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An Anisotropic Inf-Convolution BV type model for dynamic reconstruction.*

Maitine Bergounioux' and E. Papoutsellis

Abstract. We are interested in a spatial-temporal variational model for image sequences. The model involves
a fitting data term to be adapted to different modalities such as denoising, deblurring or emission
tomography. The regularizing term acts as an infimal-convolution type operator that takes into
account the respective influence of space and time variables in a separate mode. We give existence
and uniqueness results and provide optimality conditions via duality analysis.

Key words. Spatio-temporal Variational Regularization, Infimal Convolution Total Variation, Anisotropic Total
variation, Optimality Conditions

AMS subject classifications. 65D18, 68U10,65K10

1. Introduction. In this paper, we examine variational inverse problems for dynamic image
reconstruction. As in the context of image restoration, the goal regarding a video restoration
is to recover a clean image sequence given a degraded dynamic datum. Certainly, one of
the main differences between image and video restoration is the additional temporal domain
where a collection of images-frames evolves over the time. Beside the spatial structures which
are a significant factor on the output quality of the reconstruction, the time direction has an
important role on the temporal consistency among the frames. Furthermore, in terms of video
applications, one may consider applications inherited from the imaging context and extend
them to the dynamical framework. To name a few, we have dynamic denoising, deblurring,
inpainting, decompression and emission tomography such as Positron Emission Tomography
and Magnetic Resonance Imaging.

The aim of this paper is to study variational regularization models in an infinite dimensional
setting defined on a spatial-temporal domain. In particular, given a corrupted image sequence
g, we look for a solution u, in a Banach space X, to the following generic minimization problem

(1.1) JngN(u) + H(Au, g).

The first and second terms represent the well known regularizer and the data fitting term
(fidelity). The former imposes a certain prior structure (regularity) on the solution u and the
latter is determined by the nature of degradation, e.g., a transformation through a continuous
and linear operator A with the presence of random noise, as well as the modality of the prob-
lem. Regarding image restoration, the minimization problem (1.1) has been extensively used
and examined from both theoretical and numerical point of view for different applications. For
instance, we refer the reader to the famous ROF variational model [36], where the use of func-
tions of bounded variation (BV) and the total variation regularization (TV) was established
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2 M. BERGOUNIOUX AND E. PAPOUTSELLIS

in image processing. Moreover, it was analyzed in [1], [44] and several extensions have been
proposed in [15, 8, 12, 16, 24]. Now, concerning variational problems on a spatial-temporal
domain, one can witness significantly less work from a theoretical perspective compared to
a numerical one. Indeed, there is a plethora of numerical algorithms in the literature for
variational video processing. We refer the reader to some of them as [17, 38, 32].

A quite natural approach towards image sequence reconstruction is to apply the minimiza-
tion problem (1.1), acting on every image-frame of the sequence individually. For example, we
use the above problem in order to denoise each frame from a sequence corrupted by Gaussian
noise. We choose a non-smooth regularizer as the total variation measure over the spatial
domain ©Q C R2. Tt is known for the piecewise constant structures it imposes to the solution u
and can eliminate efficiently the noise while preserving the edges of the images. It is defined
as

(1.2) N (u) = a|Du|(2) = sup {/ udivpdr dt : ¢ € CL(Q,R?),||¢]l, < a} )
Q
weighted by a positive parameter o and

P1(x) + ¢5(x), r = 2, (isotropic)

max{|¢1(z)], [¢2(z)[}, r = oo, (anisotropic).

(13) ol = eSjéSgplcf)(%‘)lr, |p(x)]r = {

This parameter is responsible for a proper balancing between the regularizer and the fidelity
1

term which is fixed as H(u,g) = 5 |lu — 9”%2(Q) in this case. Although, this solution produces
a satisfying result on the spatial domain, it does not take into account the interaction between
time and space and some time artifacts, e.g. flickering, will be introduced. Note that one
can use the anisotropic norm instead of an isotropic one in (1.3). Although these norms are
equivalent in a finite dimensional setting, they have different effects on the corresponding
computed minimizers. In the isotropic case, sharp corners will not be allowed in the edge set
and smooth corners prevail. On the other hand, corners in the direction of the unit vectors
are favored in the anisotropic variant. For more details, we refer the reader to [29, 21, 34] on
the properties and differences between these two corresponding minimizers.

A more sophisticated path, referred as 3D denoising, is to extend the domain taking into
account the time activity and treat an image sequence as a 3D volume where the time plays

the role of the third variable. In this case, we write
L) N = 1Da0l@ = sup | [ wdivaddrat: 6 € CHQE) ol <1}
Q

where Q = T xQ C R? is the three-dimensional spatial-temporal domain with 7 = (0,7).
Here, we have a positive vector o = (a1, ag) acting on the space and time respectively with

) 0 0 0 . .
dive = <8x + 6?}) + Oéza = ondivy + agdivy

and the TV smoothness is applied along both the spatial and the temporal directions. An
obvious question that rises on this particularly setting is the correlation between the space

This manuscript is for review purposes only.
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AN ANISOTROPIC INF-CONVOLUTION BV TYPE MODEL FOR DYNAMIC RECONSTRUCTION. 3

and time. Video regularization approaches as in [17, 25, 30| combine spatial and temporal

domains under the corresponding dynamic isotropic norm ||¢||,, = esssup |¢(t,z)|2. Hence,
z€Q

space and time are interacting with each other and contribute under some weight parameters
to the TV regularizer.

Figure 1.1: Image sequence of 5 frames and its noisy version corrupted with Gaussian noise.
Geometrical shapes are moving in different directions with different moving speed.

However, this choice of norm is not very accurate concerning preservation of spatial and
temporal discontinuities. Using the anisotropic norm, ||¢||., = esssup |¢(t, )|, Where space
x

and time are not correlated, has the advantage to focus on the discontinuities of Q and 7T in
a separate mode respectively and preserve spatial and temporal details more accurately. In
particular, we can decompose (1.4) into a spatial and a temporal total variation, see 2], and
write

[Dul(Q) = [D2ul(Q) + |Dyul(Q), with

D,ul(Q) = sup { /Qual(%fj n %?) dudt: ¢ € CHQ.R),

(15) max{y61(t.0) + 63(00)) < 1,

| Dyu|(Q) = sup {/ uag% drdt: ¢ € CHQ,R?), max{|pz(t, )|} < 1} , and
Q 8.%3
[Dul(Q) < | Dol (Q) + | Drul (Q) < V2|Dul(Q).

This type of decomposition has already been proposed for several applications such as dynamic
denoising, segmentation, video decompression and the reader is referred to [43, 38, 26, 17].
Although, this paper is rather theoretical we would like to intrigue the reader with a sim-
ple numerical example. In Figure 1.1, we have an image sequence of 5 frames of several
geometrical objects moving in different directions and speed under a constant background.

This manuscript is for review purposes only.
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4 M. BERGOUNIOUX AND E. PAPOUTSELLIS

This is corrupted by Gaussian noise. Then, in order to compare between isotropic (1.4) and

anisotropic (1.5) total variation spatial-temporal regularization we choose the same ratio <t

az
of the parameters for both cases that act in the space and time directions respectively.

Figure 1.2: Surface plot of the 3rd frame of the true sequence.

w0 ®

(a) Isotropic vs Anisotropic TV  (b) Isotropic vs Anisotropic TV  (c) Isotropic vs Anisotropic TV
ar =5, a2 =0.01 & =10, ag = 0.05 U — 50, ap = 0.1

ay an

Figure 1.3: Surface plots of the regularized solutions of (1.1) for the 3rd frame of Figure 1.1.
We compare the ground truth, see Figure 1.2 with the isotropic (1.4) (1st row) and anisotropic
(1.5) (2nd row) spatial-temporal total variation regularization. The parameters are the same
for both cases.

In Figure 1.3, we present the surface plots of the 3rd frame of the corresponding regularized
solutions of (1.1) with the squared L? norm fidelity term. We observe that for different ratios,
anisotropic regularization is able to preserve the geometry of these objects.

Motivated by (1.5), we proceed with a further decomposition in terms of the test function

This manuscript is for review purposes only.
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AN ANISOTROPIC INF-CONVOLUTION BV TYPE MODEL FOR DYNAMIC RECONSTRUCTION. 5

¢ and define the following decoupled spatial-temporal total variation regularization,

T
(1.6) N@w) = o /0 TV, (u)(£) dit + s /Q TV, (u)(x) dz.

where TV, (u)(t) = (|Du|(R))(t) and TV(u)(z) = (|Du|(T))(x) denote the spatial total
variation for every t € T and the temporal total variation for every x € ) respectively. Note
that in the above formulations the test functions are defined in €2 and 7T respectively.
Non-smooth regularization methods introduce different kind of modelling artifacts. As we
discussed above, a total variation regularizer tends to approximate non-constant noisy regions
with piecewise constant structures leading to the staircasing effect. This aspect is certainly
inherited in the dynamic framework and produces the flickering effect due to the staircasing
along the temporal dimension. In addition, one may observe some ghost artifacts on moving
objects, i.e., where certain features are overlapping between two consecutive frames. This is
due to the strong temporal regularization, namely when the ratio % is relatively small, see
Figure 1.3. In order to overcome this kind of modelling artifacts, a combination of non-smooth

regularizers is used via the concept of the infimal convolution,
(1.7) N(u) = Fi#F(u) = 12;f( Fi(u—v) + Fy(v).

