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An Anisotropic Inf-Convolution BV type model for dynamic reconstruction.∗1

Maïtine Bergounioux† and E. Papoutsellis †2
3

Abstract. We are interested in a spatial-temporal variational model for image sequences. The model involves4
a fitting data term to be adapted to different modalities such as denoising, deblurring or emission5
tomography. The regularizing term acts as an infimal-convolution type operator that takes into6
account the respective influence of space and time variables in a separate mode. We give existence7
and uniqueness results and provide optimality conditions via duality analysis.8

Key words. Spatio-temporal Variational Regularization, Infimal Convolution Total Variation, Anisotropic Total9
variation, Optimality Conditions10

AMS subject classifications. 65D18, 68U10,65K1011

1. Introduction. In this paper, we examine variational inverse problems for dynamic image12
reconstruction. As in the context of image restoration, the goal regarding a video restoration13
is to recover a clean image sequence given a degraded dynamic datum. Certainly, one of14
the main differences between image and video restoration is the additional temporal domain15
where a collection of images-frames evolves over the time. Beside the spatial structures which16
are a significant factor on the output quality of the reconstruction, the time direction has an17
important role on the temporal consistency among the frames. Furthermore, in terms of video18
applications, one may consider applications inherited from the imaging context and extend19
them to the dynamical framework. To name a few, we have dynamic denoising, deblurring,20
inpainting, decompression and emission tomography such as Positron Emission Tomography21
and Magnetic Resonance Imaging.22

The aim of this paper is to study variational regularization models in an infinite dimensional23
setting defined on a spatial-temporal domain. In particular, given a corrupted image sequence24
g, we look for a solution u, in a Banach space X , to the following generic minimization problem25

(1.1) inf
u∈X
N (u) +H(Au, g).26

The first and second terms represent the well known regularizer and the data fitting term27
(fidelity). The former imposes a certain prior structure (regularity) on the solution u and the28
latter is determined by the nature of degradation, e.g., a transformation through a continuous29
and linear operator A with the presence of random noise, as well as the modality of the prob-30
lem. Regarding image restoration, the minimization problem (1.1) has been extensively used31
and examined from both theoretical and numerical point of view for different applications. For32
instance, we refer the reader to the famous ROF variational model [36], where the use of func-33
tions of bounded variation (BV) and the total variation regularization (TV) was established34
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2 M. BERGOUNIOUX AND E. PAPOUTSELLIS

in image processing. Moreover, it was analyzed in [1], [44] and several extensions have been35
proposed in [15, 8, 12, 16, 24]. Now, concerning variational problems on a spatial-temporal36
domain, one can witness significantly less work from a theoretical perspective compared to37
a numerical one. Indeed, there is a plethora of numerical algorithms in the literature for38
variational video processing. We refer the reader to some of them as [17, 38, 32].39

A quite natural approach towards image sequence reconstruction is to apply the minimiza-40
tion problem (1.1), acting on every image-frame of the sequence individually. For example, we41
use the above problem in order to denoise each frame from a sequence corrupted by Gaussian42
noise. We choose a non-smooth regularizer as the total variation measure over the spatial43
domain Ω ⊂ R2. It is known for the piecewise constant structures it imposes to the solution u44
and can eliminate efficiently the noise while preserving the edges of the images. It is defined45
as46

(1.2) N (u) = α|Du|(Ω) = sup

{∫
Ω
u divφdx dt : φ ∈ C1

c (Ω,R2), ‖φ‖∞ ≤ α
}
,47

weighted by a positive parameter α and48

(1.3) ‖φ‖∞ = ess sup
x∈Ω

|φ(x)|r, |φ(x)|r =

{√
φ2

1(x) + φ2
2(x), r = 2, (isotropic)

max{|φ1(x)|, |φ2(x)|}, r =∞, (anisotropic).
49

This parameter is responsible for a proper balancing between the regularizer and the fidelity50
term which is fixed as H(u, g) = 1

2 ‖u− g‖
2
L2(Ω) in this case. Although, this solution produces51

a satisfying result on the spatial domain, it does not take into account the interaction between52
time and space and some time artifacts, e.g. flickering, will be introduced. Note that one53
can use the anisotropic norm instead of an isotropic one in (1.3). Although these norms are54
equivalent in a finite dimensional setting, they have different effects on the corresponding55
computed minimizers. In the isotropic case, sharp corners will not be allowed in the edge set56
and smooth corners prevail. On the other hand, corners in the direction of the unit vectors57
are favored in the anisotropic variant. For more details, we refer the reader to [29, 21, 34] on58
the properties and differences between these two corresponding minimizers.59

A more sophisticated path, referred as 3D denoising, is to extend the domain taking into60
account the time activity and treat an image sequence as a 3D volume where the time plays61
the role of the third variable. In this case, we write62

(1.4) N (u) = |Dαu|(Q) = sup

{∫
Q
udivαφdx dt : φ ∈ C1

c (Q,R3), ‖φ‖∞ ≤ 1

}
63

where Q = T ×Ω ⊂ R3 is the three-dimensional spatial-temporal domain with T = (0, T ).
Here, we have a positive vector α = (α1, α2) acting on the space and time respectively with

divα = α1

(
∂

∂x
+

∂

∂y

)
+ α2

∂

∂t
= α1divx + α2divt

and the TV smoothness is applied along both the spatial and the temporal directions. An64
obvious question that rises on this particularly setting is the correlation between the space65

This manuscript is for review purposes only.



AN ANISOTROPIC INF-CONVOLUTION BV TYPE MODEL FOR DYNAMIC RECONSTRUCTION. 3

and time. Video regularization approaches as in [17, 25, 30] combine spatial and temporal66
domains under the corresponding dynamic isotropic norm ‖φ‖∞ = ess sup

x∈Q
|φ(t, x)|2. Hence,67

space and time are interacting with each other and contribute under some weight parameters68
to the TV regularizer.69

Figure 1.1: Image sequence of 5 frames and its noisy version corrupted with Gaussian noise.
Geometrical shapes are moving in different directions with different moving speed.

However, this choice of norm is not very accurate concerning preservation of spatial and70
temporal discontinuities. Using the anisotropic norm, ‖φ‖∞ = ess sup

x∈Q
|φ(t, x)|∞, where space71

and time are not correlated, has the advantage to focus on the discontinuities of Ω and T in72
a separate mode respectively and preserve spatial and temporal details more accurately. In73
particular, we can decompose (1.4) into a spatial and a temporal total variation, see [2], and74
write75

(1.5)

|Du|(Q) = |Dxu|(Q) + |Dtu|(Q), with

|Dxu|(Q) = sup

{∫
Q
uα1

(
∂φ1

∂x
+
∂φ2

∂y

)
dx dt : φ ∈ C1

c (Q,R3),

max{
√
φ2

1(t, x) + φ2
2(t, x)} ≤ 1

}
,

|Dtu|(Q) = sup

{∫
Q
uα2

∂φ3

∂x3
dx dt : φ ∈ C1

c (Q,R3),max{|φ3(t, x)|} ≤ 1

}
, and

|Du|(Q) ≤ |Dxu|(Q) + |Dtu|(Q) ≤
√

2|Du|(Q).

76

This type of decomposition has already been proposed for several applications such as dynamic77
denoising, segmentation, video decompression and the reader is referred to [43, 38, 26, 17].78
Although, this paper is rather theoretical we would like to intrigue the reader with a sim-79
ple numerical example. In Figure 1.1, we have an image sequence of 5 frames of several80
geometrical objects moving in different directions and speed under a constant background.81

This manuscript is for review purposes only.



4 M. BERGOUNIOUX AND E. PAPOUTSELLIS

This is corrupted by Gaussian noise. Then, in order to compare between isotropic (1.4) and82
anisotropic (1.5) total variation spatial-temporal regularization we choose the same ratio α1

α2
83

of the parameters for both cases that act in the space and time directions respectively.84

Figure 1.2: Surface plot of the 3rd frame of the true sequence.

(a) Isotropic vs Anisotropic TV
α1

α2
= 5, α2 = 0.01

(b) Isotropic vs Anisotropic TV
α1

α2
= 10, α2 = 0.05

(c) Isotropic vs Anisotropic TV
α1

α2
= 50, α2 = 0.1

Figure 1.3: Surface plots of the regularized solutions of (1.1) for the 3rd frame of Figure 1.1.
We compare the ground truth, see Figure 1.2 with the isotropic (1.4) (1st row) and anisotropic
(1.5) (2nd row) spatial-temporal total variation regularization. The parameters are the same
for both cases.

In Figure 1.3, we present the surface plots of the 3rd frame of the corresponding regularized85
solutions of (1.1) with the squared L2 norm fidelity term. We observe that for different ratios,86
anisotropic regularization is able to preserve the geometry of these objects.87

Motivated by (1.5), we proceed with a further decomposition in terms of the test function88
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AN ANISOTROPIC INF-CONVOLUTION BV TYPE MODEL FOR DYNAMIC RECONSTRUCTION. 5

φ and define the following decoupled spatial-temporal total variation regularization,89

(1.6) N (u) = α1

∫ T

0
TVx(u)(t) dt+ α2

∫
Ω

TVt(u)(x) dx,90

where TVx(u)(t) =
(
|Du|(Ω)

)
(t) and TVt(u)(x) =

(
|Du|(T )

)
(x) denote the spatial total91

variation for every t ∈ T and the temporal total variation for every x ∈ Ω respectively. Note92
that in the above formulations the test functions are defined in Ω and T respectively.93

Non-smooth regularization methods introduce different kind of modelling artifacts. As we94
discussed above, a total variation regularizer tends to approximate non-constant noisy regions95
with piecewise constant structures leading to the staircasing effect. This aspect is certainly96
inherited in the dynamic framework and produces the flickering effect due to the staircasing97
along the temporal dimension. In addition, one may observe some ghost artifacts on moving98
objects, i.e., where certain features are overlapping between two consecutive frames. This is99
due to the strong temporal regularization, namely when the ratio α1

α2
is relatively small, see100

Figure 1.3. In order to overcome this kind of modelling artifacts, a combination of non-smooth101
regularizers is used via the concept of the infimal convolution,102

(1.7) N (u) = F1#F2(u) = inf
v∈X

F1(u− v) + F2(v).103

This regularization functional is able to favor reconstructions with a relatively small F1 or104
F2 contribution. In the imaging context, this is introduced in [15], where a first and second105
order TV-based regularizers are combined in order to reduce the staircasing phenomenon.106
Under this regularizer, the corresponding solution u of (1.1) promotes both piecewise constant107
and smooth structures due to the presence of higher order derivatives and in fact provides a108
certain decomposition between piecewise constant and smooth regions. On the other hand,109
Holler and Kunisch in [25], extend the notion of infimal convolution in the context of dynamic110
processing. In such a setting, they propose the use of total variation functionals as in (1.4) with111
an isotropic relation on the spatial and temporal regularities. As in the imaging framework,112
one can decompose an image sequence into a sequence that captures spatial information and113
a sequence that encodes temporal activity. This type of spatial-temporal regularizer will be114
discussed in Section 3 under our anisotropic formulation (1.6) of separate action in space and115
time. Specifically, we propose the following infimal convolution total variation regularization116
for an image sequence u given two positive vectors λ = (λ1, λ2) and µ = (µ1, µ2),117

(1.8)
N (u) = Fλ#Fµ(u) = inf

v∈X

∫ T

0
λ1TVx(u− v)(t) dt+

∫
Ω
λ2TVt(u− v)(x) dx

+

∫ T

0
µ1TVx(v)(t) dt+

∫
Ω
µ2TVt(v)(x) dx.

