see that our method allows to recover
more depth planes than the two microlens-bases approaches
[25], [42]. This is due to the fact that our depth measurement
is done on the image domain, with a bigger baseline than
in the microlens domain. The depth maps for the rest of the
Georgiev’s dataset are available in the supplementary material.

Regarding the refocusing, Fig. 12 shows how adaptive
splatting compensates for angular aliasing and the sparse
image sampling (pixels with no contribution are visible as
0 channel values) that arises when using a fixed splatting
(Fig. 12a). The images on Fig. 12b to 12d show the effect
of changing the blur parameter λ.

Discussion
Our microlens centers calibration algorithm has been tested
with real white images and natural images captured with a
Raytrix camera in addition to our simulated white images.
We have observed that both estimations provide very close
microlens image center positions for the great majority of
the scenes we captured. Besides, our calibration method is
fast (less than 0.2 seconds for Raytrix R5 images in our
Matlab implementation) and could be used to monitor the
microlens image center positions dynamically on a plenoptic
video. These two features are of major interest if the plenoptic
camera has a zoom lens or interchangeable lenses. In that
situation, calibration could be done ”on the fly” from the
captured sequence which is not possible with existing methods.

Usually, the resolution of the final depth map is substantially
smaller than the size of the raw LF for most of the state-
of-the-art methods. In fact, the resolution depends on the
considered image type for depth estimation (SAIs, microlens
images, EPIs or refocused images). For instance, the size of
each Lytro SAI is 328 × 328 pixels which produces rather
small depth maps (without super-resolution algorithms). In that
sense, depth estimation on the refocused image plane provides
the best resolution. In our approach, the resolution of the depth
map and the rendered image are tuned with parameter s. The
interesting point is that the depth map perfectly matches in
terms of spatial resolution the rendered image which is a real
advantage for depth-based editing tasks or in the rendering
process itself as we have seen in Sec. V.

Even if the presented pipeline is particularly adapted for
Raytrix cameras, we have not taken into account the tri-focal
property of the microlens array. Taking it in consideration
during the splatting process will surely improve the rendering
image quality.

Note that different disparity estimation algorithms could be
used in our framework [43]. However, the goal of this paper
is not to compare such methods but to show that the depth
estimation problem in a plenoptic camera can be treated as a
stereo problem via a stereo focal stack and without estimating
SAIs. In fact, our depth estimation strategy could also be
applied to type 1 data but it would not be optimal. In that
case, our half-apertures would not capture all the angular
information as all the SAIs do in a type 1. We believe however
that this is a good alternative for focused plenoptic cameras
for which SAIs are not available without errors.

Moreover, it is interesting to point out that the proposed

(a) Raytrix (b) Ours

Fig. 11: R11 all-in-focus rendering on test image Andrea.
The fine details on the eyelashes are well recovered using
our technique. Note that Raytrix uses a color and contrast
correction and potentially a sharpening filter on their output
images.

(a) Projection without splatting (b) λ = 2

(c) λ = 3 (d) λ = 5

Fig. 12: Refocusing via point projection without splatting
using Eq. 8 (a) and adaptive splatting for different λ (b-d)
on a region of the test image R11 Pilot. We can see that the
adaptive strategy compensates for angular aliasing and that
blur intensity can be controlled by the parameter λ.

approach is somehow related to coded apertures [44]. Indeed,
cutting the microlens images in half is physically equivalent
to mask half of the aperture of a conventional camera. In
particular, [45] compares the use of stereo aperture masks
and depth from defocus using several mask and show that the
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second provides a better depth discrimination. As the study
focused on the setup where the focus depth is fixed, it would
be interesting to see how this conclusion hold in our case,
since the scene depth is triangulated using several artificial
focus depths.

Finally, regarding the complexity, we believe our algorithm
is significantly lighter than other methods. Our Matlab im-
plementation for generating the two slices of the focal stack
runs in approximately 2.5 and 7 seconds per stereo slice for
Raytrix R5 and Raytrix R11 images respectively. We believe
that a proper GPU implementation of our depth estimation and
rendering can be done in real-time provided the used stereo
algorithm is real-time.

VII. CONCLUSION

We have introduced a novel pipeline for processing focused
plenoptic camera images. First we have presented a detailed
description of our calibration algorithm that fully estimates
all parameters in the Fourier domain allowing a fast and
robust microlens images center estimation on white and
natural images. Then, we have proposed a new algorithm for
depth estimation from a stereo focal stack. Our algorithm
does not require estimating SAIs or EPIs but can bring into
play any stereo algorithm. Moreover, it provides a depth
map in the refocused image domain, and does not require
any knowledge about the camera parameters (except the
microlens images centers, estimated at the beginning of our
pipeline). Finally, our image rendering is guided by the
estimated scene depth and allows to refocus the images or
render all-in-focus images. We have tested our algorithm on
images captured with a Raytrix camera but our modelling
is not restricted to it and could be applied to other focused
plenoptic cameras. Further work will include combining the
defocus cues introduces by the stereo focal stack in order to
improve the depth measurement, especially in the specular
areas and for occlusions.
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