This regularization functional is able to favor reconstructions with a relatively small F; or
F5 contribution. In the imaging context, this is introduced in [15], where a first and second
order TV-based regularizers are combined in order to reduce the staircasing phenomenon.
Under this regularizer, the corresponding solution u of (1.1) promotes both piecewise constant
and smooth structures due to the presence of higher order derivatives and in fact provides a
certain decomposition between piecewise constant and smooth regions. On the other hand,
Holler and Kunisch in [25], extend the notion of infimal convolution in the context of dynamic
processing. In such a setting, they propose the use of total variation functionals as in (1.4) with
an isotropic relation on the spatial and temporal regularities. As in the imaging framework,
one can decompose an image sequence into a sequence that captures spatial information and
a sequence that encodes temporal activity. This type of spatial-temporal regularizer will be
discussed in Section 3 under our anisotropic formulation (1.6) of separate action in space and
time. Specifically, we propose the following infimal convolution total variation regularization
for an image sequence u given two positive vectors X = (A1, A2) and p = (p1, p2),

T
N(u) = Fx#Fpu(u) = inf /0 MTV,(u —v)(t) dt + /Q ATV (u—v)(x)dx

veX

(1.8) T
+/0 1 TV, (v)(t) dt+/Q,u2TVt(U)(fU) dx.

Depending on the choice of A, p one can enforce a certain regularity and either focus on space
or on time for the image sequences u—v and v. For example, if one selects that A\; = uo = k and
Ao = pu1 = 1 with £ > 1 then the first two terms impose a TV smoothness more on the space
direction that in time for the u — v term. For the other two terms, the TV smoothness acts
conversely for the v component. Therefore, it is a matter of proper balancing which is tuned

This manuscript is for review purposes only.
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6 M. BERGOUNIOUX AND E. PAPOUTSELLIS

automatically via the infimal convolution and highlights the cost either on space or time.
We would like to mention that the functionals in (1.7) are not necessarily total variational
functionals and other combinations or high order functionals may be used, see for instance
[39, 7].

Finally, we would like to emphasize on the nature of the positive parameters defined above.
In the definitions (1.4), (1.5) and (1.8), we use parameters that are constant over the time do-
main. Equivalently, every frame is penalized with the same constant. This is a fair assumption
when the level of noise is assumed to be constant over time. However, in real world appli-
cations this is not always the case. There are situations when the noise is signal-dependent
e.g., Poisson noise and the noise-level variates over time. In the dynamic PET imaging and in
particular in list-mode PET, see [42], data can be binned into sinograms allowing frame dura-
tions to be determined after the acquisition. Under this approach, one has to choose between
longer scans with good counting statistics and shorter scans that are noisy but preserving
temporal resolution. A usual and fair choice is to select shorter scans in the beginning where
there is a high activity of the radioactive tracer and longer scans at the end. For example,
a 50 minutes acquisition in list mode rat-brain scans is rebinned into 27 frames under the
following scheme: 4x10s, 4x20s, 4x60s, 14x180s, 1x120s, see [40]. Hence, our goal is to allow
time dependent parameters on the above regularizers that can handle not only different levels
of noise per frame (1st term) but also balance the temporal activity in terms of a non-uniform
time domain discretization (2nd term), i.e.,

T
(1.9) N (u) —/0 ap () TV, (u)(t) dt+/QTVt(oz2(t)u)(x) dx.

Outline of the paper: The paper is organized as follows: we first recall some general properties

of functions of bounded variation and fix the notations in terms of the dynamic framework. We
continue with the definition of the regularizers used in this paper such as a weighted version
of the spatial-temporal total variation as well as its extension to the infimal convolution. In
addition, we define also the data fitting terms that are suitable for different applications. In
Section 4, we examine the well-posedness (existence, uniqueness and stability) of the associated
variation problem specifically for the infimal convolution regularizer and conclude in Section
5, with the corresponding optimality conditions. Finally, we would like to mention that the
nature of this paper is rather theoretical and we do not address any numerical issues. This
will be done in a forthcoming paper.

2. Preliminaries. Let us denote u : T xQ — R, an image sequence defined on an open
bounded set © C R? with smooth boundary representing the space domain with d > 1 and
T =(0,T), T > 0 which represents the temporal domain. In this section, we recall some basic
notations related to functions of bounded variation (BV) extended to the spatial-temporal
context. In order to distinguish between spatial and temporal domains, we define the following

This manuscript is for review purposes only.
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spaces

LYT:;BV(Q) ={u: T xQ =R |u(t,-) € BV(Q) ae teT
and t — TV, (u)(t) € LY(T)},

LY uBV(T)) ={u: T xQ =R |u(-,z) e BV(T) ae. z€Q
and z — TV (u)(z) € LY(Q) }.

(2.1)

Here, TV, and TV, stand for the spatial and temporal total variation for every t € 7 and
x €  respectively. In particular, we have

TV, ( —sup{/§ u(t, ) daz\feK}

i) =sup{ [ etute.n) dt | € < 1),
0
with the corresponding sets

Ky = {€ = diva(¢) | 9 € CHARY, [lloce <1}, [6logs = esssup |¢(z)2
ze

(2.2)

(2.3)
{s = 2 e CUT R, glloes < 1} [ = essup o)

where div, is the divergence operator on the spatial domain and |- |3 is the isotropic-euclidean
norm in space. Finally, we define the space of functions of bounded variation on the spatial-
temporal domain @), acting isotropically in these two directions i.e.,

BV(Q) = {ue LY(Q) | TV(u) < oo}, where
TV (u) = sup {/Qg(t,x)u(t,x) dx dt | € € K}, and

= {&=divin)(©) | o € CHQRXRY), flplloo <1,
[0l = oss sup |6 (t, 2)]z-

(t,x)eQ

(2.4)

Note that div(; ) = % + div,. As we pointed out in the introduction, one may consider an

equivalent anisotropic norm using |¢(t, x)|s = max { VA3 (t,x) + ¢3(t, )}, |b3(t, :U)|} < 1land

all the following results are still true. In the following theorem, see [3, 5], we recall some useful
properties on the BV(O) space, where O is a bounded, open set of RY (practically O =  with
N=dorO=Qwith N=d+1.)

Theorem 2.1. Let O C RN, N > 1. The space BV(O) endowed with the norm
[vlBv(0) = lvllLioy + TV (v)

1s a Banach space. B
(a) For any u € BV(O) there exists a sequence u, € C*°(O) such that

wy, — u in LYO) and TV (up) — TV (u).

This manuscript is for review purposes only.
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8 M. BERGOUNIOUX AND E. PAPOUTSELLIS

(b) The mapping u + TV (u) is lower semicontinuous from BV(O) endowed with the L1(O)
topology to RT.

N
(¢) BV(O) C LP(O) with continuous embedding, for 1 < p < I
Wirtinger inequality (Remark 3.50 of [3]): there exists a constant Co only depending on O
h that 1<p<
such that for 1 <p < N

1 and we have the Poincaré-

—1
Vu€BV(0)  |lu—lluso) < CoTV(u)
where 4 is the mean value of u on O.

(d) BV(O) C LP(O) with compact embedding, for 1 < p <

N-1

The lemma below is essential for the forthcoming analysis and relates the spaces (2.1) and
(2.4). It is based on the definitions above as well as of some tools in the proof of |22, Theorem
2, Section 5.10.2]. A similar result (but in a different context) can be found in [9, Lemma 3|.

Lemma 2.1. We have L*(T;BV(Q)) N LY(Q;BV(T)) = BV(Q). Moreover, for every u €
BV(Q)

T
(2.5) TV (u) < /0 TV, (u) (£)dt + /Q TV, (u)(z)dz < VITV (u).

Proof. We start with the first inclusion,
LY(T;BV(Q)) NLY (% BV(T)) € BV(Q).

Let be u € LY(T;BV(Q)) N LY(Q;BV(T)). For any & € K there exists ¢ = (p1,92) €
CL(Q,R x RY) such that [|¢[le < 1 and

0 .
5=§+dwm =6+ &

For every t € T , &a(t, ) : © — &a(t, ) belongs to K, so that
/ ot )u(t, 2) do < TV, (u)(), ae teT
Q

and - -
/ / &(t, 2)u(t, 7) d dt < / TV, (u)(t)dt .
0 Q 0

Similarly,

/Q/OTfl(t,x)u(t,x) dt de < / TV, (u)(2)dz .