118

Depending on the choice of λ, µ one can enforce a certain regularity and either focus on space119
or on time for the image sequences u−v and v. For example, if one selects that λ1 = µ2 = κ and120
λ2 = µ1 = 1 with κ > 1 then the first two terms impose a TV smoothness more on the space121
direction that in time for the u − v term. For the other two terms, the TV smoothness acts122
conversely for the v component. Therefore, it is a matter of proper balancing which is tuned123
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6 M. BERGOUNIOUX AND E. PAPOUTSELLIS

automatically via the infimal convolution and highlights the cost either on space or time.124
We would like to mention that the functionals in (1.7) are not necessarily total variational125
functionals and other combinations or high order functionals may be used, see for instance126
[39, 7].127

Finally, we would like to emphasize on the nature of the positive parameters defined above.128
In the definitions (1.4), (1.5) and (1.8), we use parameters that are constant over the time do-129
main. Equivalently, every frame is penalized with the same constant. This is a fair assumption130
when the level of noise is assumed to be constant over time. However, in real world appli-131
cations this is not always the case. There are situations when the noise is signal-dependent132
e.g., Poisson noise and the noise-level variates over time. In the dynamic PET imaging and in133
particular in list-mode PET, see [42], data can be binned into sinograms allowing frame dura-134
tions to be determined after the acquisition. Under this approach, one has to choose between135
longer scans with good counting statistics and shorter scans that are noisy but preserving136
temporal resolution. A usual and fair choice is to select shorter scans in the beginning where137
there is a high activity of the radioactive tracer and longer scans at the end. For example,138
a 50 minutes acquisition in list mode rat-brain scans is rebinned into 27 frames under the139
following scheme: 4x10s, 4x20s, 4x60s, 14x180s, 1x120s, see [40]. Hence, our goal is to allow140
time dependent parameters on the above regularizers that can handle not only different levels141
of noise per frame (1st term) but also balance the temporal activity in terms of a non-uniform142
time domain discretization (2nd term), i.e.,143

(1.9) N (u) =

∫ T

0
α1(t)TVx(u)(t) dt+

∫
Ω

TVt(α2(t)u)(x) dx.144

Outline of the paper: The paper is organized as follows: we first recall some general properties145
of functions of bounded variation and fix the notations in terms of the dynamic framework. We146
continue with the definition of the regularizers used in this paper such as a weighted version147
of the spatial-temporal total variation as well as its extension to the infimal convolution. In148
addition, we define also the data fitting terms that are suitable for different applications. In149
Section 4, we examine the well-posedness (existence, uniqueness and stability) of the associated150
variation problem specifically for the infimal convolution regularizer and conclude in Section151
5, with the corresponding optimality conditions. Finally, we would like to mention that the152
nature of this paper is rather theoretical and we do not address any numerical issues. This153
will be done in a forthcoming paper.154

2. Preliminaries. Let us denote u : T ×Ω → R, an image sequence defined on an open155
bounded set Ω ⊂ Rd with smooth boundary representing the space domain with d ≥ 1 and156
T = (0, T ), T > 0 which represents the temporal domain. In this section, we recall some basic157
notations related to functions of bounded variation (BV) extended to the spatial-temporal158
context. In order to distinguish between spatial and temporal domains, we define the following159
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AN ANISOTROPIC INF-CONVOLUTION BV TYPE MODEL FOR DYNAMIC RECONSTRUCTION. 7

spaces160

(2.1)

L1(T ; BV(Ω)) ={u : T × Ω→ R | u(t, ·) ∈ BV(Ω) a.e. t ∈ T
and t 7→ TVx(u)(t) ∈ L1(T )},

L1(Ω; BV(T )) ={u : T × Ω→ R | u(·, x) ∈ BV(T ) a.e. x ∈ Ω

and x 7→ TVt(u)(x) ∈ L1(Ω) }.

161

Here, TVx and TVt stand for the spatial and temporal total variation for every t ∈ T and162
x ∈ Ω respectively. In particular, we have163

(2.2)
TVx(u)(t) = sup

{∫
Ω
ξ(x)u(t, x) dx | ξ ∈ Kx

}
,

TVt(u)(x) = sup

{∫ T

0
ξ(t)u(t, x) dt | ξ ∈ Kt

}
,

164

with the corresponding sets165

(2.3)

Kx :=
{
ξ = divx(ϕ) | ϕ ∈ C1

c (Ω,Rd), ‖ϕ‖∞,x ≤ 1
}
, ‖φ‖∞,x = ess sup

x∈Ω
|φ(x)|2

Kt :=

{
ξ =

dϕ

dt
| ϕ ∈ C1

c (T ,R), ‖ϕ‖∞,t ≤ 1

}
, ‖φ‖∞,t = ess sup

t∈T
|φ(t)|

166

where divx is the divergence operator on the spatial domain and | · |2 is the isotropic-euclidean167
norm in space. Finally, we define the space of functions of bounded variation on the spatial-168
temporal domain Q, acting isotropically in these two directions i.e.,169

(2.4)

BV(Q) =
{
u ∈ L1(Q) | TV(u) <∞

}
, where

TV(u) = sup

{∫
Q
ξ(t, x)u(t, x) dx dt | ξ ∈ K

}
, and

K :=
{
ξ = div(t,x)(ϕ) | ϕ ∈ C1

c (Q,R× Rd), ‖ϕ‖∞ ≤ 1
}
,

‖φ‖∞ = ess sup
(t,x)∈Q

|φ(t, x)|2.

170

Note that div(t,x) = ∂
∂t + divx. As we pointed out in the introduction, one may consider an171

equivalent anisotropic norm using |φ(t, x)|∞ = max

{√
φ2

1(t, x) + φ2
2(t, x)}, |φ3(t, x)|

}
≤ 1 and172

all the following results are still true. In the following theorem, see [3, 5], we recall some useful173
properties on the BV(O) space, where O is a bounded, open set of RN (practically O = Ω with174
N = d or O = Q with N = d+ 1.)175

Theorem 2.1. Let O ⊂ RN , N ≥ 1. The space BV(O) endowed with the norm

‖v‖BV(O) := ‖v‖L1(O) + TV(v)

is a Banach space.
(a) For any u ∈ BV(O) there exists a sequence un ∈ C∞(Ō) such that

un → u in L1(O) and TV(un)→ TV(u).
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8 M. BERGOUNIOUX AND E. PAPOUTSELLIS

(b) The mapping u 7→ TV(u) is lower semicontinuous from BV(O) endowed with the L1(O)
topology to R+.

(c) BV(O) ⊂ Lp(O) with continuous embedding, for 1 ≤ p ≤ N

N − 1
and we have the Poincaré-

Wirtinger inequality (Remark 3.50 of [3]): there exists a constant CO only depending on O

such that for 1 ≤ p ≤ N

N − 1

∀u ∈ BV(O) ‖u− ū‖Lp(O) ≤ CO TV(u) ,

where ū is the mean value of u on O.176

(d) BV(O) ⊂ Lp(O) with compact embedding, for 1 ≤ p < N

N − 1
.177

The lemma below is essential for the forthcoming analysis and relates the spaces (2.1) and178
(2.4). It is based on the definitions above as well as of some tools in the proof of [22, Theorem179
2, Section 5.10.2]. A similar result (but in a different context) can be found in [9, Lemma 3].180

Lemma 2.1. We have L1(T ; BV(Ω)) ∩ L1(Ω; BV(T )) = BV(Q). Moreover, for every u ∈181
BV(Q)182

(2.5) TV(u) ≤
∫ T

0
TVx(u)(t)dt+

∫
Ω

TVt(u)(x)dx ≤
√

2 TV(u).183

Proof. We start with the first inclusion,

L1(T ; BV(Ω)) ∩ L1(Ω; BV(T )) ⊂ BV(Q).

Let be u ∈ L1(T ; BV(Ω)) ∩ L1(Ω; BV(T )). For any ξ ∈ K there exists ϕ = (ϕ1, ϕ2) ∈
C1
c (Q,R× Rd) such that ‖ϕ‖∞ ≤ 1 and

ξ =
∂ϕ1

∂t
+ divxϕ2 := ξ1 + ξ2

For every t ∈ T , ξ2(t, ·) : x 7→ ξ2(t, x) belongs to Kx so that∫
Ω
ξ2(t, x)u(t, x) dx ≤ TVx(u)(t), a.e. t ∈ T ,

and ∫ T

0

∫
Ω
ξ2(t, x)u(t, x) dx dt ≤

∫ T

0
TVx(u)(t)dt .

Similarly, ∫
Ω

∫ T

0
ξ1(t, x)u(t, x) dt dx ≤

∫
Ω

TVt(u)(x)dx .

Then, for every ξ ∈ K,184 ∫
Q
ξ(t, x)u(t, x) dt dx =

∫ T

0

∫
Ω
ξ2(t, x)u(t, x) dx dt+

∫
Ω

∫ T

0
ξ1(t, x)u(t, x) dt dx

≤
∫ T

0
TVx(u)(t)dt+

∫
Ω

TVt(u)(x)dx.

185
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The right hand side is finite independently of ξ since u ∈ L1(T ; BV(Ω)) ∩ L1(Ω; BV(T )).
Therefore, u ∈ BV(Q) and

TV(u) ≤
∫ T

0
TVx(u)(t)dt+

∫
Ω

TVt(u)(x)dx .

Let us prove the converse inclusion. We first assume that u ∈W1,1(Q). Then, using Fubini’s
theorem we get t 7→

∫
Ω |∇t,xu|(t, x) dx ∈ L1(T ) and x 7→

∫ T
0 |∇t,xu|(t, x) dt ∈ L1(Ω) . Here,

we write |∇t,xu|2 =

√(
∂u
∂t

)2
+
∑d

i=1

(
∂u
∂xi

)2
and

|∇t,xu(t, x)|2 ≤ |∇xu(t, x)|2 + |∇tu(t, x)| ≤
√

2 |∇t,xu(t, x)|2.