Q
Then, for every € € K,

/Qf(t,x)u(t,x) dtd:c—/OT/Qfg(t,m)u(t,a:) d:cdt—i—/ﬂ/OTfl(t,x)u(t,x) dt dz
< /O V) (bt + /Q TV, () () d.
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The right hand side is finite independently of & since u € L(7;BV(Q)) N LY(;BV(T)).
Therefore, u € BV(Q) and

T
TV (u) S/o TVx(u)(t)dt—{—/QTVt(u)(x)dx.

Let us prove the converse inclusion. We first assume that v € WH1(Q). Then, using Fubini’s
theorem we get t — [, |Vizul(t,z) do € LY(T) and z — fOT |Vizul(t,z) dt € L1(Q) . Here,

. 2 2
we write |V puls = \/(?9?) + Z’(ii:l <f‘%) and

Viau(t,z)|o < [Vault,z)|2 + |Viult, )] < V2 |Vizult, z)ls.

Therefore, ¢ —+ [, |Vou(t, )|z dz € LNT), 2 = [i |Veu(t,z)| dt € LY() and
u € LYT;BV(Q)) NLY(;BV(T)) with

T
(2.6) TV () < /O TV, (u)(t) dt + /Q TV, (u) () dz < V3TV (u).

We now consider u € BV(Q) and show that u € LY(T;BV(2)). As WH1(Q) is dense in
BV(Q) in the sense of the intermediate convergence [5], there exists a sequence of functions
ur € WH(Q) such that u, converges to u in L'(Q) and TV (ug) — TV (u). From Fubini’s
theorem, we infer that uy(t,-) converges to u(t,-) in LY(Q), for almost every t € T and uy (-, z)
converges to u(-, z) in L}(T), for almost every x € 2. Moreover, TV (u,) — TV (u) is bounded.
Using (2.6) and Fatou’s Lemma we have that

T
/ lim inf TV (ug)(t) dt + / lim inf TV (ug)(x) dx

k—o0

(2.7) .
< lim inf < /0 TV, (ug) (t) dt + /Q TV (up)(z) dw) =V2TV(u).

k—o00

Then, likminf TV, (ug)(t) < oo, aet € T and ligninfTVt(uk)(x) < 00, a.exz € Q. Now, for
—00 —00
a.e. t € T, we have that

ve € Ko, / (b, 2)E) da < TV o (ug) (1) -
Q
Hence,

/Q Wt D)E@) dr = lim [ we(t, 2)€(x) dz < liminf TV, (u)(£) < oo,

k—+oco Jo k—o0

and

TVz(u)(t) = sup / u(t, z)é(z) de < lign inf TV (ug)(t) < oo.
£EKL JQ o

This manuscript is for review purposes only.
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10 M. BERGOUNIOUX AND E. PAPOUTSELLIS

This means u(t,-) € BV(Q2) a.e. ¢t € 7. In a similar way, we have that u(-,x) € BV(T) a.e
x € €, since

T
TV, (u)(z) = sup / w(t, 2)E(L) dt < liminf TV, (ug)(z) < oo.
ek, Jo k—oo

Finally, using (2.7), we get

T
/ TV, (u)(t) dt + / TV, (u)(z) do
0 Q

T
< / lim inf TV, (u) (£) dt + / lim inf TV, (uy)(z) dt < VTV (u) .
0 k—oo Q k—oo
This ends the proof, and the inequality (2.6) is also valid for every u € BV(Q). O
Remark 2.1. The second inclusion of the previous lemma can be seen as a generalization

of a function of bounded variation “in the sense of Tonelli” denoted by TBV, see [18, 4]. For
instance, a function of two variables h(z,y) is TBV on a rectangle [a,b] X [c,d] if and only if
TV,h(-,y) < oo for a.ey € [c,d], TV h(z,-) < oo for a.e x € [a,b] and TV h(-,y) € L([a, b]),
TV, h(z,-) € Li([c,d)]).

3. The variational model. As already mentioned in the introduction we are interested in
the following variational problem

(3.1) inf N(u)+H(g, Au) ,

ueX

where X = BV(Q). In this section, we describe the choices of the regularizer term N (u) as
well as the data fitting term #(g, Au). Recall that Q € R? with d > 1, T = (0,T) with T > 0
and Q = T xQ C R,

3.1. Spatial-temporal regularizer. In this section, we define the spatial-temporal total
variation and infimal convolution total variation regularizers weighted by time dependent pa-
rameters. Let « a positive time-dependent weight function o € WDH(T) with
0 < amin < a(t) a.e. t € T. For the spatial and temporal variations, we write ®,, (u) (in
space) as the L'(7) norm of ¢ — ay(t)TV,(u)(t), i.e.,

T T
(32)  YueLNT:BV(Q),  ®u (u) = / TV, [yl (t) dit = / on ()T, [ul (1) dt,
0 0
and for temporal penalization, ¥,, as
(3.3) vu € LY BV(T)), Uy, (v) = / TVi[agu](z) dz.
Q

Note that ¥,,, ¥,, are convex functionals and that the time dependent parameters aq, as
will satisfy

1,00 .
(3.4) { a1, a3 € Who(T) and there exists

Amin > 0840 < amin < ai(t) ae. teT , i=1,2.

Therefore, using Lemma 2.1 and equations (3.2),(3.3) we have the following:
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Definition 3.1. Let X = BV(Q) and o = (o, a2) that satisfy (3.4). We define the spatial-
temporal total variation reqularizer Fo on X as

(3.5) Fo(u) = @, (u) + Va, (u),

that s
T
Fo(u) :/0 TV [aqul(t) dt+/QTVt[a2u](a:) dx.

Moreover, for the spatial-temporal infimal convolution total variation regularization we fix
A= (A1, ) and p = (1, p2) that satisfy (3.4) and write

Yu € X, Fx#F,(u) = 1é1£f Fx(u—v) + Fy(v).

Proposition 3.1 (Lower semicontinuity of Fy). For every a = (a1, ) that satisfy (3.4),
the functionals ®,, and Vo, are lower semicontinuous on L' (T;BV(Q)) and L1(Q; BV(T))
respectively, with respect to the L1(Q) topology. In particular, the functional F, is lower
semicontinuous on BV (Q) with respect to the L' topology. As a consequence, these functionals
are lower semicontinuous on BV(Q) for any LP(Q) topology with p > 1.

Proof. We start with the lower semicontinuity of ®,,. The proof is similar for the lower
semicontinuity of W,,. Let u, € L(T;BV(Q)) such that u,, — u in L}(Q).
If lim inf D, (un) = +00 then the lower semicontinuity inequality is obviously satisfied.
n—-+0oo

Otherwise, one can extract a subsequence (still denoted wu,) such that
sup,, P, (un) = sup, fOT TVzonuy](t)dt < +oo . Fatou’s Lemma applied to the sequence
TV, (aiuy,) gives

T T
/lim inf TV [aquy,](t) dt <lim inf/ TV, [au,](t) dt = liminf @, (u,) < +oo.
0 0

n—-+o0o n—-+0o00 n—-+o00

Moreover, for a.e. t € T we have

Ve Ky, TValarunl(t) > /Q on (D& (@)un(t, ) dz.

As w, strongly converges to u in L1(Q) then wu,(t,7) — u(t,z) in LY(Q) a.e. t € T up to a
subsequence. Therefore,

V€ € Ky, ae. t€(0,T), lminf TV [aqu,](t) > / a1 (H)E(x)u(t, z) dx,
Q

n—-+00

and for almost every t € T

liminf TV, [aiu,](t) > sup /Qal(t)ﬁ(z)u(t, x)dr = TV [ajul(t).

n—-+oo K,

Finally,

T T
By, (1) = /0 TV, aru](t) dt < /O lim nf TV s (1) df < lim o @, (1)

n—-+o0o

This manuscript is for review purposes only.
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12 M. BERGOUNIOUX AND E. PAPOUTSELLIS

Eventually, the functional F, is lower semicontinuous on BV(Q) as the sum of two lower
semicontinuous functionals. (]

Next result provides a relation between the total variation regularization which correlates
space and time and the functional F,, where these directions are treated separately. It is a key
result to prove well-posedness results in the forthcoming analysis.

Theorem 3.1. Assume that o = (a1, ag) satisfy (3.4). Then, there exists positive constants
C,,, C& depending on a, such that for every u € BV(Q)

(3.6) CLTV(aou) < Fy(u) < CITV(agu) .

Proof. Let amar = max{[|ai| pe(r), |a2l/L~m} and note that @, (u) = ®1(ayu), for
every u € BV(Q). Then, we have that

Wi & (aou) < Ba, (1) < 2 G, (a0u), Vu € BV(Q).

Omazx Qmin

Since Fa(u) = Pa, (u) + Yo, (u) = @1(5Eazu) + Vi (azu) we conclude to

Imin & (o) + Uy (azu) < Falu) < 293, (agu) + Uy (asu) <

AUmax Qmin
(07759} (6%

T (@1 (agu) + Py (agu)) < Fu(u) < = (D1 (agu) + U1 (agu)),
Omazx Amin

since omin <1 and 9mez > 1. Using (2.5) in Lemma 2.1, we obtain

m

Gmin TV (agu) < Fy(u) < V2 Omaz TV (agu).

ama:c amzn

O
In (3.6), we observe that the time dependent parameter oy that acts on the spatial domain
of F, does not contribute to the correlated spatial-temporal total variation. In terms of the
infimal convolution regularizer, a similar result is true when a certain assumption on the time
dependent parameters is imposed.

Proposition 3.2. Let A = (A1, A2) and p = (1, p2) time dependent positive parameters
that satisfy (3.4). Additionally, let k > 0 such that po = kAa. Then, there exists constants
C1,Co > 0 depending on A, pu and  such that

Proof. Let be u € BV(Q), then for any v € BV(Q) using Theorem 3.1, we have that
Fx(u—v) + Fu(v) > CyTV(Aa(u —v)) + C, TV (p2v) = Cy TV (A2 (u — v)) + £C, TV (A2v)

Y

min {Cy, K,C;} <TV()\2(U —v)) + TV()\Q'U)) > C1'TV (Aqu)

Passing to the infimum over v € BV(Q) and obtain the left-hand side of (3.7). On the other
hand, we have that

inf  Fy(u— F, <F < CTTV(Aqu) = CoTV (A\u).
et o) A(u—v) + Fu(v) < Fa(u) < CYTV(Au) Z TV (Aqu)

This manuscript is for review purposes only.
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Remark 3.1. The assumption that there exists k > 0 such that puo = kMg is a technical
assumption. Namely, we are not able to give estimates for Fx#F,, without it. Therefore
it is crucial to establish results that follow in the sequel. However, it is not too restrictive.
The parameters A1 and w1 that are responsible on the spatial TV regularization are still not
correlated. This allows more freedom so as to handle the time dependent parameters between
frames via ®. On the other hand, the temporal TV regularization imposes that Ao and s
are equal up to a real Kk that can be tuned as well. In fact, this provides a connection on the
temporal structure of the image sequences u — v and v.

Moreover, we still deal with four parameters which gives freedom to the model but increases the
complexity. However, it is possible to reduce this number with consistent additional relation
between two of them, see for instance [7].

The following is an immediate result when we consider constant parameters with respect to
time.

Corollary 3.1. Assume a, X and p are positive constant parameters. Then, we have the
following relations for every u € BV(Q),

UminCa TV (1) < Fo(u) < QmazC TV (u)
AminC1TV (1) < Fax#Fu(u) < MnaaCaTV (u),
where Qi = min {aq, as} and ey = max{a1, as} and respectively for Apin and Aoz

3.2. Fitting data term. In this section, we describe the possible choices of the data fitting
term depending on the degradation of the input dynamic datum g as well as the linear operator
A. Our setting is quite general and can be applied to any video denoising and deblurring
application for instance, or even dynamic emission tomography (ET) such as Positron Emission
Tomography (PET). We begin with two separate cases in terms of the linear operator A.

Case (1) : A=A

We consider a linear and continuous operator with the following assumptions:

(3.8) A€ LILP(Q),L9(Q)) with 1 < p < d%l, 1< g< oo,

(3.9) AXQ # 0,

Under these conditions, one can use an identity operator (e.g., denoising) or a blurring (con-
volution) operator (e.g., deblurring) to represent A. In the case of deblurring, we define
Au := h * u, where h is a spatially invariant blurring kernel that remains constant over the
time domain. Consequently, we assume that

(3.10) A(a(t)u) = a(t)A(u),
for a positive time dependent parameter «, see [17], i.e.,

A(a(t)u(t,x)) = a(t)A(u(t, x)) = a(t)(h(z) * u(t, z)).

This manuscript is for review purposes only.
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14 M. BERGOUNIOUX AND E. PAPOUTSELLIS

For (3.9), we assume that A does not annihilate constant functions which is an important tool
to derive existence results. Now we define

1 .
(3.11) Hlg, Au) = || Au - 9ll? 40y With g € LA(Q).

as our data fitting term. This is suitable for dynamic data corrupted by noise that follows
Gaussian distribution (¢ = 2) or impulse noise (¢ = 1) for example, see also [10].

Case (2): A=R

Here, we consider a linear operator related to emission imaging. The dynamic data that
we obtained during a PET scan for instance, are connected through an integral (projection)
operator known as the Radon transform R. For every ¢t € T, we write

(3.12) (Ru(0, ) (¢) = / u(t, z) dz,

z-0=s
where {:U eER?:z-0= s} is the hyperplane perpendicular to 6§ € S with distance s € R
from the origin. For t € T, (Ru(f,s))(t) lies on {(6,s):60 € S 1, s € R}, a cylinder of
dimension d and is often referred as projection space or sinogram space. In the dynamic
framework, we set X = T X {(0, s):0 eSSl sc R} and the Radon transform is a continuous
linear operator with

(3.13) R:LY(Q) = L'(%), [IRullpasy < Cllullpig) -

We refer the reader to [31] for general continuity results of the Radon transform in LP spaces.
Furthermore, if p > d%;l, the Radon transform is IP discontinuous, since the function

u(x) = |x _%m belongs to LP(Q), for x € @ but is not integrable over any hyperplane,
see |28, Th. 3.32|.

During the PET acquisition process, a certain amount of events e.g., photon-emissions are
collected by the scanner (detectors) and organized into the so-called temporal bins g(, s,t)
for every t € T. The associated noise in this data is called photon noise due to the ran-
domness in the photo counting process and in fact, obeys the well-known Poisson probabil-
ity distribution. For this kind of noise we use the Kullback-Leibler divergence, see [10],[27],

Dk LYQ) x L1(Q) — Ry U {oc}, defined as

(3.14) Dicr(u,v) = /

(ulog (ﬂ) —u—i—v) drdt, Yu,v>0a.e.
Q v

This is in fact the Bregman distance of the Boltzmann-Shannon entropy, see [33]. We briefly
recall some of the basic properties of the KL-functional which can be found in [11],[33] and
will be used later.

Lemma 3.1. The following properties hold true:
(a) Dir(u,v) is nonnegative and equal to 0 if and only if u = v.
(b) The function (u,v) — Dgr(u,v) is convez.
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(c) For fited uw € L1 (Q) (resp. v € LL(Q) ), the function Dgr(u,-) (resp. Dgr(-,v)) is
weakly lower semicontinuous with respect to L' topology.

(d) For every u,v € LL(Q)

2 4
(3.15) lu—[|F1q) < <3 ullpig) + 3 ||U||L1(Q)) Dgr(u,v).

Another crucial assumption is that the dynamic data ¢ are bounded and bounded away from
0. Equivalently, we assume

(3.16) g € L=(Q), with irz1fg > 0.

The boundedness assumption is true since we deal with a finite acquisition time. Moreover,
for a reasonably long counting process, where some million of photons are detected, all the
PET detectors will record a certain amount of photons, even if it is relatively small in practice.
Additionally, one has to consider a certain level of background noise. Hence, the assumptions
of the boundedness and the boundedness away from 0 can describe a realistic emitted data
and do not deviate from the ground-truth. For more details, we refer to [45, Chapters 10-12].
Due to (3.12), we have a similar condition as in (3.10) and in addition we require that R does
not annihilate constant functions. Hence, we have that

(3.17) R(a(t)u) = a(t)R(u), Rxq # 0.
To conclude, we define
(318) ’H(g,.Au) :DKL(ngu)7

whose domain is the cone of positive functions, as our data fitting term. In practice, when we
deal with the minimization problem (3.1), the fidelity is a reduced version of the KL-divergence,
since we can neglect the terms that are independent of u. Indeed, we write

(3.19) H(g, Au) = / Ru — glog Rudf ds dt,
s

since the glog g, —g do not count on the minimization problem (3.1). Let us mention that the
domain of above expression is still the cone of positive functions since u > 0 a.e. implies that
Ru > 0 a.e. Though we are mainly interested in the Radon transform case, one can replace R
with the identity or a blurring operator as in the previous case, suitable for Poisson denoising
and deblurring and with the analogous assumptions (3.16), (3.17).