Therefore, t 7→
∫

Ω |∇xu(t, x)|2 dx ∈ L1(T ), x 7→
∫ T

0 |∇tu(t, x)| dt ∈ L1(Ω) and186
u ∈ L1(T ; BV(Ω)) ∩ L1(Ω; BV(T )) with187

TV(u) ≤
∫ T

0
TVx(u)(t) dt+

∫
Ω
TVt(u)(x) dx ≤

√
2 TV(u).(2.6)188

189

We now consider u ∈ BV(Q) and show that u ∈ L1(T ; BV(Ω)). As W1,1(Q) is dense in190
BV(Q) in the sense of the intermediate convergence [5], there exists a sequence of functions191
uk ∈ W1,1(Q) such that uk converges to u in L1(Q) and TV(uk) → TV(u). From Fubini’s192
theorem, we infer that uk(t, ·) converges to u(t, ·) in L1(Ω), for almost every t ∈ T and uk(·, x)193
converges to u(·, x) in L1(T ), for almost every x ∈ Ω. Moreover, TV(uk)→ TV(u) is bounded.194
Using (2.6) and Fatou’s Lemma we have that195

(2.7)

∫ T

0
lim inf
k→∞

TVx(uk)(t) dt+

∫
Ω

lim inf
k→∞

TVt(uk)(x) dx

≤ lim inf
k→∞

(∫ T

0
TVx(uk)(t) dt+

∫
Ω

TVt(uk)(x) dx

)
=
√

2 TV(u).

196

Then, lim inf
k→∞

TVx(uk)(t) < ∞, a.e t ∈ T and lim inf
k→∞

TVt(uk)(x) < ∞, a.e x ∈ Ω. Now, for
a.e. t ∈ T , we have that

∀ξ ∈ Kx,

∫
Ω
uk(t, x)ξ(x) dx ≤ TVx(uk)(t) .

Hence, ∫
Ω
u(t, x)ξ(x) dx = lim

k→+∞

∫
Ω
uk(t, x)ξ(x) dx ≤ lim inf

k→∞
TVx(uk)(t) <∞,

and
TVx(u)(t) = sup

ξ∈Kx

∫
Ω
u(t, x)ξ(x) dx ≤ lim inf

k→∞
TVx(uk)(t) <∞.
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10 M. BERGOUNIOUX AND E. PAPOUTSELLIS

This means u(t, ·) ∈ BV(Ω) a.e. t ∈ T . In a similar way, we have that u(·, x) ∈ BV(T ) a.e
x ∈ Ω, since

TVt(u)(x) = sup
ξ∈Kt

∫ T

0
u(t, x)ξ(t) dt ≤ lim inf

k→∞
TVt(uk)(x) <∞.

Finally, using (2.7), we get197 ∫ T

0
TVx(u)(t) dt+

∫
Ω

TVt(u)(x) dx

≤
∫ T

0
lim inf
k→∞

TVx(uk)(t) dt+

∫
Ω

lim inf
k→∞

TVt(uk)(x) dt ≤
√

2 TV(u) .

198

This ends the proof, and the inequality (2.6) is also valid for every u ∈ BV(Q). �199

Remark 2.1. The second inclusion of the previous lemma can be seen as a generalization200
of a function of bounded variation “in the sense of Tonelli” denoted by TBV, see [18, 4]. For201
instance, a function of two variables h(x, y) is TBV on a rectangle [a, b]× [c, d] if and only if202
TVxh(·, y) <∞ for a.e y ∈ [c, d], TVyh(x, ·) <∞ for a.e x ∈ [a, b] and TVxh(·, y) ∈ L1([a, b]),203
TVyh(x, ·) ∈ L1([c, d]).204

3. The variational model. As already mentioned in the introduction we are interested in205
the following variational problem206

(3.1) inf
u∈X

N (u) +H(g,Au) ,207

where X = BV(Q). In this section, we describe the choices of the regularizer term N (u) as208
well as the data fitting term H(g,Au). Recall that Ω ⊂ Rd with d ≥ 1, T = (0, T ) with T > 0209
and Q = T ×Ω ⊂ Rd+1.210

3.1. Spatial-temporal regularizer. In this section, we define the spatial-temporal total211
variation and infimal convolution total variation regularizers weighted by time dependent pa-212
rameters. Let α a positive time-dependent weight function α ∈ W1,∞(T ) with213
0 < αmin ≤ α(t) a.e. t ∈ T . For the spatial and temporal variations, we write Φα1(u) (in214
space) as the L1(T ) norm of t 7→ α1(t)TVx(u)(t), i.e.,215

(3.2) ∀u ∈ L1(T ; BV(Ω)), Φα1(u) =

∫ T

0
TVx[α1u](t) dt =

∫ T

0
α1(t)TVx[u](t) dt,216

and for temporal penalization, Ψα2 as217

(3.3) ∀u ∈ L1(Ω; BV(T )), Ψα2(v) =

∫
Ω

TVt[α2u](x) dx.218

Note that Ψα1 , Ψα2 are convex functionals and that the time dependent parameters α1, α2219
will satisfy220

(3.4)
{

α1, α2 ∈W1,∞(T ) and there exists
αmin > 0 s.t 0 < αmin ≤ αi(t) a.e. t ∈ T , i = 1, 2.

221

Therefore, using Lemma 2.1 and equations (3.2),(3.3) we have the following:222
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Definition 3.1. Let X = BV(Q) and α = (α1, α2) that satisfy (3.4). We define the spatial-223
temporal total variation regularizer Fα on X as224

(3.5) Fα(u) = Φα1(u) + Ψα2(u),225

that is

Fα(u) =

∫ T

0
TVx[α1u](t) dt+

∫
Ω

TVt[α2u](x) dx.

Moreover, for the spatial-temporal infimal convolution total variation regularization we fix
λ = (λ1, λ2) and µ = (µ1, µ2) that satisfy (3.4) and write

∀u ∈ X , Fλ#Fµ(u) = inf
v∈X

Fλ(u− v) + Fµ(v).

Proposition 3.1 (Lower semicontinuity of Fα). For every α = (α1, α2) that satisfy (3.4),226
the functionals Φα1 and Ψα2 are lower semicontinuous on L1(T ; BV(Ω)) and L1(Ω; BV(T ))227
respectively, with respect to the L1(Q) topology. In particular, the functional Fα is lower228
semicontinuous on BV(Q) with respect to the L1 topology. As a consequence, these functionals229
are lower semicontinuous on BV(Q) for any Lp(Q) topology with p ≥ 1.230

Proof. We start with the lower semicontinuity of Φα1 . The proof is similar for the lower231
semicontinuity of Ψα2 . Let un ∈ L1(T ; BV(Ω)) such that un → u in L1(Q).232
If lim inf

n→+∞
Φα1(un) = +∞ then the lower semicontinuity inequality is obviously satisfied.233

Otherwise, one can extract a subsequence (still denoted un) such that234

supn Φα1(un) = supn
∫ T

0 TVx[α1un](t) dt < +∞ . Fatou’s Lemma applied to the sequence235
TVx(α1un) gives236 ∫ T

0
lim inf
n→+∞

TVx[α1un](t) dt ≤ lim inf
n→+∞

∫ T

0
TVx[α1un](t) dt = lim inf

n→+∞
Φα1(un) < +∞.237

238

Moreover, for a.e. t ∈ T we have

∀ξ ∈ Kx, TVx[α1un](t) ≥
∫

Ω
α1(t)ξ(x)un(t, x) dx.

As un strongly converges to u in L1(Q) then un(t, x) → u(t, x) in L1(Ω) a.e. t ∈ T up to a
subsequence. Therefore,

∀ξ ∈ Kx, a.e. t ∈ (0, T ), lim inf
n→+∞

TVx[α1un](t) ≥
∫

Ω
α1(t)ξ(x)u(t, x) dx,

and for almost every t ∈ T

lim inf
n→+∞

TVx[α1un](t) ≥ sup
ξ∈Kx

∫
Ω
α1(t)ξ(x)u(t, x) dx = TVx[α1u](t).

Finally,

Φα1(u) =

∫ T

0
TVx[α1u](t) dt ≤

∫ T

0
lim inf
n→+∞

TVx[α1un](t) dt ≤ lim inf
n→+∞

Φα1(un) .
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Eventually, the functional Fα is lower semicontinuous on BV(Q) as the sum of two lower239
semicontinuous functionals. �240

Next result provides a relation between the total variation regularization which correlates241
space and time and the functional Fα where these directions are treated separately. It is a key242
result to prove well-posedness results in the forthcoming analysis.243

Theorem 3.1. Assume that α = (α1, α2) satisfy (3.4). Then, there exists positive constants244
C−α , C

+
α depending on α, such that for every u ∈ BV(Q)245

(3.6) C−αTV(α2u) ≤ Fα(u) ≤ C+
αTV(α2u) .246

Proof. Let αmax = max{‖α1‖L∞(T ), ‖α2‖L∞(T )} and note that Φα1(u) = Φ1(α1u), for
every u ∈ BV(Q). Then, we have that

αmin
αmax

Φ1(α2u) ≤ Φα1(u) ≤ αmax
αmin

Φ1(α2u), ∀u ∈ BV(Q).

Since Fα(u) = Φα1(u) + Ψα2(u) = Φ1(α1
α2
α2u) + Ψ1(α2u) we conclude to247

αmin
αmax

Φ1(α2u) + Ψ1(α2u) ≤ Fα(u) ≤ αmax
αmin

Φ1(α2u) + Ψ1(α2u)⇔248

αmin
αmax

(Φ1(α2u) + Ψ1(α2u)) ≤ Fα(u) ≤ αmax
αmin

(Φ1(α2u) + Ψ1(α2u)) ,249
250

since αmin
αmax

≤ 1 and αmax
αmin

≥ 1. Using (2.5) in Lemma 2.1, we obtain

αmin
αmax

TV(α2u) ≤ Fα(u) ≤
√

2
αmax
αmin

TV(α2u).