4. Well posedness results. In this section, we are interested in the well-posedness of
the minimization problem (3.1) for the regularizers described in Section 3.1 and the different
choices of the data fitting term in (3.11) and (3.19). We focus on the infimal convolution total
variation regularizer case i.e., N'(u) := Fx#Fy(u). In the case of the total variation regularizer,
the forthcoming analysis is similar and most of the proofs are the same with minor adaptations.
We prove well-posedness (existence,uniqueness and stability) via the direct method of calculus
of variations for

() LinE  EA#E () + g, Aw).
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16 M. BERGOUNIOUX AND E. PAPOUTSELLIS

In particular, we need the lower semicontinuity condition to be true for both the regularizing
and the fidelity term, together with some compactness properties.

4.1. Lower semicontinuity of the inf-convolution operator. Note that the lower semi-
continuity of the inf-convolution operator is not true in general, even if F) is, see |6, Example
12.13]. Additional assumptions have to be imposed such as coercivity on the underlying space
as well as exactness of the infimal convolution in order to be lower semicontinuous. The first
step is to show that the inf-convolution operator is exact in our case. This is the object of
next Lemma.

Lemma 4.1 (Exactness of F\#F),). Assume that X and p verify (3.4) and there exists
k > 0 such that us = kXo. Then, for every u € BV(Q), there exists v, € BV(Q) such that

vy € argmin  Fy(u —v) + Fj(v) and / p2(t) vy (t, z)dt de = 0.
veBV(Q) Q

Proof. Fix u € BV(Q). Let v, be a minimizing sequence of

inf  Fy(u— F(v).
et o) A(u—v) + Fyu(v)

Then v, € BV(Q) and without loss of generality we may assume that the mean value of psv,
is

1
AUy, i= | / pa(t)v,(t,x) de dt =0 .
Q

QI

Indeed, since po = kA9, it is easy to see that

1 1
Iy <u — (v — m,ugvn)) + Fy, <vn - mm%) = Fa(u—vp) + Fu(vy),

so that w,, := v, — i 12U, is also a minimizing sequence that satisfies / powpdx dt = 0.

As Fx(u — v,) + Fu(vy) is bounded and Theorem 3.1 yields that TQV(,ugvn) is bounded
as well. Moreover, we have ||pavn[1(g) < TV(p2vy) from the Poincaré-Wirtinger inequality,
see Theorem 2.1. Hence, (p2v,) is BV-bounded. This implies that v, is BV-bounded as well
(see Lemma 4.2 and (4.1)). Therefore, there exists v, € BV(Q) such that, up to subsequence,

*

Up = Uy, L., Uy — Uy for the LY(Q) topology. We end the proof with the lower semicontinuity
of the functional with respect to the the L'(Q) topology, see Proposition 3.1. In addition, since
fQ p2(t)vn(t, ) dr dt = 0, we have from the L' convergence that fQ w2 (t)vy(t, ) dz dt =0 as
well. O

Next Lemma provides an estimate on u € BV(Q) when « satisfies (3.4) and au € BV(Q).

Lemma 4.2. Assume that o € WH°(T) and that there exists cunin > 0 such that 0 <
Qmin < a(t) a.e. t €T, then 1/a € WH(T). Moreover, if au € BV(Q) then u € BV(Q) as
well.
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Proof. Let a be in Wh%°(T) such that 0 < amin < a(t) a.e. t € T. We use Proposition
8.4 of [13] to infer that 1/a € WL°(T). Moreover, if au € BV(Q) then u € BV(Q). Indeed,

since

/{00 (1)
2

2
(4.1) lullBv(g) < o oLy + TV(au) < Collaulpy(q)-

mn min
O
Now we prove a lower semicontinuity result of Fx#F),. Here, we use the exactness of F)\#F),
and the BV coercivity of one of its terms. For more details on the lower semicontinuity of the
infimal convolution we refer to [41].

Theorem 4.1. Assume that X and p verify (3.4) and there exists k > 0 such that py = KAa.
Then, the infimal-convolution Fx#F),, operator is lower semicontinuous on BV (Q) with respect
to the L' topology. Precisely, if uy is a sequence in BV(Q) that converges to some u with
respect to the strong L' topology then

(4.2) Fx#tFy(u) < liminf Fx#F,(un).

Proof. Let u, € BV(Q) such that u, — u in LY(Q). If hgl}_nf Fx#F,(up) = 400 then

relation (4.2) is satisfied. Otherwise, there exists a subsequence (denoted similarly) and a
constant C' such that Fx#Fy,(u,) < C. Since Fx#F), is exact, there exists v, € BV(Q) such
that

Fx(un — vp) + Fu(vn) = Fax#Fyu(u,) and / pov, =0 .
Q

We claim that (p2vy,) is BV-bounded (that is ||uav,||By (@) is uniformly bounded with respect
to n). Indeed, Theorem (3.1) yields

1 C
TV (uovn) < —Fu(v,) < —.
(p2vn) < Cir u( n) < Cir
Using Poincaré-Wirtinger inequality, we have that
C Cg

[2vnlliy gy < CQTV(ugvn) < o
I

Following similar steps as before, there exists a subsequence vy, “L 5 in BV(Q). Due to the
lower semicontinuity F) and F, with respect to L' and its exactness, we have

- N < Tim B s
Fx(u—17)+ Fu(0) < lﬁi{}f Fx(up —vp) + Fy(vy) Egﬂg Fax#FE,(uy)
and since Fa#F),(u) < Fa(u —9) + Fj,(0), we conclude that

Fx#Fy,(u) < liglJirnf Fx#F,(uy).
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4.2. Well posedness. Now we focus on the existence of a solution for (P). The proof is
based on the corresponding results in [1, 44, 33] adapted to a spatial-temporal framework.

Theorem 4.2 (Existence). Let A\, p that satisfy (3.4) and that there exists a real number
k > 0 such that ps = kXa. Then, there exists a solution to problem (P).

Proof. Let u, € BV(Q) be a minimizing sequence of problem (7). Then there exists
M > 0 such that
Fx#Fu(un) + H(g, Auy,) < M.

Using Proposition 3.2, we deduce that TV (Agu,) is bounded. Let w, = Agu, then we have
[wn = Wl pg) < Ms with 1 < p < 4+l Moreover, we have

i) < om — Tl + NTallingy < Ms + ' /Q wn da dt'.

The goal is to prove that u, is BV bounded. This is equivalent to find an estimate on the last
term of the above inequality. To achieve this, we consider the two cases with respect to the
choice of the fidelity term presented in Section 3.2.
1
Case (1) : H(g, Au) = ¢[|Au — g]l{,

Recall that g € LY(Q), A € L(ILP(Q),L%Y(Q)) with 1 < p < d%l, 1 < ¢ < 00, and satisfy
(3.9), (3.10). Then, one has that

XQ”L . __
‘/ ddt’ |Q‘4(Q ATl gy < AT — Awp+ Awn— Aag + Aaglla)

< [JA[l [wn = wnllLe )+ 1 A(A2un) = A2gllra@)+lA29llLe(@)
< Al lwn = Wrllpe )+ X2l (7 <||Aun — 9llLag) + ||9||Lq(Q)>
< [[All M3 + [[A2lpe () ((qM)l/q + HgHLq(Q)> < My.

Case (2) : H(g, Au) = Dk(g, Ru)

Recall that, g € L*(Q), irxlfg > 0, R € L(LY(Q),L}(X)) that satisfies (3.17) with an

additional positivity constraint w, > 0. Therefore, it suffices to bound fQ wy dx dt. Since
infy, g > 0, we employ (3.15) and using (3.13) we have

2 4
IRwn — Aagllfa sy < <3 1A2gllLa () +35 HRWN||L1(E)>DKL()‘295 A2Runp)
2 4 . _
=\3 [A2llpee () Ngllers) t3 [R(wn —wn) + Rl 5y | [ A2llpee () DrcL(g; Run)

2 4 _ 4.
< <3 Iellpee 7y 9l sy + 5 1RIHwn =@l @)+ 3 HanHL1(2)> A2l oo (7 M
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2 4 / 4
< (3 Wl lolhsgsy + 3 IRIQIY M 43 IRl s sy) Wy M.
Hence,
4.
(43) [Rutn = daglfs o) < (Ms +5 IR ) Mo
On the other hand,
) o o 2
[Rwn — A2gHL1(Z}) 2 (HR(wn —Wy) — )‘ZQHLl(E) - HanHLl(E))
> R 1y (IRl s — 2 IR — W) = Aagllpas;)

> || Rl (s (HR@TnHLl(z)— 2 (IIRINQIMY Ms + [ X2l () 911 () ))

(0 > Rl sy (IR sy~ M7 ).

/ wy, dx dt
Q

(4.5) [Rwn]| 1 (s = ol IRXll 1 50y SR L1 ()= Ms [[Wrll1 ) -

Also, we have that

Combining (4.3),(4.4) and (4.5), we derive that
__ __ 4
(4.6) Mg |[Wn |1y | Ms [wnlly gy — M7 — 3Ms | < M5Ms.

Let B = My [[wnll1 () — M7 — §Ms. 1f B > 1, it is immediate from (4.6), that [yl (q) is
bounded. Otherwise, we have that

_ 1+ Mz + 3 Mg
[@nllL gy < L

which is again bounded.

To conclude, we have proved that in both cases w,, = Asu,, is LP bounded and hence is BV
bounded. Using Lemma 4.2, u, is BV and L? bounded. Then, there exists subsequence still
denoted by u, such that wu, Yy in BV, ie., up > uin L' and up, = uin LP, 1 < p < d%;l.
Theorem 4.1 yields that

Fx#Fu(u) < hnn—l>ic>%f Fx#F,(up).

Moreover, due to the lower semicontinuity of the fidelity terms as well as the continuity of A
and R, we conclude that

H(g, Au) < lim inf H(g, Aup).

This means that u is a solution to (P). (]
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Remark 4.1. To be consistent with the cases where either A or R is the identity operator,
let us mention that the BV-boundedness is immediate since

[unllragy < llun = 9llLag)y + I9llLao)
lnlls gy — I9lle oy 108 lunll gy — 1@1 < Dicr (g, tm)-

In the latter case, we use the Jensen’s inequality and that 3”7_1 < logzx, for x > 0. We refer
also to [27].

Theorem 4.3 (Uniqueness). Assume that XA and p satisfy (3.4) and that there exists a real
number k > 0 such that pa = kAa. In addition, assume that
o either A is injective in Case (1) for (3.11) and 1 < q < oo, or
e g satisfies (3.16) for Case (2).
Then the solution to (P) is unique.

Proof. Note that Fx\#F}, is convex since F) and F}, are convex. We first consider Case
(1) : since 1 < ¢ < oo and A is injective then u +— % | Au — g”iq(Q) is strictly convex.
In case (2), since infy; g > 0 and R is injective, see for instance [28], then u +— Dg (g, Ru) is
strictly convex. In both cases, we have that the energy u — &£(u) := (Fax#u)(u) + H(Au, g) is
strictly convex as a sum of a convex and a strictly convex terms. This gives uniqueness. [J

To conclude this section, we discuss the stability of minimizers of (P), see |1, 33, 37] for
instance, with respect to a small perturbation on the data g. Let (g,,) be a perturbed dynamic
data sequence such that

lgn = 9llLag) = 0, gn € LUQ) Case (1)

o (om0 {DKL(gn,g) -0, gn€L®(X) Case (2)

and the corresponding perturbed minimization problem

(1) SR (FA#E) (1) + g Au).

Theorem 4.4 (Stability).  Assume the assumptions of Theorem 4.3 are fulfilled and that
i%fgn > 0 and logRu € L*(X) in Case (2). Then problem (P) is stable with respect to

perturbations on g. Precisely, let (gn) as in (4.7) and u, u, be the solutions to (P) and (4.8)

respectively. Then, there exists a subsequence of (uy) that converges to u in BV(Q)-w*.

Proof. Since u,, minimizes (4.8), then for every v € BV(Q)
(4.9) (Fx#Fu)(up) + H(gn, Aup) < (FA#FL)(v) + H(gn, Av).
As in the previous proofs, we consider each case separately.

Case (1) : H(g, Au) = %HAU _g”iq(Q)

This manuscript is for review purposes only.
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487 Since g, — ¢ in L(Q), then there exists ng € N such that ||g — g,||d < 5ict for every
488 m > ng. So, for every n > ng

1 _ 1 1
489 (FA#FH)(un)‘F;”Aun_ QH%q(Q) <29 1<(F>\#Fu)(un)+qHAun_gnH%q(Q)"‘q llgn — g”%q(@))

_ 1 1
00 < i1 <(FA#FN)(U)+qHAu—ganLq(Q)-i-q lgn — 9”%1(@))
493 < (M +1).

Here, we used the convexity of the L? norm (¢ > 1) and relation (4.9) with v = u. Following the
proof of Theorem 4.2, we can prove that (u,) is BV-bounded, LP-bounded with 1 < p < d%dl

and (v,) are BV-bounded. Therefore, we have that u, — @ in L', u, — @ in LP, with
1<p< ‘%1 and v, — v in L!. It remains to show that % is a minimizer of (P). Theorem 4.1
yields that

(Fx#F) (i) < liminf (Fx#E,) ().

Moreover Au,, — g, — At — g in LY(Q). Since,

1 1
WEBV(Q) (Bt () + A~ dalllugy < (BAF)0) + 40— gull

193 we get for every v € BV(Q) that

104 (FA#F) (@) + 7141~ gLy g, < mmint | (Pt (ua) + 1w = gnllfag
195 < i (B#E)(0) + 7140 = gull g

i < (FA#F)(0) + 1140 = gl

498 So @ is a minimizer and we conclude with uniqueness that u = .

496

o Case (2) : H(g,.Au) = Dicr(g, Ru)

501

502 We assumed that ¢, g, € L>(2), ilzlf g, irzlfgn > 0 and logRu € L*>°(X). Using (4.9), for
503 every v € BV(Q), v > 0 a.e.,

504 (4.10) (F)‘#Fu)(un) + DKL(gn,Run) < (F)‘#FH)(U) + DKL(gn,Rv).

A short computation gives that
| Dk 1.(9n, Rv) = Dic1.(g, Rv) = Dic1.(gns 9)| < log Rv —10g gl 005y 19 = 9llpr (s -
As Dir(gn,g) — 0, then since Lemma 3.1 implies that g, — g in L}(2). So

Vv € BV(Q),v >0 le Dk1.(gn, Rv) = Dgr.(g, Rv).
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Moreover, we can prove using Theorem 4.2 Case (2), that wu, is bounded in LP(Q)
with 1 < p < d%l by a constant depending on ||gn |1 (). This bound is uniform with respect
to n since [|gn |11 (x) is bounded. As before, u, is BV bounded and there exists 4 € BV(Q) such
that u, — @ in L'(Q). Hence, Ru,, — R in L' () as well as pointwise convergent almost ev-
erywhere in 3. By Fatou’s Lemma applied to the sequence (gn log gn — gn log Ruy, — gn+7?,un)

we obtain "
Dgr(g,Ru) < liminf Dy (gn, Ruy).
n—oo
Similarly to the previous case, we get for every v € BV(Q), v > 0 that
(Ex#Fu) (@) + Drer(g, Ra) < liminf (Fx#F)(un) + Drcr(gn, Run)
< lim (F)‘#FH)(’U) + DKL(gn,RU)
n—oo

< (Ex#Fu)(v) + Dk (g, Rv).

By uniqueness, we conclude that @ = u is the minimizer of (P). (]

4.3. An equivalent formulation. We end this section by providing an equivalent formu-
lation for (P) that may be useful for numerical computations. The key tool is the exactness
of the inf-convolution operator. The original problem (P) also reads

" inf  Fa(u—v) + Fu(v) + H(g, Au).
7 (u,0)EBV(Q)xBV(Q) A( ) + Fu(v) (9, Au)

Theorem 4.5 (Equivalence). Assume that XA and p verify (3.4) and there exists k > 0 such
that pa = KA.
1. If (u,v) is a solution of (P’ ), then uw is a solution of (P) and

(4.11) Fa( = v) + Fu(v) = FxgFulu) = inf  (Fau =) + F(v)}

2. If w is a solution of (P) and equation (4.11) is verified for some v € BV(Q), then (u,v)
is a solution of (P')

Proof. Assume that (u,v) is a solution to (P’ ). Then, for every (u,v) € BV(Q) x BV(Q)
we have

(4.12) Fx(u — v) + Fu(v) + H(g, Au) < Fx(u — v) + Fu(v) + H(g, Au) .
Taking u = w gives
Vo EBV(Q),  Falu—v)+ Fu(v) < Fa(u—v) + Fu(v) .
that is F(u — v) + F,(v) = Fx#tF,, (). Let us fix u € BV(Q). Using (4.12), we obtain
Yo € BV(Q),  Ex#Fu(w)+H(g, Au) < Fx(u—v) + Fu(v) + H(g, Au),

which results to

Ex#Fu(u) +H(g, Au) < ( eg\l/f(Q) Fx(u—v) + Fu(v)) +H(g, Au) = Fx#tFp(u) +H(g, Au).
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Therefore, u is a solution to (P).
Conversely, assume w is a solution to (P). As Fx#F), is exact at u, there exists v € BV(Q)
such that F(u — v) + Fy(v) = Fa#F,(u). Then, for every (u,v) € BV(Q) x BV(Q)

Fx(u —v) + Fu(v) + H(g, Au) = Fa#tFp(u) + H(g, Au) < Fax#tF,(u) + H(g, Au)
< Fa(u —v) + Fu(v) + H(g, Au) .