�251
In (3.6), we observe that the time dependent parameter α1 that acts on the spatial domain252
of Fα does not contribute to the correlated spatial-temporal total variation. In terms of the253
infimal convolution regularizer, a similar result is true when a certain assumption on the time254
dependent parameters is imposed.255

Proposition 3.2. Let λ = (λ1, λ2) and µ = (µ1, µ2) time dependent positive parameters256
that satisfy (3.4). Additionally, let κ > 0 such that µ2 = κλ2. Then, there exists constants257
C1, C2 > 0 depending on λ, µ and κ such that258

(3.7) ∀u ∈ BV(Q) C1TV(λ2u) ≤ Fλ#Fµ(u) ≤ C2TV(λ2u).259

Proof. Let be u ∈ BV(Q), then for any v ∈ BV(Q) using Theorem 3.1, we have that260

Fλ(u− v) + Fµ(v) ≥ C−λTV(λ2(u− v)) + C−µTV(µ2v) = C−λTV(λ2(u− v)) + κC−µTV(λ2v)261

≥ min
{
C−λ , κC

−
µ

}(
TV(λ2(u− v)) + TV(λ2v)

)
≥ C1TV(λ2u)262

263

Passing to the infimum over v ∈ BV(Q) and obtain the left-hand side of (3.7). On the other
hand, we have that

inf
v∈BV(Q)

Fλ(u− v) + Fµ(v) ≤ Fλ(u) ≤ C+
λTV(λ2u) = C2TV(λ2u).

�264
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Remark 3.1. The assumption that there exists κ > 0 such that µ2 = κλ2 is a technical265
assumption. Namely, we are not able to give estimates for Fλ#Fµ without it. Therefore266
it is crucial to establish results that follow in the sequel. However, it is not too restrictive.267
The parameters λ1 and µ1 that are responsible on the spatial TV regularization are still not268
correlated. This allows more freedom so as to handle the time dependent parameters between269
frames via Φ. On the other hand, the temporal TV regularization imposes that λ2 and µ2270
are equal up to a real κ that can be tuned as well. In fact, this provides a connection on the271
temporal structure of the image sequences u− v and v.272
Moreover, we still deal with four parameters which gives freedom to the model but increases the273
complexity. However, it is possible to reduce this number with consistent additional relation274
between two of them, see for instance [7].275

The following is an immediate result when we consider constant parameters with respect to276
time.277

Corollary 3.1. Assume α,λ and µ are positive constant parameters. Then, we have the278
following relations for every u ∈ BV(Q),279

αminC
−
αTV(u) ≤ Fα(u) ≤ αmaxC+

αTV(u)280

λminC1TV(u) ≤ Fλ#Fµ(u) ≤ λmaxC2TV(u),281282

where αmin = min {α1, α2} and αmax = max {α1, α2} and respectively for λmin and λmax.283

3.2. Fitting data term. In this section, we describe the possible choices of the data fitting284
term depending on the degradation of the input dynamic datum g as well as the linear operator285
A. Our setting is quite general and can be applied to any video denoising and deblurring286
application for instance, or even dynamic emission tomography (ET) such as Positron Emission287
Tomography (PET). We begin with two separate cases in terms of the linear operator A.288

289
Case (1) : A = A290

291
We consider a linear and continuous operator with the following assumptions:292

A ∈ L(Lp(Q),Lq(Q)) with 1 < p ≤ d+ 1

d
, 1 ≤ q <∞,(3.8)293

AχQ 6= 0,(3.9)294295

Under these conditions, one can use an identity operator (e.g., denoising) or a blurring (con-296
volution) operator (e.g., deblurring) to represent A. In the case of deblurring, we define297
Au := h ∗ u, where h is a spatially invariant blurring kernel that remains constant over the298
time domain. Consequently, we assume that299

(3.10) A(α(t)u) = α(t)A(u),300

for a positive time dependent parameter α, see [17], i.e.,

A(α(t)u(t, x)) = α(t)A(u(t, x)) = α(t)(h(x) ∗ u(t, x)).
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14 M. BERGOUNIOUX AND E. PAPOUTSELLIS

For (3.9), we assume that A does not annihilate constant functions which is an important tool301
to derive existence results. Now we define302

(3.11) H(g,Au) =
1

q
‖Au− g‖qLq(Q) with g ∈ Lq(Q).303

as our data fitting term. This is suitable for dynamic data corrupted by noise that follows304
Gaussian distribution (q = 2) or impulse noise (q = 1) for example, see also [10].305

306
Case (2) : A = R307

308
Here, we consider a linear operator related to emission imaging. The dynamic data that309

we obtained during a PET scan for instance, are connected through an integral (projection)310
operator known as the Radon transform R. For every t ∈ T , we write311

(3.12)
(
Ru(θ, s)

)
(t) =

∫
x·θ=s

u(t, x) dx ,312

where
{
x ∈ Rd : x · θ = s

}
is the hyperplane perpendicular to θ ∈ Sd−1 with distance s ∈ R313

from the origin. For t ∈ T ,
(
Ru(θ, s)

)
(t) lies on

{
(θ, s) : θ ∈ Sd−1, s ∈ R

}
, a cylinder of314

dimension d and is often referred as projection space or sinogram space. In the dynamic315
framework, we set Σ = T ×

{
(θ, s) : θ ∈ Sd−1, s ∈ R

}
and the Radon transform is a continuous316

linear operator with317

(3.13) R : L1(Q)→ L1(Σ), ‖Ru‖L1(Σ) ≤ C ‖u‖L1(Q) .318

We refer the reader to [31] for general continuity results of the Radon transform in Lp spaces.319
Furthermore, if p ≥ d+1

d , the Radon transform is Lp discontinuous, since the function320

u(x) = |x|−
d+1
p 1

log(|x|) belongs to Lp(Q), for x ∈ Q but is not integrable over any hyperplane,321

see [28, Th. 3.32].322
During the PET acquisition process, a certain amount of events e.g., photon-emissions are323

collected by the scanner (detectors) and organized into the so-called temporal bins g(θ, s, t)324
for every t ∈ T . The associated noise in this data is called photon noise due to the ran-325
domness in the photo counting process and in fact, obeys the well-known Poisson probabil-326
ity distribution. For this kind of noise we use the Kullback-Leibler divergence, see [10],[27],327
DKL : L1(Q)× L1(Q)→ R+ ∪ {∞}, defined as328

(3.14) DKL(u, v) =

∫
Q

(
u log

(u
v

)
− u+ v

)
dx dt, ∀u, v ≥ 0 a.e .329

This is in fact the Bregman distance of the Boltzmann-Shannon entropy, see [33]. We briefly330
recall some of the basic properties of the KL-functional which can be found in [11],[33] and331
will be used later.332

Lemma 3.1. The following properties hold true:333
(a) DKL(u, v) is nonnegative and equal to 0 if and only if u = v.334
(b) The function (u, v) 7→ DKL(u, v) is convex.335
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(c) For fixed u ∈ L1
+(Q) (resp. v ∈ L1

+(Q) ), the function DKL(u, ·) (resp. DKL(·, v)) is336
weakly lower semicontinuous with respect to L1 topology.337
(d) For every u, v ∈ L1

+(Q)338

(3.15) ‖u− v‖2L1(Q) ≤
(

2

3
‖u‖L1(Q) +

4

3
‖v‖L1(Q)

)
DKL(u, v).339

Another crucial assumption is that the dynamic data g are bounded and bounded away from340
0. Equivalently, we assume341

(3.16) g ∈ L∞(Q), with inf
Σ
g > 0.342

The boundedness assumption is true since we deal with a finite acquisition time. Moreover,343
for a reasonably long counting process, where some million of photons are detected, all the344
PET detectors will record a certain amount of photons, even if it is relatively small in practice.345
Additionally, one has to consider a certain level of background noise. Hence, the assumptions346
of the boundedness and the boundedness away from 0 can describe a realistic emitted data347
and do not deviate from the ground-truth. For more details, we refer to [45, Chapters 10-12].348
Due to (3.12), we have a similar condition as in (3.10) and in addition we require that R does349
not annihilate constant functions. Hence, we have that350

(3.17) R(α(t)u) = α(t)R(u), RχQ 6= 0.351

To conclude, we define352

(3.18) H(g,Au) = DKL(g,Ru),353

whose domain is the cone of positive functions, as our data fitting term. In practice, when we354
deal with the minimization problem (3.1), the fidelity is a reduced version of the KL-divergence,355
since we can neglect the terms that are independent of u. Indeed, we write356

(3.19) H(g,Au) =

∫
Σ
Ru− g logRu dθ ds dt,357

since the g log g, −g do not count on the minimization problem (3.1). Let us mention that the358
domain of above expression is still the cone of positive functions since u ≥ 0 a.e. implies that359
Ru ≥ 0 a.e . Though we are mainly interested in the Radon transform case, one can replace R360
with the identity or a blurring operator as in the previous case, suitable for Poisson denoising361
and deblurring and with the analogous assumptions (3.16), (3.17).362

4. Well posedness results. In this section, we are interested in the well-posedness of363
the minimization problem (3.1) for the regularizers described in Section 3.1 and the different364
choices of the data fitting term in (3.11) and (3.19). We focus on the infimal convolution total365
variation regularizer case i.e., N (u) := Fλ#Fµ(u). In the case of the total variation regularizer,366
the forthcoming analysis is similar and most of the proofs are the same with minor adaptations.367
We prove well-posedness (existence,uniqueness and stability) via the direct method of calculus368
of variations for369

(P) inf
u∈BV(Q)

Fλ#Fµ(u) +H(g,Au).370
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16 M. BERGOUNIOUX AND E. PAPOUTSELLIS

In particular, we need the lower semicontinuity condition to be true for both the regularizing371
and the fidelity term, together with some compactness properties.372

4.1. Lower semicontinuity of the inf-convolution operator. Note that the lower semi-373
continuity of the inf-convolution operator is not true in general, even if Fλ is, see [6, Example374
12.13]. Additional assumptions have to be imposed such as coercivity on the underlying space375
as well as exactness of the infimal convolution in order to be lower semicontinuous. The first376
step is to show that the inf-convolution operator is exact in our case. This is the object of377
next Lemma.378

Lemma 4.1 (Exactness of Fλ#Fµ). Assume that λ and µ verify (3.4) and there exists
κ > 0 such that µ2 = κλ2. Then, for every u ∈ BV(Q), there exists vu ∈ BV(Q) such that

vu ∈ argmin
v∈BV(Q)

Fλ(u− v) + Fµ(v) and
∫
Q
µ2(t) vu(t, x) dt dx = 0.

Proof. Fix u ∈ BV(Q). Let vn be a minimizing sequence of

inf
v∈BV(Q)

Fλ(u− v) + Fµ(v).

Then vn ∈ BV(Q) and without loss of generality we may assume that the mean value of µ2vn
is

µ2vn :=
1

|Q|

∫
Q
µ2(t)vn(t, x) dx dt = 0 .