This proves that (u,v) is a solution to (P’ ). O

5. Optimality conditions. In the final section of this paper, we deal with the optimality
conditions of (P). Optimality conditions are useful since they provide qualitative information
on the solution of the minimization problem. In many cases, they are a useful tool to prove
convergence of the algorithms and get error estimates independent on the discretization grid.
Here, we use standard duality techniques based on the convex conjugate and the subdifferential
of a functional in order to characterize the solutions. However, as we often deal with the dual
of the underlying space, we prefer to use a reflexive framework since the dual of BV(Q) is
not easy to handle. Therefore we choose p with 1 < p < d%l, so that BV(Q) is compactly
embedded in LP(Q).

We denote (-, -), v the duality product between LP(Q) and its dual L (Q) with 21? + l, =1

p
and

Yu € LP(Q), Yo € LY (Q) (U, 0)ppy = / u(t,z) v(t,x) dt dz .
Q

We start by extending ®,,, ¥,, and F,, from their respective domains to LP(Q) as follows:

)

Bo (u) = ®ay(u) ifue LY(T;BV(Q)), & (u) = Wa,(u) if ue L'(QBV(T)),
T oo else, T 40 else,

Fo(u) =

. {Fa(u) if u € BV(Q),
+oo  ifueLP(Q)\BV(Q).

We define the extended problem as

(P+) LA (B#EL) () +H(g, Au)

With the definition of Fl, it is clear that problems (7) and (P#) have the same solution set.
So, we look for optimality conditions for (Px). It is obvious that the lower semicontinuity for
the extended regularizing terms as in Proposition 3.1 is still valid.

Corollary 5.1. Let oc = (ay, o) that satisfies (3.4). The functionals ®u,, Ve, and Fu are
conver and lower semicontinuous on LP(Q)).

We begin with the Fenchel conjugates of the corresponding regularizing terms and then
focus on the characterization of the subdifferential of Fx#F),(u) + H(g, Au).
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5.1. Fenchel conjugate of F)\#F,,,. One way to derive the optimality conditions of (Px),
is by computing the subdifferentials of each term. A useful tool to achieve this goal is to
compute the conjugate functionals. We start with the following theorem found in [5, Theorem
9.5.1.].

Theorem 5.1. If V is a normed space with dual space V', and f : V — RU{4o00} is a lower
semicontinuous convex and proper function, then

V(u,u*) e V x V' u* € 0f(u) < u € of*(u*) ,
where f* is the Fenchel conjugate of f and the subdifferential of f at u is
Of(w) ={u" e V* [ Yo eV, f(v) - flu) > (u*,v — Wy y }.

The~ﬁrst step is to compute the Fenchel conjugate of the regularizing term F A#Fu starting
by F. Let us focus on the computation of the Fenchel-conjugate of ®,. We consider the set

Ka = {€ = diva o [ € L¥(T3CHOURY), [lell < 1} € LX(Q).

We have the following lemma that provides a relation with the sets defined in (2.3).

Lemma 5.1. We have K, C K, , where K, is given by (2.3). Conversely, any & € K,
verifies £(t,-) € Ky, for almost every t € T.

Proof. Let be £ € K,. There exists ¢ € C}(Q,R?) such that ¢ = div, ¢ and [¢[lccs < 1.
Let ¢ € L®(T;CL(Q,RY)) defined as ¢ (¢, z) = ¢(x), ( ) Q. Then [|¢||coc <1 and we may
extend £ on T x Q with £(t,z) = £(z) = div, (x) = divg Y(t, ). O

Theorem 5.2 ((fa Conjugate). For every function « that satisfies (3.4), we have

where, 1¢ is the indicator function of the set C' and IC, is the Lp/(Q)—closure of K.
Proof. Note that for every u* € L¥ (Q),

(5.1) r(u*) = sup (U, 0)py — Pa(v) = sup (u*,0),yPu(v).
veLP(Q) vEBV(Q)

Let & € ICy, then &(¢,-) € K, for almost every t € T and (2.2) gives

/f(t,x)u(t,x ) dz < sup/( ) dz = TV, (u)(t);
Q

CEKy

using (3.2), we obtain that

(5.2) sup (&, u) —sup//gta: (t,z) doe < Dy (u).

feaky feaky
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As @, is positively homogeneous, then ®7 is the indicator of some closed subset K of L?'(Q)
(Corollary 13.2.1 of [35]).

e We first prove that ok, € K. Let u* be in ak,. Using (5.1), (5.2) we have that for any
veBV(Q), (v) > (u*v) and so <I>*( *) < 0. As ®* is an indicator function this means that
®* (u*) = 0. So u* € K and ak, c K. As K is L¥' (Q)—closed this gives ak, C K .

e Let us prove the converse inclusion. Assume there exists u* € K such that u* ¢ akC,. One
can separate u* and akC,, see [13]: there exists w € R and ug € LP(Q) such that

(uo,u*), y >w > sup (uo,v"),
v*EaE
(5.3) = sup (ug,v" —u), , <O0.

v*eaa

On the other hand, since ®,, is convex and lower semicontinuous with respect to the LP-
topology, then by Fenchel-Moreau theorem we have that <I>** = <I> In particular we write
that for all u € BV(Q),

(5.4) ®,(u) = sup (u,v*>p’p, — (i)Z(’U*) = sup (u, 'U*)p’p/7
v eLP (Q) vreLP'(Q)

since ®* (v*) = 0. Let us fix t € T, then

VE e Ky, a(t)é(z)u(t,z) < sup a(t)((z)u(t,x) ae z€Q,
CEK:

and taking the supremum we have that

sup /Qoz(t)f(:c)u(t,x) dz g/Q sup a(t)¢(x)u(t,z) dx ,

EEK, CEK:

TV, (au)(t) < / sup a(t)((z)u(t, x) dz.

QCeK,

We subtract both sides by (u,u*) , and integrate over the time domain 7 to recover

p.p

/OT TV, (au)(t) dt — /T/ Wt (b )l ) do di <
/ / Lseu}(aza C(a) = “*(tal’)] u(t,x) do dt.

Then, using (5.4) and Lemma 5.1, we have that for all u € BV(Q)

0 < @a(u) — (u,u’), _/ / Lzu}g ((z *(t,:v)] u(t,x) dx dt

/ / L:ﬂ%g (@) —u(t, “3>] u(t,x) dx dt.
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Hence, this implies
Vu € BV(Q), / / <£ug E(t,x) — u*(t, x)) u(t,z) dz dt > 0.
As BV(Q) is dense in LP(Q) with respect to the LP-norm (since it includes C}(Q) ) we get
Yu € LP(Q), / ( sup &(t,x) — u*(t,a:)) u(t,z) dx dt > 0.
Q \é€aky,

In a similar way, choosing —u instead of u we conclude that

sup { —u* =0 = sup (up,§{—u"),, =0
feaky feaky ’
As ak, C ak,, then
sup (ug,§ —u”), , >0.
Sea/Cz
which is a contradiction by (5.3). O

The following is the analogous result of the previous theorem for the W, functional and can
be proved similarly.

Theorem 5.3 (¥, Conjugate). For every functz’on « that satisfies (3.4), we have

[0}

UF = 1.z, where Ki:= {E = " | 9 € L®(Q,CHO,T,R)), [t]leo < 1} .

Using the above theorems, we are able to compute the convex conjugate of the extended
spatial-temporal total variation defined in 3.5. We use the following results for the convex
conjugate of the infimal convolution and the convex conjugate of the sum, see [5, Chapter 9.4],
i.e., for two proper, closed, convex functionals ¢, we have

(¢#)" = ¢" +¢" and (¢ + ¥)" = (¢"#¢")".
Corollary 5.2. For every ac that satisfies (3.4), we have that
Fr = I with Ko = 1Ky + a2k
Proof. As ﬁa = ‘ial + \?[Vloé2 and Cf‘al, \TIQQ are convex, lower semicontinuous, we have
P = (B + W) = B V5)" = (Lo L) = (L) = (1)

where Ko = 1K, + a2K;. Moreover, one has that (1, )** = Ig— , since the (L¥") closure
Ko of Kq is convex, see [35, Chapter 13]. O

Corollary 5.3 (FA#FM Conjugate). For every X, p that satisfy (3.4), we have
(Fa#F,)" = Lk,

where Kx, K, are the corresponding sets defined in Corollary 5.2.

We have computed the convex conjugate of our proposed regularizer and we proceed now with
the optimality conditions of (P).
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5.2. Optimality conditions for (P) . Since the problem (Px) is convex we have that w is
the solution if and only if 0 € 9&(u) where

E(u) == (Fa#tEy) (u) + Mg, Au).

We use the following result that allows to estimate the subdifferential of the sum of two
functionals, see [5, Theorem 9.5.4].

Theorem 5.4. Let (V)| - ||) be a normed space and let f,h : V — RU {+oc0} be two lower
semicontinuous, conver and proper functions.
(a) The following inclusion is always true: Of +0h C O(f + h) .
(b) If f is finite and continuous at a point of dom h, then we have: Of +0h =9(f + h) .

5.2.1. Case (1). In this subsection we focus on the first case where the L? fidelity term
is H(g, Au) = %HAU - quLq(Q) with 1 < ¢ < +oo and A satisfies assumptions (3.8), (3.9)

and (3.10). Clearly, dom Fx#F,, = BV(Q), domH(g, Au) = LP(Q) and u — H(g, Au) is LP
continuous at 0 € BV(Q). Therefore,

O (u) = OFNH#F,(u) + 0H(g, Au).

Any u* of & (u) writes u* = u} 4+ ub where u} € OF\#F),(u) and u} € OH(g, Au). In the
sequel, we characterize the elements w7, u5. Starting with the subdifferential of Fx\#F),, it is
easy to check that for every u € BV(Q) — LP(Q), we get

(5.5) uy € 815)\#13’“(11) < uj € KANK, and Vo € Kx N Ky, (u,v* — u*{)m,, <0,

where Kﬂ@ is a closed convex subset of Lp/(Q). Indeed, we use Theorem 5.1, Corollary 5.3
and that F\#1F}, is convex and lower semicontinuous, to get

u € J(Fa#FL) " (u7) = Ol ()
The subdifferential of the data fitting term using [20, Proposition 5.7] is
. (0 A A*(Au — g)171, if 1 <g<oo
(5.6) (9. Aw) = {A*z, 12l oo gy < 1, 2 € sign(Au— g)}, if g=1.

Note that in the latter case one has
O = gl i) (®) = A lLi @) — ) = {2 €L(Q) | el < 1, = € sign(v — g)}.
Overall, we have that
0 € 9&(u) <= Fu* € OH(g, Au) such that — u* € DF\H#F,(u)
and one concludes to the following result:
Theorem 5.5. A function uw € BV(Q) is a solution to (P) if and only if
1. YWwekank, <u,A*(Au — )t - v>p7p, <0, if 1 <q<+oo,
2. YWwekankKy,, (u,A%z— v>p’p, <0, if ¢g=1 with
z € L2(Q), [zl £ 1, = € sign(Au — g).
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5.2.2. Optimality conditions for (P): case (2). In this subsection we focus on the Kull-
back Leibler divergence H (g, Au) = Dy (g, Ru) where u € L1 (Q), the positive cone of L.
We cannot follow the same strategy as before due to the limitations of this fidelity in terms
of continuity. It is known that a proper, convex, lower semicontinuous is continuous if and
only if the interior of its domain is not empty, i.e., int(domf) # 0, see [20]. In our case the
effective domain is in fact nowhere dense and D, (g, R-) is nowhere continuous in L!(€), let
alone in LP(2), see [19, Remark 2.12]. Moreover, Fx#E,, is not continuous with respect to the
LP norm.

Therefore we use BV(Q) as the underlying functional space. In the sequel (-,-) de-
notes the duality product between BV(Q)" and BV(Q). We use Theorem 5.4 again with
V = BV(Q), f = Fax#F, and h = Dgr(9,R-). Indeed, f is lower semicontinuous due to
Theorem 4.1 and h due to the continuity properties of both the Radon transform and the
Kullback-Leibler divergence.

Proposition 5.1. Assume that A and p satisfy (3.4) and that there exists a real number
k > 0 such that ps = kXa. Then Fx#F, is continuous on BV(Q) (and of course at any
element of domf N domh = BV (Q) the set of positive BV functions).

Proof. Let u1, ug be in BV(Q). As Fx#F), is exact, there exists v; € BV(Q) such that
Fx#Fu(u1) = Fx(u1 —v1) + Fpu(v1). We get

Fx#tFu(uz) = Ueligf\lff(@ Fx(uz —v) + Fu(v) < Fx(uz — v1) + Fp(v1)
< Fa(ug —ur) + Fa(ur — 1) + Fu(vr)

< Fa(ug —uy) + Fa#tE(ur).

Similarly
Fa#Fu(u1) < Fa(ur —u2) + Fx#Fu(uz),

and using Theorem 3.1

[Fa#tFu(u) — Fx#Fu(uz)| < Fx(un — u2) < C2TV (Az(ur — ug)).

Moreover
TV (ot — u2)) < [ Mol TV (w1 — uz) + ‘ A;Hme lur — uzllpa )
< [ Aellwree (7 llur — uall gy -
This prove the continuity of Fx#F), on BV(Q). O

So u € BV, (Q) is a solution to (P) if and only if
0 € O(Fx#Fu)(uw) + 0Dk (g, Ru).

Equivalently, there exists u* € O(Fa#Fu)(u) such that —u* € 0Dgr(g,R-)(u). As usual,
we have u* € O(I\#F,)(u) < wu € O(Fx#F,)*(u*). However, in this setting we are
in different topology. Though we have computed F % for previous case, the computation of
Fy is still challenging. Indeed, we cannot use the arguments used in Theorem 5.2 since the
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649 underlying topology is now the BV one and not the LP(Q) one any longer. In particular, we
650 loose reflexivity as well as an integral representation on the duality product, see [23].

Since Fl is positively homogeneous functional, we know there exists a closed convex subset

of BV' that we call K such that F5 = 1k, (u*) is the indicator function of K. Unfortunately,

we are not able to give an explicit description of K: we only know that Iy C K. We obtain

(EX#F,)" = F} +F;; =1k, + 1k, = lk,nK,-
Therefore,
u* € 0(Fa#F,)(u) <= u* € KxyNK, and Vu* € KxyNnK, (u,w"—u")<0.
Next, we compute 0H(g, R-)(u). Let be w € BV (Q)

H(g, R(u + sw)) — H(g, Ru)

—u* € 0H(g,R")(u) = Vs >0

Passing to the limit as s — 0 gives (VH(g, R-)(u) + u*, w) > 0.
Conversely, assume (VH(g, R-)(u) + u*,w) > 0 for every w € BV, (Q). Let be w € BV(Q):
if u+ w <0 then it is clear that

+o0o =H(g,R(u+ w)) — H(g, Ru) > {((—u™),w).
Otherwise, by convexity
H(g, R(u+w)) = H(g, Ru) = (VH(g, R-)(u), w) = {(—u’), w).
Therefore
—u* € OH(g9,R-)(u) < Yw € BV,(Q), (VH(g,R)(u) + u*,w) >0 .

A short computation gives

Finally ,

—u € OM(g,R)(u) <= YweBV (@), (R (1n- %) +utw) >0,

651  For this case, we conclude with the following optimality conditions

652 Theorem 5.6. Let u € BV (Q). Then w is a solution to (P) if and only if there exists
053 u* € KxN K, CBV(Q) such that

654 (5.7) Vw* e KxNK, (u,w*—u") <0,

* g *
655 (5.8 Y BV R M1y — —— > 0.
656 (5:8) w€BV.(Q) < ( > RU)) T 7w> -

This manuscript is for review purposes only.



678

679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702

30 M. BERGOUNIOUX AND E. PAPOUTSELLIS

Remark 5.1. The difficulties met in order to establish the optimality conditions are closely
related to the so-called two-norm discrepancy in control theory (see [14] for example). We have
to deal with both the BV- norm and the LP-norm. The qualification condition that we need to
describe the subdifferentials is easy to satisfy with the BV-norm. However, the computation of
the conjugate functions cannot be explicit within a non reflexive framework. On the contrary,
the use of LP-norm leads to a nice description of conjugate functions while the splitting of the
differential cannot be done. In a discrete setting, these difficulties disappear of course.

6. Conclusion. We perform a thorough analysis on the proposed spatial-temporal infimal-
convolution regularizer under time dependent weight parameters. It acts in a separate mode
on the spatial and temporal domains and it can be applied to a wide range of problems such as
denoising, deblurring and emission tomography with different kind of noise (impulse, gaussian
or Poisson). We focus on the well-posedness of the proposed minimization problem and provide
existence, uniqueness and stability results into a very general framework. We further derive
the optimality conditions using standard tools from duality theory. However, we have still
to focus in depth on the characterization of the sets K to have a clear insight of the dual
variables. This implies that we have to deal with the dual of the BV space and use some
integral representations as in [23]. Another issue is to describe carefully the discretization
process and the dual problem in an appropriate way, especially with respect to isotropic or
anisotropic spatial-temporal discrete norms. Finally, in a forthcoming paper, we shall perform
numerics, especially for PET reconstruction, and compare this model to those that can be
found in the literature such as [25].
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