Indeed, since µ2 = κλ2, it is easy to see that379

Fλ

(
u− (vn −

1

µ2
µ2vn)

)
+ Fµ

(
vn −

1

µ2
µ2vn

)
= Fλ(u− vn) + Fµ(vn),380

381

so that wn := vn − 1
µ2
µ2vn is also a minimizing sequence that satisfies

∫
Q
µ2wndx dt = 0.382

As Fλ(u − vn) + Fµ(vn) is bounded and Theorem 3.1 yields that TV(µ2vn) is bounded383
as well. Moreover, we have ‖µ2vn‖L1(Q) ≤ TV(µ2vn) from the Poincaré-Wirtinger inequality,384
see Theorem 2.1. Hence, (µ2vn) is BV-bounded. This implies that vn is BV-bounded as well385
(see Lemma 4.2 and (4.1)). Therefore, there exists vu ∈ BV(Q) such that, up to subsequence,386

vn
w∗
⇀ vu, i.e., vn → vu for the L1(Q) topology. We end the proof with the lower semicontinuity387

of the functional with respect to the the L1(Q) topology, see Proposition 3.1. In addition, since388 ∫
Q µ2(t)vn(t, x) dx dt = 0, we have from the L1 convergence that

∫
Q µ2(t)vu(t, x) dx dt = 0 as389

well. �390
391

Next Lemma provides an estimate on u ∈ BV(Q) when α satisfies (3.4) and αu ∈ BV(Q).392
393

Lemma 4.2. Assume that α ∈ W1,∞(T ) and that there exists αmin > 0 such that 0 <394
αmin ≤ α(t) a.e. t ∈ T , then 1/α ∈W1,∞(T ). Moreover, if αu ∈ BV(Q) then u ∈ BV(Q) as395
well.396
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Proof. Let α be in W1,∞(T ) such that 0 < αmin ≤ α(t) a.e. t ∈ T . We use Proposition397
8.4 of [13] to infer that 1/α ∈W1,∞(T ). Moreover, if αu ∈ BV(Q) then u ∈ BV(Q). Indeed,398
since399

(4.1) ‖u‖BV(Q) ≤
2

αmin
‖αu‖L1(Q) +

‖α′‖L∞(T )

α2
min

TV(αu) ≤ Cα‖αu‖BV(Q).400

�401
Now we prove a lower semicontinuity result of Fλ#Fµ. Here, we use the exactness of Fλ#Fµ402
and the BV coercivity of one of its terms. For more details on the lower semicontinuity of the403
infimal convolution we refer to [41].404

Theorem 4.1. Assume that λ and µ verify (3.4) and there exists κ > 0 such that µ2 = κλ2.405
Then, the infimal-convolution Fλ#Fµ operator is lower semicontinuous on BV(Q) with respect406
to the L1 topology. Precisely, if un is a sequence in BV(Q) that converges to some u with407
respect to the strong L1 topology then408

(4.2) Fλ#Fµ(u) ≤ lim inf
n→+∞

Fλ#Fµ(un).409

Proof. Let un ∈ BV(Q) such that un → u in L1(Q). If lim inf
n→+∞

Fλ#Fµ(un) = +∞ then

relation (4.2) is satisfied. Otherwise, there exists a subsequence (denoted similarly) and a
constant C such that Fλ#Fµ(un) ≤ C. Since Fλ#Fµ is exact, there exists vn ∈ BV(Q) such
that

Fλ(un − vn) + Fµ(vn) = Fλ#Fµ(un) and
∫
Q
µ2vn = 0 .

We claim that (µ2vn) is BV-bounded (that is ‖µ2vn‖BV(Q) is uniformly bounded with respect
to n). Indeed, Theorem (3.1) yields

TV(µ2vn) ≤ 1

C−µ
Fµ(vn) ≤ C

C−µ
.

Using Poincaré-Wirtinger inequality, we have that

‖µ2vn‖L1(Q) ≤ CQTV(µ2vn) ≤
C CQ

C−µ
.

Following similar steps as before, there exists a subsequence vn
w∗
⇀ ṽ in BV(Q). Due to the

lower semicontinuity Fλ and Fµ with respect to L1 and its exactness, we have

Fλ(u− ṽ) + Fµ(ṽ) ≤ lim inf
n→+∞

Fλ(un − vn) + Fµ(vn) = lim inf
n→+∞

Fλ#Fµ(un)

and since Fλ#Fµ(u) ≤ Fλ(u− ṽ) + Fµ(ṽ), we conclude that

Fλ#Fµ(u) ≤ lim inf
n→+∞

Fλ#Fµ(un).

�410
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4.2. Well posedness. Now we focus on the existence of a solution for (P). The proof is411
based on the corresponding results in [1, 44, 33] adapted to a spatial-temporal framework.412

Theorem 4.2 (Existence). Let λ,µ that satisfy (3.4) and that there exists a real number413
κ > 0 such that µ2 = κλ2. Then, there exists a solution to problem (P).414

Proof. Let un ∈ BV(Q) be a minimizing sequence of problem (P). Then there exists
M > 0 such that

Fλ#Fµ(un) +H(g,Aun) ≤M.

Using Proposition 3.2, we deduce that TV(λ2un) is bounded. Let wn = λ2un then we have
‖wn − wn‖Lp(Q) ≤M3 with 1 ≤ p ≤ d+1

d . Moreover, we have

‖wn‖Lp(Q) ≤ ‖wn − wn‖Lp(Q) + ‖wn‖Lp(Q) ≤M3 +

∣∣∣∣ ∫
Q
wn dx dt

∣∣∣∣.
The goal is to prove that un is BV bounded. This is equivalent to find an estimate on the last415
term of the above inequality. To achieve this, we consider the two cases with respect to the416
choice of the fidelity term presented in Section 3.2.417

418
Case (1) : H(g,Au) = 1

q‖Au− g‖
q
Lq(Q)419

420
Recall that g ∈ Lq(Q), A ∈ L(Lp(Q),Lq(Q)) with 1 ≤ p ≤ d+1

d , 1 ≤ q < ∞, and satisfy421
(3.9), (3.10). Then, one has that422 ∣∣∣∣∫
Q
wn dx dt

∣∣∣∣ ‖AχQ‖Lq(Q)

|Q|
= ‖Awn‖Lq(Q) ≤ ‖Awn−Awn+Awn− λ2g + λ2g‖Lq(Q)423

≤ ‖A‖ ‖wn− wn‖Lp(Q)+ ‖A(λ2un)− λ2g‖Lq(Q)+‖λ2g‖Lq(Q)424

≤ ‖A‖ ‖wn− wn‖Lp(Q)+ ‖λ2‖L∞(T )

(
‖Aun − g‖Lq(Q) + ‖g‖Lq(Q)

)
425

≤ ‖A‖M3 + ‖λ2‖L∞(T )

(
(qM)1/q + ‖g‖Lq(Q)

)
≤M4.426

427

Case (2) : H(g,Au) = DKL(g,Ru)428
429

Recall that, g ∈ L∞(Q), inf
Σ
g > 0, R ∈ L(L1(Q),L1(Σ)) that satisfies (3.17) with an430

additional positivity constraint un ≥ 0. Therefore, it suffices to bound
∫
Qwn dx dt. Since431

infΣ g > 0, we employ (3.15) and using (3.13) we have432

‖Rwn − λ2g‖2L1(Σ) ≤
(

2

3
‖λ2g‖L1(Σ)+

4

3
‖Rwn‖L1(Σ)

)
DKL(λ2g, λ2Run)433

≤
(

2

3
‖λ2‖L∞(T ) ‖g‖L1(Σ) +

4

3
‖R(wn − wn) +Rwn‖L1(Σ)

)
‖λ2‖L∞(T )DKL(g,Run)434

≤
(

2

3
‖λ2‖L∞(T ) ‖g‖L1(Σ) +

4

3
‖R‖ ‖wn − wn‖L1(Q)+

4

3
‖Rwn‖L1(Σ)

)
‖λ2‖L∞(T )M435
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≤
(

2

3
‖λ2‖L∞(T ) ‖g‖L1(Σ) +

4

3
‖R‖ |Q|1/p′M3 +

4

3
‖Rwn‖L1(Σ)

)
‖λ2‖L∞(T )M.436

437

Hence,438

(4.3) ‖Rwn − λ2g‖2L1(Σ) ≤
(
M5 +

4

3
‖Rwn‖L1(Σ)

)
M6.439

On the other hand,440

‖Rwn − λ2g‖2L1(Σ) ≥
(
‖R(wn − wn)− λ2g‖L1(Σ) − ‖Rwn‖L1(Σ)

)2
441

≥ ‖Rwn‖L1(Σ)

(
‖Rwn‖L1(Σ) − 2 ‖R(wn − wn)− λ2g‖L1(Σ)

)
442

≥ ‖Rwn‖L1(Σ)

(
‖Rwn‖L1(Σ)− 2

(
‖R‖ |Q|1/p′M3 + ‖λ2‖L∞(T ) ‖g‖L1(Σ)

))
443

≥ ‖Rwn‖L1(Σ)

(
‖Rwn‖L1(Σ)−M7

)
.(4.4)444

445

Also, we have that446

(4.5) ‖Rwn‖L1(Σ) =

∫
Q
wn dx dt

|Q|
‖RχQ‖L1(Σ)⇔‖Rwn‖L1(Σ)=M8 ‖wn‖L1(Q) .447

Combining (4.3),(4.4) and (4.5), we derive that448

M8 ‖wn‖L1(Q)

(
M8 ‖wn‖L1(Q) −M7 −

4

3
M6

)
≤M5M6.(4.6)449

450

Let B = M8 ‖wn‖L1(Q) −M7 − 4
3M6. If B ≥ 1, it is immediate from (4.6), that ‖wn‖L1(Q) is

bounded. Otherwise, we have that

‖wn‖L1(Q) ≤
1 +M7 + 4

3M6

M8
,

which is again bounded.451
To conclude, we have proved that in both cases wn = λ2un is Lp bounded and hence is BV

bounded. Using Lemma 4.2, un is BV and Lp bounded. Then, there exists subsequence still
denoted by un such that un

w∗
⇀ u in BV, i.e., un → u in L1 and un

w
⇀ u in Lp, 1 < p ≤ d+1

d .
Theorem 4.1 yields that

Fλ#Fµ(u) ≤ lim inf
n→∞

Fλ#Fµ(un).

Moreover, due to the lower semicontinuity of the fidelity terms as well as the continuity of A
and R, we conclude that

H(g,Au) ≤ lim inf
n→∞

H(g,Aun).

This means that u is a solution to (P). �452
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Remark 4.1. To be consistent with the cases where either A or R is the identity operator,453
let us mention that the BV-boundedness is immediate since454

‖un‖Lq(Q) ≤ ‖un − g‖Lq(Q) + ‖g‖Lq(Q)455

‖un‖L1(Q) − ‖g‖L∞(Q) log ‖un‖L1(Q) − |Q| ≤ DKL(g, un).456457

In the latter case, we use the Jensen’s inequality and that x−1
x ≤ log x, for x > 0. We refer458

also to [27].459

Theorem 4.3 (Uniqueness). Assume that λ and µ satisfy (3.4) and that there exists a real460
number κ > 0 such that µ2 = κλ2. In addition, assume that461
• either A is injective in Case (1) for (3.11) and 1 < q <∞, or462
• g satisfies (3.16) for Case (2).463
Then the solution to (P) is unique.464

Proof. Note that Fλ#Fµ is convex since Fλ and Fµ are convex. We first consider Case465
(1) : since 1 < q <∞ and A is injective then u 7→ 1

q ‖Au− g‖
q
Lq(Q) is strictly convex.466

In case (2), since infΣ g > 0 and R is injective, see for instance [28], then u 7→ DKL(g,Ru) is467
strictly convex. In both cases, we have that the energy u 7→ E(u) := (Fλ#µ)(u) +H(Au, g) is468
strictly convex as a sum of a convex and a strictly convex terms. This gives uniqueness. �469

To conclude this section, we discuss the stability of minimizers of (P), see [1, 33, 37] for470
instance, with respect to a small perturbation on the data g. Let (gn) be a perturbed dynamic471
data sequence such that472

(4.7) H(gn, g → 0⇔

{
‖gn − g‖Lq(Q) → 0, gn ∈ Lq(Q) Case (1)
DKL(gn, g)→ 0, gn ∈ L∞(Σ) Case (2)

473

and the corresponding perturbed minimization problem474

(4.8) inf
u∈BV(Q)

(Fλ#Fµ)(u) +H(gn,Au).475

476

Theorem 4.4 (Stability). Assume the assumptions of Theorem 4.3 are fulfilled and that477
inf
Σ
gn > 0 and logRu ∈ L∞(Σ) in Case (2). Then problem (P) is stable with respect to478

perturbations on g. Precisely, let (gn) as in (4.7) and u, un be the solutions to (P) and (4.8)479
respectively. Then, there exists a subsequence of (un) that converges to u in BV(Q)-w∗.480

Proof. Since un minimizes (4.8), then for every v ∈ BV(Q)481

(4.9) (Fλ#Fµ)(un) +H(gn,Aun) ≤ (Fλ#Fµ)(v) +H(gn,Av).482

As in the previous proofs, we consider each case separately.483
484

Case (1) : H(g,Au) = 1
q‖Au− g‖

q
Lq(Q)485

486
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Since gn → g in Lq(Q), then there exists n0 ∈ N such that ‖g − gn‖qq ≤ q
2q−1 for every487

n ≥ n0. So, for every n ≥ n0488

(Fλ#Fµ)(un)+
1

q
‖Aun− g‖qLq(Q) ≤ 2q−1

(
(Fλ#Fµ)(un)+

1

q
‖Aun−gn‖qLq(Q)+

1

q
‖gn − g‖qLq(Q)

)
489

≤ 2q−1

(
(Fλ#Fµ)(u)+

1

q
‖Au−gn‖qLq(Q)+

1

q
‖gn − g‖qLq(Q)

)
490

≤ (M + 1).491492

Here, we used the convexity of the Lq norm (q > 1) and relation (4.9) with v = u. Following the
proof of Theorem 4.2, we can prove that (un) is BV-bounded, Lp-bounded with 1 < p ≤ d+1

d

and (vn) are BV-bounded. Therefore, we have that un → ũ in L1, un
w
⇀ ũ in Lp, with

1 < p ≤ d+1
d and vn → v in L1. It remains to show that ũ is a minimizer of (P). Theorem 4.1

yields that
(Fλ#Fµ)(ũ) ≤ lim inf

n→∞
(Fλ#Fµ)(un).

Moreover Aun − gn ⇀ Aũ− g in Lq(Q). Since,

∀v ∈ BV(Q) (Fλ#Fµ)(un) +
1

q
‖Aun − gn‖qLq(Q) ≤ (Fλ#Fµ)(v) +

1

q
‖Av − gn‖qLq(Q)

we get for every v ∈ BV(Q) that493

(Fλ#Fµ)(ũ) +
1

q
‖Aũ− g‖qLq(Q) ≤ lim inf

n→∞

[
(Fλ#Fµ)(un) +

1

q
‖Aun − gn‖qLq(Q)

]
494

≤ lim
n→∞

(Fλ#Fµ)(v) +
1

q
‖Av − gn‖qLq(Q)495

≤ (Fλ#Fµ)(v) +
1

q
‖Av − g‖qLq(Q).496

497

So ũ is a minimizer and we conclude with uniqueness that u = ũ.498
499

Case (2) : H(g,Au) = DKL(g,Ru)500
501

We assumed that g, gn ∈ L∞(Σ), inf
Σ
g, inf

Σ
gn > 0 and logRu ∈ L∞(Σ). Using (4.9), for502

every v ∈ BV(Q), v ≥ 0 a.e.,503

(4.10) (Fλ#Fµ)(un) +DKL(gn,Run) ≤ (Fλ#Fµ)(v) +DKL(gn,Rv).504

A short computation gives that∣∣DKL(gn,Rv)−DKL(g,Rv)−DKL(gn, g)
∣∣ ≤ ‖logRv − log g‖L∞(Σ) ‖gn − g‖L1(Σ) .

As DKL(gn, g)→ 0, then since Lemma 3.1 implies that gn → g in L1(Σ). So

∀v ∈ BV(Q), v ≥ 0 lim
n→∞

DKL(gn,Rv) = DKL(g,Rv).
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Moreover, we can prove using Theorem 4.2 Case (2), that un is bounded in Lp(Q)
with 1 < p ≤ d+1

d by a constant depending on ‖gn‖L1(Σ). This bound is uniform with respect
to n since ‖gn‖L1(Σ) is bounded. As before, un is BV bounded and there exists ũ ∈ BV(Q) such
that un → ũ in L1(Q). Hence, Run → Rũ in L1(Σ) as well as pointwise convergent almost ev-
erywhere in Σ. By Fatou’s Lemma applied to the sequence

(
gn log gn−gn logRun−gn+Run

)
n
,

we obtain
DKL(g,Rũ) ≤ lim inf

n→∞
DKL(gn,Run).

Similarly to the previous case, we get for every v ∈ BV(Q), v ≥ 0 that505

(Fλ#Fµ)(ũ) +DKL(g,Rũ) ≤ lim inf
n→∞

(Fλ#Fµ)(un) +DKL(gn,Run)506

≤ lim
n→∞

(Fλ#Fµ)(v) +DKL(gn,Rv)507

≤ (Fλ#Fµ)(v) +DKL(g,Rv).508509

By uniqueness, we conclude that ũ = u is the minimizer of (P). �510

4.3. An equivalent formulation. We end this section by providing an equivalent formu-511
lation for (P) that may be useful for numerical computations. The key tool is the exactness512
of the inf-convolution operator. The original problem (P) also reads513

(P ′) inf
(u,v)∈BV(Q)×BV(Q)

Fλ(u− v) + Fµ(v) +H(g,Au).514

515

Theorem 4.5 (Equivalence). Assume that λ and µ verify (3.4) and there exists κ > 0 such516
that µ2 = κλ2.517
1. If (u,v) is a solution of (P ′ ), then u is a solution of (P) and518

(4.11) Fλ(u− v) + Fµ(v) = Fλ#Fµ(u) = inf
v∈BV(Q)

{Fλ(u− v) + Fµ(v)}.519

2. If u is a solution of (P) and equation (4.11) is verified for some v ∈ BV(Q), then (u,v)520
is a solution of (P ′ )521

Proof. Assume that (u,v) is a solution to (P ′ ). Then, for every (u, v) ∈ BV(Q)×BV(Q)522
we have523

(4.12) Fλ(u− v) + Fµ(v) +H(g,Au) ≤ Fλ(u− v) + Fµ(v) +H(g,Au) .524

Taking u = u gives

∀v ∈ BV(Q), Fλ(u− v) + Fµ(v) ≤ Fλ(u− v) + Fµ(v) ,

that is Fλ(u− v) + Fµ(v) = Fλ#Fµ(u). Let us fix u ∈ BV(Q). Using (4.12), we obtain

∀v ∈ BV(Q), Fλ#Fµ(u) +H(g,Au) ≤ Fλ(u− v) + Fµ(v) +H(g,Au),

which results to

Fλ#Fµ(u) +H(g,Au) ≤
(

inf
v∈BV(Q)

Fλ(u− v) + Fµ(v)

)
+H(g,Au) = Fλ#Fµ(u) +H(g,Au).
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Therefore, u is a solution to (P).525
Conversely, assume u is a solution to (P). As Fλ#Fµ is exact at u, there exists v ∈ BV(Q)526
such that Fλ(u− v) + Fµ(v) = Fλ#Fµ(u). Then, for every (u, v) ∈ BV(Q)× BV(Q)527

Fλ(u− v) + Fµ(v) +H(g,Au) = Fλ#Fµ(u) +H(g,Au) ≤ Fλ#Fµ(u) +H(g,Au)528

≤ Fλ(u− v) + Fµ(v) +H(g,Au) .529530

This proves that (u,v) is a solution to (P ′ ). �531

5. Optimality conditions. In the final section of this paper, we deal with the optimality532
conditions of (P). Optimality conditions are useful since they provide qualitative information533
on the solution of the minimization problem. In many cases, they are a useful tool to prove534
convergence of the algorithms and get error estimates independent on the discretization grid.535
Here, we use standard duality techniques based on the convex conjugate and the subdifferential536
of a functional in order to characterize the solutions. However, as we often deal with the dual537
of the underlying space, we prefer to use a reflexive framework since the dual of BV(Q) is538
not easy to handle. Therefore we choose p with 1 ≤ p < d+1

d , so that BV(Q) is compactly539
embedded in Lp(Q).540

We denote 〈·, ·〉p,p′ the duality product between Lp(Q) and its dual Lp
′
(Q) with

1

p
+

1

p′
= 1

and

∀u ∈ Lp(Q), ∀v ∈ Lp
′
(Q) 〈u, v〉p,p′ =

∫
Q
u(t, x) v(t, x) dt dx .

We start by extending Φα1 , Ψα2 and Fα from their respective domains to Lp(Q) as follows:541

Φ̃α1(u) =

{
Φα1(u) if u ∈ L1(T ; BV(Ω)),

+∞ else,
, Ψ̃α2(u) =

{
Ψα2(u) if u ∈ L1(Ω; BV(T )),

+∞ else,
,

F̃α(u) =

{
Fα(u) if u ∈ BV(Q),

+∞ if u ∈ Lp(Q)\BV(Q).

542

We define the extended problem as543

(P∗) inf
u∈Lp(Q)

(F̃λ#F̃µ)(u) +H(g,Au) .544

With the definition of F̃λ, it is clear that problems (P) and (P∗) have the same solution set.545
So, we look for optimality conditions for (P∗). It is obvious that the lower semicontinuity for546
the extended regularizing terms as in Proposition 3.1 is still valid.547

Corollary 5.1. Let α = (α1, α2) that satisfies (3.4). The functionals Φ̃α1, Ψ̃α2 and F̃α are548
convex and lower semicontinuous on Lp(Q).549

We begin with the Fenchel conjugates of the corresponding regularizing terms and then550
focus on the characterization of the subdifferential of F̃λ#F̃µ(u) +H(g,Au).551
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5.1. Fenchel conjugate of F̃λ#F̃µ. One way to derive the optimality conditions of (P∗),552
is by computing the subdifferentials of each term. A useful tool to achieve this goal is to553
compute the conjugate functionals. We start with the following theorem found in [5, Theorem554
9.5.1.].555

Theorem 5.1. If V is a normed space with dual space V ′, and f : V → R∪{+∞} is a lower
semicontinuous convex and proper function, then

∀(u, u∗) ∈ V × V ′ u∗ ∈ ∂f(u)⇐⇒ u ∈ ∂f∗(u∗) ,

where f∗ is the Fenchel conjugate of f and the subdifferential of f at u is

∂f(u) =
{
u∗ ∈ V ∗ | ∀v ∈ V, f(v)− f(u) ≥ 〈u∗, v − u〉V ′,V

}
.

The first step is to compute the Fenchel conjugate of the regularizing term F̃λ#F̃µ starting
by F̃λ. Let us focus on the computation of the Fenchel-conjugate of Φ̃λ. We consider the set

Kx :=
{
ξ = divx ϕ |ϕ ∈ L∞(T ; C1

c (Ω,Rd)), ‖ϕ‖∞ ≤ 1
}
⊂ L∞(Q).

We have the following lemma that provides a relation with the sets defined in (2.3).556

Lemma 5.1. We have Kx ⊂ Kx , where Kx is given by (2.3). Conversely, any ξ ∈ Kx557
verifies ξ(t, ·) ∈ Kx, for almost every t ∈ T .558

Proof. Let be ξ ∈ Kx. There exists ϕ ∈ C1
c (Ω,Rd) such that ξ = divx ϕ and ‖ϕ‖∞,x ≤ 1.559

Let ψ ∈ L∞(T ; C1
c (Ω,Rd)) defined as ψ(t, x) = ϕ(x), (t, x) ∈ Q. Then ‖ψ‖∞ ≤ 1 and we may560

extend ξ on T × Ω with ξ(t, x) = ξ(x) = divx ϕ(x) = divx ψ(t, x). �561
562

Theorem 5.2 (Φ̃α Conjugate). For every function α that satisfies (3.4), we have

Φ̃∗α = 1αKx

where, 1C is the indicator function of the set C and Kx is the Lp
′
(Q)-closure of Kx.563

Proof. Note that for every u∗ ∈ Lp
′
(Q),564

Φ̃∗α(u∗) = sup
v∈Lp(Q)

〈u∗, v〉p,p′ − Φ̃α(v) = sup
v∈BV(Q)

〈u∗, v〉p,p′Φα(v).(5.1)565
566

Let ξ ∈ Kx, then ξ(t, ·) ∈ Kx for almost every t ∈ T and (2.2) gives∫
Ω
ξ(t, x)u(t, x) dx ≤ sup

ζ∈Kx

∫
Ω
ζ(x)u(t, x) dx = TVx(u)(t);

using (3.2), we obtain that567

(5.2) sup
ξ∈αKx

〈ξ, u〉 = sup
ξ∈αKx

∫ T

0

∫
Ω
ξ(t, x)u(t, x) dx ≤ Φα(u).568
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As Φ̃α is positively homogeneous, then Φ̃∗α is the indicator of some closed subset K̃ of Lp
′
(Q)569

(Corollary 13.2.1 of [35]).570
• We first prove that αKx ⊂ K̃. Let u∗ be in αKx. Using (5.1), (5.2) we have that for any571
v ∈ BV(Q), Φα(v) ≥ 〈u∗v〉 and so Φ̃∗α(u∗) ≤ 0. As Φ̃∗α is an indicator function this means that572
Φ̃∗α(u∗) = 0. So u∗ ∈ K̃ and αKx ⊂ K̃. As K̃ is Lp

′
(Q)-closed this gives αKx ⊂ K̃ .573

• Let us prove the converse inclusion. Assume there exists u∗ ∈ K̃ such that u∗ /∈ αKx. One574
can separate u∗ and αKx, see [13]: there exists ω ∈ R and u0 ∈ Lp(Q) such that575

〈u0, u
∗〉p,p′ > ω ≥ sup

v∗∈αKx

〈u0, v
∗〉p,p′576

⇒ sup
v∗∈αKx

〈u0, v
∗ − u∗〉p,p′ < 0.(5.3)577

578

On the other hand, since Φ̃α is convex and lower semicontinuous with respect to the Lp-579
topology, then by Fenchel-Moreau theorem we have that Φ̃∗∗α = Φ̃α. In particular we write580
that for all u ∈ BV(Q),581

(5.4) Φα(u) = sup
v∗∈Lp′ (Q)

〈u, v∗〉p,p′ − Φ̃∗α(v∗) = sup
v∗∈Lp′ (Q)

〈u, v∗〉p,p′ ,582

since Φ̃∗α(v∗) = 0. Let us fix t ∈ T , then

∀ξ ∈ Kx, α(t)ξ(x)u(t, x) ≤ sup
ζ∈Kx

α(t)ζ(x)u(t, x) a.e. x ∈ Ω,

and taking the supremum we have that583

sup
ξ∈Kx

∫
Ω
α(t)ξ(x)u(t, x) dx ≤

∫
Ω

sup
ζ∈Kx

α(t)ζ(x)u(t, x) dx ,584

TVx(αu)(t) ≤
∫

Ω
sup
ζ∈Kx

α(t)ζ(x)u(t, x) dx.585
586

We subtract both sides by 〈u, u∗〉p,p′ and integrate over the time domain T to recover587 ∫ T

0
TVx(αu)(t) dt−

∫ T

0

∫
Ω
u∗(t, x)u(t, x) dx dt ≤588 ∫ T

0

∫
Ω

[
sup
ζ∈Kx

α(t)ζ(x)− u∗(t, x)

]
u(t, x) dx dt.589

590

Then, using (5.4) and Lemma 5.1, we have that for all u ∈ BV(Q)591

0 ≤ Φα(u)− 〈u, u∗〉p,p′ ≤
∫ T

0

∫
Ω

[
sup
ζ∈αKx

ζ(x)− u∗(t, x)

]
u(t, x) dx dt592

≤
∫ T

0

∫
Ω

[
sup
ξ∈αKx

ξ(t, x)− u∗(t, x)

]
u(t, x) dx dt.593

594
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Hence, this implies

∀u ∈ BV(Q),

∫ T

0

∫
Ω

(
sup
ξ∈αKx

ξ(t, x)− u∗(t, x)

)
u(t, x) dx dt ≥ 0.

As BV(Q) is dense in Lp(Q) with respect to the Lp-norm (since it includes C1
c (Q) ) we get

∀u ∈ Lp(Q),

∫
Q

(
sup
ξ∈αKx

ξ(t, x)− u∗(t, x)

)
u(t, x) dx dt ≥ 0.

In a similar way, choosing −u instead of u we conclude that

sup
ξ∈αKx

ξ − u∗ = 0 ⇒ sup
ξ∈αKx

〈u0, ξ − u∗〉p,p′ = 0

As αKx ⊂ αKx, then
sup
ξ∈αKx

〈u0, ξ − u∗〉p,p′ ≥ 0 .

which is a contradiction by (5.3). �595
The following is the analogous result of the previous theorem for the Ψ̃α functional and can596
be proved similarly.597

Theorem 5.3 (Ψ̃α Conjugate). For every function α that satisfies (3.4), we have

Ψ̃∗α = 1αKt
, where Kt :=

{
ξ =

dψ

dt
| ψ ∈ L∞(Ω, C1

c (0, T,R)), ‖ψ‖∞ ≤ 1

}
.

Using the above theorems, we are able to compute the convex conjugate of the extended
spatial-temporal total variation defined in 3.5. We use the following results for the convex
conjugate of the infimal convolution and the convex conjugate of the sum, see [5, Chapter 9.4],
i.e., for two proper, closed, convex functionals φ, ψ we have

(φ#ψ)∗ = φ∗ + ψ∗ and (φ+ ψ)∗ = (φ∗#ψ∗)∗.

Corollary 5.2. For every α that satisfies (3.4), we have that

F̃ ∗α = 1Kα
with Kα = α1Kx + α2Kt.

Proof. As F̃α = Φ̃α1 + Ψ̃α2 and Φ̃α1 , Ψ̃α2 are convex, lower semicontinuous, we have

F̃ ∗α = (Φ̃α1 + Ψ̃α2)∗ = (Φ̃∗α1
#Ψ̃∗α2

)∗∗ = (1α1Kx
#1α2Kt

)∗∗ = (1α1Kx+α2Kt
)∗∗ = (1Kα)∗∗ ,

where Kα = α1Kx + α2Kt. Moreover, one has that (1Kα)∗∗ = 1Kα
, since the (Lp′) closure598

Kα of Kα is convex, see [35, Chapter 13]. �599
600

Corollary 5.3 (F̃λ#F̃µ Conjugate). For every λ,µ that satisfy (3.4), we have

(F̃λ#F̃µ)∗ = 1Kλ∩Kµ
,

where Kλ, Kµ are the corresponding sets defined in Corollary 5.2.601

We have computed the convex conjugate of our proposed regularizer and we proceed now with602
the optimality conditions of (P).603
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5.2. Optimality conditions for (P) . Since the problem (P∗) is convex we have that u is
the solution if and only if 0 ∈ ∂E(u) where

E(u) := (F̃λ#F̃µ)(u) +H(g,Au).

We use the following result that allows to estimate the subdifferential of the sum of two604
functionals, see [5, Theorem 9.5.4].605

Theorem 5.4. Let (V, ‖ · ‖) be a normed space and let f, h : V → R ∪ {+∞} be two lower606
semicontinuous, convex and proper functions.607
(a) The following inclusion is always true: ∂f + ∂h ⊂ ∂(f + h) .608
(b) If f is finite and continuous at a point of dom h, then we have: ∂f + ∂h = ∂(f + h) .609

5.2.1. Case (1). In this subsection we focus on the first case where the Lq fidelity term
is H(g,Au) = 1

q‖Au − g‖
q
Lq(Q) with 1 ≤ q < +∞ and A satisfies assumptions (3.8), (3.9)

and (3.10). Clearly, dom F̃λ#F̃µ = BV(Q), domH(g,Au) = Lp(Q) and u → H(g,Au) is Lp

continuous at 0 ∈ BV(Q). Therefore,

∂E(u) = ∂F̃λ#F̃µ(u) + ∂H(g,Au).

Any u∗ of ∂E(u) writes u∗ = u∗1 + u∗2 where u∗1 ∈ ∂F̃λ#F̃µ(u) and u∗2 ∈ ∂H(g,Au). In the610
sequel, we characterize the elements u∗1, u∗2. Starting with the subdifferential of F̃λ#F̃µ, it is611
easy to check that for every u ∈ BV(Q) ↪→ Lp(Q), we get612

(5.5) u∗1 ∈ ∂F̃λ#F̃µ(u)⇐⇒ u∗1 ∈ Kλ ∩ Kµ and ∀v∗ ∈ Kλ ∩ Kµ, 〈u, v∗ − u∗1〉p,p′ ≤ 0 ,613

where Kλ∩Kµ is a closed convex subset of Lp
′
(Q). Indeed, we use Theorem 5.1, Corollary 5.3

and that F̃λ#F̃µ is convex and lower semicontinuous, to get

u ∈ ∂(F̃λ#F̃µ)∗(u∗1) = ∂1Kλ∩Kµ
(u∗1).

The subdifferential of the data fitting term using [20, Proposition 5.7] is614

(5.6) ∂H(g,Au) =

{
A∗(Au− g)q−1, if 1 <q<∞{
A∗z, ‖z‖L∞(Q)≤ 1, z ∈ sign(Au− g)

}
, if q = 1.

615

Note that in the latter case one has

∂(‖ · − g‖L1(Q))(v) = ∂(‖·‖L1(Q))(v − g) = {z ∈ L∞(Q) | ‖z‖L∞(Q) ≤ 1, z ∈ sign(v − g)}.

Overall, we have that

0 ∈ ∂E(u)⇐⇒ ∃u∗ ∈ ∂H(g,Au) such that− u∗ ∈ ∂F̃λ#F̃µ(u)

and one concludes to the following result:616

Theorem 5.5. A function u ∈ BV(Q) is a solution to (P) if and only if617

1. ∀v ∈ Kλ ∩ Kµ
〈
u, A∗(Au− g)q−1 − v

〉
p,p′
≤ 0, if 1 < q < +∞,

2. ∀v ∈ Kλ ∩ Kµ, 〈u, A∗z− v〉p,p′ ≤ 0, if q = 1 with

z ∈ L∞(Q), ‖z‖L∞(Q) ≤ 1, z ∈ sign(Au− g).

618
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5.2.2. Optimality conditions for (P): case (2). In this subsection we focus on the Kull-619
back Leibler divergence H(g,Au) = DKL(g,Ru) where u ∈ L1

+(Q), the positive cone of L1.620
We cannot follow the same strategy as before due to the limitations of this fidelity in terms621
of continuity. It is known that a proper, convex, lower semicontinuous is continuous if and622
only if the interior of its domain is not empty, i.e., int(domf) 6= ∅, see [20]. In our case the623
effective domain is in fact nowhere dense and DKL(g,R·) is nowhere continuous in L1(Ω), let624
alone in Lp(Ω), see [19, Remark 2.12]. Moreover, F̃λ#F̃µ is not continuous with respect to the625
Lp norm.626

Therefore we use BV(Q) as the underlying functional space. In the sequel 〈·, ·〉 de-627
notes the duality product between BV(Q)

′ and BV(Q). We use Theorem 5.4 again with628
V = BV(Q), f = Fλ#Fµ and h = DKL(g,R·). Indeed, f is lower semicontinuous due to629
Theorem 4.1 and h due to the continuity properties of both the Radon transform and the630
Kullback-Leibler divergence.631

Proposition 5.1. Assume that λ and µ satisfy (3.4) and that there exists a real number632
κ > 0 such that µ2 = κλ2. Then Fλ#Fµ is continuous on BV(Q) (and of course at any633
element of domf ∩ domh = BV+(Q) the set of positive BV functions).634

Proof. Let u1, u2 be in BV(Q). As Fλ#Fµ is exact, there exists v1 ∈ BV(Q) such that635
Fλ#Fµ(u1) = Fλ(u1 − v1) + Fµ(v1). We get636

Fλ#Fµ(u2) = inf
v∈BV(Q)

Fλ(u2 − v) + Fµ(v) ≤ Fλ(u2 − v1) + Fµ(v1)637

≤ Fλ(u2 − u1) + Fλ(u1 − v1) + Fµ(v1)638

≤ Fλ(u2 − u1) + Fλ#Fµ(u1).639640

Similarly
Fλ#Fµ(u1) ≤ Fλ(u1 − u2) + Fλ#Fµ(u2),

and using Theorem 3.1

|Fλ#Fµ(u1)− Fλ#Fµ(u2)| ≤ Fλ(u1 − u2) ≤ C2TV(λ2(u1 − u2)).

Moreover641

TV (λ2(u1 − u2)) ≤ ‖λ2‖L∞(T ) TV (u1 − u2) +
∥∥∥λ′2∥∥∥

L∞(T )
‖u1 − u2‖L1(Q)642

≤ ‖λ2‖W 1,∞(T ) ‖u1 − u2‖BV .643644

This prove the continuity of Fλ#Fµ on BV(Q). �
So u ∈ BV+(Q) is a solution to (P) if and only if

0 ∈ ∂(Fλ#Fµ)(u) + ∂DKL(g,Ru).

Equivalently, there exists u∗ ∈ ∂(Fλ#Fµ)(u) such that −u∗ ∈ ∂DKL(g,R·)(u). As usual,645
we have u∗ ∈ ∂(Fλ#Fµ)(u) ⇐⇒ u ∈ ∂(Fλ#Fµ)∗(u∗). However, in this setting we are646
in different topology. Though we have computed F̃ ∗λ for previous case, the computation of647
F ∗λ is still challenging. Indeed, we cannot use the arguments used in Theorem 5.2 since the648
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underlying topology is now the BV one and not the Lp(Q) one any longer. In particular, we649
loose reflexivity as well as an integral representation on the duality product, see [23].650

Since Fλ is positively homogeneous functional, we know there exists a closed convex subset
of BV

′
that we callKλ such that F ∗λ = 1Kλ

(u∗) is the indicator function ofKλ. Unfortunately,
we are not able to give an explicit description ofKλ: we only know that Kλ ⊂Kλ. We obtain

(Fλ#Fµ)∗ = F ∗λ + F ∗µ = 1Kλ
+ 1Kµ = 1Kλ∩Kµ .

Therefore,

u∗ ∈ ∂(Fλ#Fµ)(u) ⇐⇒ u∗ ∈Kλ ∩Kµ and ∀w∗ ∈Kλ ∩Kµ 〈u, w∗ − u∗〉 ≤ 0.

Next, we compute ∂H(g,R·)(u). Let be w ∈ BV+(Q)

−u∗ ∈ ∂H(g,R·)(u) =⇒ ∀s > 0
H(g,R(u+ sw))−H(g,Ru)

s
≥ −〈u∗, w〉 .

Passing to the limit as s→ 0 gives 〈∇H(g,R·)(u) + u∗, w〉 ≥ 0.
Conversely, assume 〈∇H(g,R·)(u) + u∗, w〉 ≥ 0 for every w ∈ BV+(Q). Let be w ∈ BV(Q):
if u+ w ≤ 0 then it is clear that

+∞ = H(g,R(u+ w))−H(g,Ru) ≥ 〈(−u∗), w〉 .

Otherwise, by convexity

H(g,R(u+ w))−H(g,Ru) ≥ 〈∇H(g,R·)(u), w〉 ≥ 〈(−u∗), w〉 .

Therefore

−u∗ ∈ ∂H(g,R·)(u) ⇐⇒ ∀w ∈ BV+(Q), 〈∇H(g,R·)(u) + u∗, w〉 ≥ 0 .

A short computation gives

∇H(g,R·)(u) = R∗
(
1Σ −

g

Ru

)
.

Finally ,

−u∗ ∈ ∂H(g,R·)(u) ⇐⇒ ∀w ∈ BV+(Q),
〈
R∗
(
1Σ −

g

Ru

)
+ u∗, w

〉
≥ 0.

For this case, we conclude with the following optimality conditions651

Theorem 5.6. Let u ∈ BV+(Q). Then u is a solution to (P) if and only if there exists652
u∗ ∈Kλ ∩Kµ ⊂ BV(Q)

′ such that653

∀w∗ ∈Kλ ∩Kµ 〈u, w∗ − u∗〉 ≤ 0,(5.7)654

∀w ∈ BV+(Q)

〈
R∗
(
1Σ −

g

Ru)

)
+ u∗, w

〉
≥ 0.(5.8)655

656
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Remark 5.1. The difficulties met in order to establish the optimality conditions are closely657
related to the so-called two-norm discrepancy in control theory (see [14] for example). We have658
to deal with both the BV- norm and the Lp-norm. The qualification condition that we need to659
describe the subdifferentials is easy to satisfy with the BV-norm. However, the computation of660
the conjugate functions cannot be explicit within a non reflexive framework. On the contrary,661
the use of Lp-norm leads to a nice description of conjugate functions while the splitting of the662
differential cannot be done. In a discrete setting, these difficulties disappear of course.663

6. Conclusion. We perform a thorough analysis on the proposed spatial-temporal infimal-664
convolution regularizer under time dependent weight parameters. It acts in a separate mode665
on the spatial and temporal domains and it can be applied to a wide range of problems such as666
denoising, deblurring and emission tomography with different kind of noise (impulse, gaussian667
or Poisson). We focus on the well-posedness of the proposed minimization problem and provide668
existence, uniqueness and stability results into a very general framework. We further derive669
the optimality conditions using standard tools from duality theory. However, we have still670
to focus in depth on the characterization of the sets Kλ to have a clear insight of the dual671
variables. This implies that we have to deal with the dual of the BV space and use some672
integral representations as in [23]. Another issue is to describe carefully the discretization673
process and the dual problem in an appropriate way, especially with respect to isotropic or674
anisotropic spatial-temporal discrete norms. Finally, in a forthcoming paper, we shall perform675
numerics, especially for PET reconstruction, and compare this model to those that can be676
found in the literature such as [25].677
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